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ABSTRACT

A theory of characteristic modes for conducting bodies
is developed starting from the operator formulation for the
current. The mode currents form a weighted orthogonal set
over the conductor surface, and the mode fields form an
orthogonal set over the sphere at infinity. It is shown
that the modes are the same ones introduced by Garbacz to
diagonalize the scattering matrix of the body. Formulas for
the use of these modes in antenna and scétterer problems are
given. A procedure for computing the characteristic modes
for bodies of arbitrary shape is developed, and applied to
conducting bodies of revolution and to wire'objects. ITlus~-
trative examples of the computation of characteristic currents
and characteristic fields are given for a cone-sphere, a disk,
and a wire arrow. Modal solutions using these modes are com-
puted for representative antenna and scattering problems to
illustrate convergence of the solution as the number of modes
is increased. For electrically small and intermediate size
bodiés, only a few modes are needed to characterize the

magnetic behavior of the . body.
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PART 1

GENERAL THEORY

1., INTRODUCTION

Characteristic modes have long been used in the analysis of radiation and
scattering by conducting bodies whose surfaces coincide with coordinate surfaces
of coordinate systems in which the Helmholtz equation is separable. Recently
Garbacz [1] has shown that similar modes can be defined for conducting bodies
of arbitrary shape. He approached the problem by diagonalizing the scattering
matrix. This led him to the conclusion that the mode currents are real, and
the taﬁgential electric mode field is of constant phase over the surface of the
body. Garbacz, Turpin, and Wickliff [1,3,4] used this property to find the char-
acteristic currents in a few cases, but they did not obtain convenient formulas

for computing the mode currents in general,

In this report we approach the problem from the alternative viewpoint of
diagonalizing the operator relating the current to the tangential electric field
on the body. By choosing a particular weighted eigenvalue equation, we obtain
the same modesg as defined by Garbacz. Our approach leads to a simpler derivation
of the theory, and to explicit formulas for determining the mode currents and
fields. Also, we consider both near and far fields, whereas Garbacz considered

only far field patterns.

II, CHARACTERISTIC CURRENTS

Consider the problem of one or more conducting bodies, defined by the
surface S, in an impressed electric field E'. An operator equation for the
current Fon S is [6]

> +1
L) -E7] =0 (1-1)

where the subscript "tan' denotes the tangential components on S. The operator

L is defined by



L@ = 50 A@) + Vo) (1-2)

AQ) = u@ﬁ&") v (z," )ds' (1-3)
! _

o (3 = % vt 33D v, Eas! (1-4)
N ~ik|T-T"

V(') = e (1-5)
4wlr—r'f

Here ? denotes a field point, T a source point,’and e,u,k the permittivity,
permeability, wavenumber, respectively, of free space. Physically, -LCE)
gives the electric intensity E at any point in space due to the current 3 on
S. In an antenna problem, the impressed field Ei is the negative of the
tangential component of E over S, assumed known. In a scattering problemn,

the impressed field B is due to known sources external to S,

We define the.symmetric product of two vector functions % and ¢ on §

as

<B,C> = JJ B .Cds (1-6)
S
The broduct <B*,C>, where * denotes complex conjugate, defines an inner pro-
duct for the complex Hilbert space of all square~integrable vector functilons
on S. The operator appearing in (1-1) has the dimensions of impedance, and

we introduce the notation

2@ = L] (1-7)

tan

That Z is a symmetric operator, i.e., <B,Z2C> = <ZB,C>, follows from the
reciprocity theorem [5]. However, Z is not a Hermitian operator, i.e.,

* *_%
<B ,ZC> # <Z B ,C>. Because Z is symmetric, its Hermitian parts are real

and given by

R = %-(z + z*) (1-8)
-1 ®
X= 23 (z -2 (1-9)




Now Z = R + jX where R and X are real symmetric operators, Furthermore, R is

U

positive semidefinite, since the power radiated by a current J on s is <JTRJ> > 0.
If no resonator fields exist internal to S, then R is positive definite, i.e., all

currents radiate some power, however small.
Next consider the elgenvalue equation
-> . -

2@ ) = v u@) (1-10)
where v are elgenvalues, jn are eigenfunctions, and M is a weight operator to
be chosen, The eigenfunctions for any cholce of symmetric M will diagonalize Z,
but only the choice M = R also gives orthogonality of the radiation patternms.

(The choice M=I, the identity g¢perator, is considered in Appendix A.) Hence, we

choose M = R and set Z = R + jX in (1-10), obtaining
R —> _ —-> _
R+ 30 ) =v RU) (1-11)
It is evident that the real part of vn must be unity, and we set
vo= 1+ 3 (1-12)
where An is real. The common term R(En) in (1-11) can now be cancelled,
giving
> -
X = -
(Jn) AnR(Jn)‘ (1-13)

Both X and R are real symmetric operators. Hence, all eigenvalues An and
eigenfunctions En must be real. The jn must also satisfy the usual orthogo-

nality relationshipg

<J , RI>=0
m n

T X9 > =0 m#n (1-14)

<J , ZJ > =20
m n

=
Furthermore, since the Jn are real, the orthogonality relationships are also

valid for inner products, that is,




%
<J,RI> =0
m n
*
<J ,XI>=0 m¥n (1-15) i
m n
%
<3, 23> =0
m n -

The choice of {jn} as basis functions therefore simultaneously leads to

diagonal matrix representations of R, X, and Z, We shall call these 3ﬁ

the characteristic currents or eigencurrents of the conducting body defined
" by S. ' »

So far the eigencurrents are of indeterminate amplitude. Each eilgencurrent

which radiates can be normalized according to

*
I, RI> =1 (1-16)

i.e., it radiates unit power. Each eigencurrent associated with an internal
resonance cannot be so normalized, but they are not needed for radiation
problems. When normalized according to (1-16), the 6rthogonality relationships
(1-14) and (1-15) can be combined with (1-16) to give

&
<J ,RJ > =<J _, RI > =4
m had m n mn
g XT > o=< KT =26 1-17
n’*n” T m* n” 0 "naTmn (1-17)
%
<I_,A3 > = <3, 23 > = (LHA )6

where Gmn is the Kronecker delta (0 if m#n and 1 if m=n). For further theory
we assume the eigencurrents to be normalized. If unnormalized currents are

used, the factor <Jn, RJn> must be properly introduced into the theory.

I1XI. CHARACTERISTIC FIELDS AND PATTERNS

The electric field En and the magnetic field,ﬁn produced by an eigen-

current jﬁ on S will be called the characteristic fields or eigenfields

corresponding to 35. The set of all En or ﬁn form a Hilbert space of all

fields throughout space produced by currents on S. We obtain orthogonality




relationships for the characteristic fields from those for characteristic
currents by means of the complex Poynting theorem [5], Explicitly, the com-

>
plex power balance for currents J on S is given by

0

* * *
P=x<J, 23 =<J, RI>+ j<J, XJ»

@Exﬁ* C @ e m@ﬁ L - BYar o (1-18)

s! T!

where 8' is any surface enclosing S and 1' is the region enclosed by S'.
Equation (1~18) is a Hermitian quadratic form, for which the associated
Hermitian bilinear form is

> >
P(Jm, Jn) = <J.» 23 > (1-19)

> > - '
If Jm and Jn are eigencurrents, then the orthonormality relationships

(1-17) apply, and we have from (1-18) and Maxwell's equations

> % - i > >% > >% . .
iﬁ EmXHn « ds + jw jJ[ (uHm . Hn - EEm . En)dT = (1 + JAn)Smn (1-20)
s! 7!
This equation can be separated into real and imaginary parts to give orthogo-

nality relationships similar to the first two of (1-17), if desired.

If the body S is of finite extent, and if S' is chosen to be the sphere
at infinity (S, of Figure 1-1), then (1-20) gives orthogonality relationships
for radiation patterns and fields. On S_ the characteristic fields are of
the form of outward traveling waves, i.e.

-5

- + _ —juwp ~jkr = _
L = NH xn e F_(8,9) : (1 le)

4y

. 3 . . 3 -+ 3 I
Here n = Yu/e is the intrinsic impedance of space, n is the unit radial vector
on S,, and (8,6) are the angular coordinates of position on S,. The complex

-
vector Fn of (1-21) is called the characteristic pattern or eigenpattern cor-

_> -
responding to the eigencurrent Jn. Adding (1-20) to its conjugate, we find

that



=]

Fig. 1-1. Surfaces and coordinates.




l@f’é CEds = 8 (1-22)
n i} n _

‘ mn
Seo

Hence, the characteristic far fields form an orthonormal set in the Hilbert
space of all square-integrable vector functions on S,. We can also express

(1-22) in terms of the characteristic magnetic field as

*
n(ﬁ) ﬁm-ﬁds=a . (1-23)

Finally, subtracting (1-20) from its conjugate, we obtain the orthogonality

relationship
* *
wm Wi« H - B . E)dr = A8 (1-24)
where the integration extends over all space. For m=n, equation (1-24)
states that Kn is 2w times the total stored magnetic energy minus the total

stored electric energy. (This assumes that <Jn, RJn> = 1,)

IV. MODAL SOLUTIONS

A modal solution for the current J om a conducting body can be obtained
by using the eigencurrents as both expansion and testing functions in the
-
method of moments [6]. Following this procedure, we assume J to be a linear

superposition of the mode currents

> - v

J=1 el | (1-25)
n

where the o are coefficients to be determined. Substituting (1-25) into

the operator equation (1-1), and using the linearity of L, we obtain

] a3 -9 =0 (1-26)
n

Next the inmer product of (1-26) with each jm in turn is taken, giving the

set of equations

Lo <3, 23 > =<3, E> =0 (1-27)



m=1,2,... . Here we have put L = Z, and dropped the subscript "tan' on Ei.

tan
Because of the orthogonalilty relationship (1-17), equations (1-27) reduce to
. - 1 -

a (L+3r)=<J,E> (1-28)

The right~hand side of (1-28) 1s called the modal excitation coeffiecient

e, b - #3 C Blas (1-29)

Substituting for o from (1-28) into (1-25), we have the modal solution for

the current J on S

-
J
n

JA

N s
J =7 T
28

+ [

(1-30)
n .
If the eigencurrents Jn are not normalized according to (1-16), the term

l+j>\n in (1-30) should be replaced by (l+jxn) <Jn, RJn>.

The characteristic fields are linearly related to the characteristic
currents, and hence ‘can also be expressed in modal form. Explicitly, these

forms are X
vt E
—"_ n n -
E=lom | (1~31)
n n
S
H = z 1:53T~ (1-32)
n n
> > - ] ]
where E and H are the fields from J everywhere in space. Again, if the
eigencurrents are not normalized, the term l+j}\n must be replaced by
(l+JAn) <Jn, RJn>.
Finally, if the reciprocity theorem [5] is used, alternative expres-
sions for the modal excitation coefficients are obtained. For example,

, o1
if B is produced by an electric current'Jl, then recipracal to (1-29) we

vt - m A, | (1-33)

have

where the integration extends over the impressed currents, Similarly, if Ei

is produced by a magnetié current'ﬁi, then reéiprocal to (1-29) we have

10




vie - ”J . Mar (1-34)

n n

> 5
More generally, if Ei is produced by both electric currents J* and magnetic

currents ﬁi then V; is given by the sum of (1-33) and (1-34).

V., LINEAR MEASUREMENTS

Any scalar p linearly related to the current, i.e., a linear functional

of the current, will be called a linear measurement of the current. Some

examples of linear measurements are (a) a component of the current at some
point on S, or (b) a component of the field (% or ﬁ) at some polnt in space.
Every linear functional of 7 can be expressed as

p = <Em, J> (1-35)

where E" is a given vector function, usually an electric field on S. TFor
example, if p 1s the j-th component of the field Eg from j, then (1-35) be-
comes [5,6]

Ej S R N (1-36)

where EY is the electric field on S produced by a j-directed electric dipole
I8 = 1 placed at the field point, If the j-th component of T were desired,

then a unit magnetic dipole would be placed at the field point, and so on.

If the modal solution (1-30) is substituted into the general measurement

formula (1-35), there results

A -
o =) T (1-37)
n n
where Vz is the modal measurement coefficilent
V=<, B =<ﬁ> T s (1-38)
n n n
S

Note that V: is of the same functional form as Vi, the excitation coeff%cient,
given by (1-29). Hence, (1-37) is a symmetric bilinear functional of 7t (the
impressed field, or excitation) and of " (the measurement field, or adjoint
excitation). Of course, the symmetry of (1-37) is a consequence of the sym-

metry of the original operator Z.

11



Fig., 1-2,

CONDUCTING BODY

An aperture antenna.
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Reciprocal forms for the measurement coefficients, analogous to (1-33)
and (1-34) for excitation coefficients, can also be written. For example,

Zm m
if the source of E is electric current J , then

y" o= [[J E . FMar (1-39)

analogous to (1-33). If the source of E" is magnetic current ﬂ@, then

Vs - ffj Ao e (1-40)

analogous to (1-34). Pinally, if E 1s produced by both a J™ and an ﬁm,

the measurement coefficient Vg is given by the sum of (1-39) and (1-40),

VI, APPLICATION TO RADIATION AND SCATTERING PROBLEMS

Two important specializations of the general theory are (a) radiation
from apertures in conducting bodies and (b) plane-wave scattering by con-
ducting bodies., Explicit formulas for these two cases are given in this
section., Other problems, such as antennas in the vicinity of conductoré
and near-field measurements, are also special cases of the general formulas,

but they are not considered explicitly.

Consider a conducting body of surface S in which one or more apertures
exist, as suggested by Figure 1-2, There are sources internal to S which

-
produce a tangential electric field Etan (assumed known) over the apertures,

Then E* = - Etan is the impressed field, and the mode excitation coefficients
(1-29) become
i _ - -
v o= ﬁ 3ot B ds (1-41)
S

The radiation pattern for the aperture is then given by the modal solution
(1-31). For computation, we must deal with one number at a time, say some
component of % at a particulér position (6,¢) on S,. For this, we place a
unit electric dipole Iz = ﬁm at (8,¢) on Sx, and evaluate the modal measure-
ment coéfficient by (1-38) and (1-39). This gives

Wby, s = E - » (1-42)

n m
S .

it

13
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where B is the field produced by the distant dipole, Explicitly, in the
vicinity of S the dipole field is [5]

. T
o L A (1-43)
- > > -

Here km is the vector propagation constant of the wave from I = u o, and T
is the position vector to fz (see Figure 1-2). Now (1~42) becomes
| ik sk T
-jkr - oor
Vo= [0 e nlé# J -4 e T ds ‘ (1-44)
n 4rr n m
S

Substituting this into (1-31) dotted into Gm, we have

. i_m
. -jkr V- R
. o Zlwd me 00 _
S v 1+3x (1-45)
m n n
where V; are given by (1-41) and
-> -
=ik r
ﬂ:@ﬁ.ze m g (1-46)
n n m ‘

are the plane-wave measurement coefficients. Equation (1-45) provides a

convenilent formula for computatilons.

Next, consider a conducting body of surface S in a plane-wave scatter-
ing problem, as suggested by Figure 1-3., The impressed field is the unit

plane wave

- Gie  t (1-47)

-+ >
where ug is the polarization vector and'ki is the propagation vector. The

excitation coefficients (1-29) are now

' > > -
1.4 > T3ky T
Vo= R = 6@8 I 03 e ds (1-48)
n n n i
S

Note that this is of the same functional form as the plane-wave measurement
coefficients (1-46), hence the notation Ri for (1-48). The determination of

the scattered field at some measurement position (em,¢m)is the same problem

15



as the determination of the radiation field in the antenna problem. Hence,
the scattered field in the direction (Gm,¢m) is given by (1—45)'with Vi re-
i . n
placed by Rn’ or
~jkr_ R R®
m n n

n ” Grr T+3n (1-43)
n n

A commonly used parameter in plane-wave scattering problems 1s the echo area,
defined as [5]

o = 4rur f% ;mjz {(1-50)
Substituting from (1-49) into (1-50), we obtain i
. wzuzz Rni Rﬁ’z sty
b4r \ T+5A }
n n

Note that o is a function of the polarization of the incident wave Zi’ and of
the measurement wave ﬁm, as well as. of the position coordinates (Gi,¢i) cf the

incident wave direction and (em,¢m) of the measurement direction.

VII. DYADIC REPRESENTATIONS

Any biliﬂear'functional can be represented in terms of a dyadic operator,
the Dirac bra-ket notation being well-suited for this purpose, In the modal
solution for the current, let Ei> denote the tangential component of the im-
pressed E on S, and J> a‘current on S. The characteristic currents are denoted
by Jn> or <Jn. Then (1-30) becomes

J ><J 4 £t 7
J> = IZL THiA_ (1-32)
where we have used (1-29) for the excitation coefficients. Similarly, if <™
denotes the tangential component of the measurement field ™ on S, the general
linear functional (1-37¢ becomes

<EV, I ><J_, ets

P =1 1+ix
n n

(1-53)

16




where we have used (1-38) for the measurement coefficients, It is evident
from (1-53) that

1 Jn><J
-_— __————r-l. _
Y =2 = l+jkn (1-54)
is a dyadic representation for the inverse operator to Z, called the spectral
form of Y = 21, In terms of (1-54), we can write (1-52) as

J> = YE*> (1-55)

which is the inverse equation to our starting equation ZJ> = Ei>. Similarly,

we can write (1-53) as
p = <E Y YE > ’ (1—56)

The inverse to this equation is

o = <J%, z3t> ' (1-57)

m . .
where <J is the current on S excited by the measurement field <Em, and

J'> is the current on S excited by the impressed field B>,

If the impressed and measurement fields are produced by electric
currents, we can use the reciprocal formulas (1-33) and (1-39) for the
excitation and measurement coefficients. For this, we introduce the

bilinear product

{4,B} = JJJ X8 ar ~ (1-58)

where the integration is over all space. Now let E} denote the electric field
E everywhere in space, and Jl} the impressed sources everywhere in space., In

terms of the mode fields En} or {En, we can now write the electric field (1-31)

as
E} {E, J%}
n n
E} =) ) (1-59)
n n
where we have used (1-33) for the excitation coefficients. Similarly; if

{J™ denotes the source of the measurement field everywhere in space, the

general linear functional (1-37) becomes

17



®, B} (5, 75
n . n

b= g L+iA

(1-60)

where we have used (1-39) for the measurement coefficieﬁté. It is now evi-
dent that

E } {E

n s

is a dyadic operator in spectral form. In terms of (1-61), we can write

(1-59) as
g} = rat) T (1-62)

from which it is evident that T is a type of Green's function. Explicitly,
it gives the field E due to j on S (sometimes called the scattered field)
when the conducting body S is exclted by impressed sources ji elsevhere in

space. Similarly, (1-60) can be written as
o = {3%, ral | | (1-63)
which is an alternative form for the general bilinear functional p.

A development simi}ar to the above applies for the ﬁ fleld 1f the
impressed and measurement fields are produced by magnetic currents. To
summarize, let Hh}‘or {Hn represgnt the magnetic modal fields, and define
the magnetic dyadic operator

1} {H
P o= g —?;53;f1 (1-64)
Now, letting Mi} denote an impressed magnetic current, analogous to (1-59)
and (1-62) we have
H) (H, '}
1+IA

g} = - fut = - J (1-65)
I

The minus sign is due to that appearing in (1-40). It is evident that -f isg
a magnetic Green's function, giving the field ﬁ due to j on S when the con-
ducting body is excited by impressed sources Mi} elsewhere in space. Letting
(M® denote a measurement magnetic current, analogous to (1-60) and (1-63) we

have

18
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(1-66)

This is the most general form for a bilinear functional when both the im-

pressed and measurement currents are magnetic,

If both electric and magnetic currents exist, it is convenient to use
a six-component formulation for the problem [6]. In this case, field vectors
Y = (ﬁ, ﬁ) and source vectors K = (3, ﬁ) are defined, and equations (1-62)
and (1-65) combined into a single six-component equation. We have no use at

present for this generalization, and will not pursue it further.

Finally, 1f the electric currents for both the impressed and measurement
sources are specialized to unit electric dipoles on the sphere at infinity,
we obtain the bilinear scattering dyadic introduced by Garbacz [1,2]. To be
explicit, let the unit incident plane wave be produced by the distant impressed
dipole

iE_ - T4ﬁr eJkr T
i jwp i

(1-67)

>
and let the measurement source be the unit dipole i = u

(1-53) be Zm + E, in which case (1-53) reduces to

. Let the p of
m

i - B
T -41r  jkr (um ' n)( n ' ui) (1-68)
m Juu oy l+j>\n

The pattern functions %n are defined by (1-21), and (1-68) can be written in

terms of them as

Y e , G« FHE U
a3 e B o= lwn e—Jkr 2 m n’"n i (1-69)
m 4nr 1+3X
: n n
Defining the dyadic pattern operator as
> >
> Fn Fn
F=) T+ (1~70)
n n
1we_céﬁ write (1-69) as
N o s il
B e (LR S e X ‘ -
u ¢+ E e © (um F ui) (1-71)



This is the 3m component of the scattered field due to a ﬁi peolarized incident

wave, The echo ares, defined by (1-50), is given by

2
o=y L.y (1-72)

The dyadilc operator T 1is valid only for the far field, not for the near
field. |

VIII. SCATTERING AND PERTURBATION MATRICES

The scattering matrix was first defined as that matrix which relates the
amplitudes of incoming spherical modes to outgoing spherical modes [7]. More
generally, the incoming and outgoing waves can be expanded in terms of arbi-~
trary basis functions. We show that if the characteristic fields En are
chosen as the basis of outgoing waves, and thelr conjugates E; as the basis of

incoming waves, then the scattering matrix is diagonalized.

In a scattering problem the far zone field can be expressed as the sum of

incoming and outgoing waves as

=%, +% ' 1-73
~ %4n out (1-73)

+
For a given scatterer, for each incoming wave E there is a unique outgoing

in

-
wave Eout' The scattering operator is defined to be that which operates on

N ->
E. to give E
in

out’ i.e.,

T =3 %, . (1-74)

out in

. . . >% ’
Given an outgoing wave Eout’ the conjugate field Eo will be an incoming

ut

wave. This is evident from either spherical mode theory, or consideration
* >

of L , adjoint to L of (1-2), The characteristic fields En are outgoing

' >
waves, and we choose them as basis functions for E l.e.y

out’
> >
Epup = rEl b E_ | (1-75)

>k
The conjugates En are incoming waves, and we choose them as basis functions

_)‘ [
for Ein’ i.e.,

20




-+ . >R
Ein = % a En (1-76)

The scattering matrix [S] is that which relates the column vector b (components

bn) to the column vector a (components an) according to
b+ [S8] a . 1-77)

A field of the form En + E: is a source-free field, shown as follows., The
wave equation for the field En due to a current jn is V x ¥V x En + kzﬁn =-jwu3n.
The field E: satisfies the conjugate equation. Now 1f jn is real, as it 1s for
characteristic currents, then En + EZ satisfies the source-free wave equation.
Hence, in the absence of a body, the field will be a linear superposition of
fields of the standing wave type En + E:, i.e.,

%

g an(En +E) (1-78)

It is evident from (1-75) to (1-78) that, when no body is present, b = a and the’

scattering matrix is the identity matrix.

When a scatterer is present, the outgoing waves are partly due to the im-
! >
pressed field El and partly due to the field from the currents J on S, called

the scattered field S, The perturbation operator P is defined to be that

- >S
which operates on 2Ein to yield E7, i.e.,

£° = 2PE, (1-79)
in

The factor 2 was introduced by Garbacz [1] for convenience in other formulas.
The field E° is an outgoing wave, and can be expanded in the En as

s _ > _

E- =) c, E (1-80)

n ‘

Expansion (1-76) is still used for Ein‘ The perturbation matrix [P] is that
which relates the column vector ¢ (components cn) to the column vector a
according to

e =2[P] a (1-81)
It is evident from the definitions of [S] and [P] that

[S] = [I + 2P] (1-82)

where [I] is the identity matrix.
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We next show that both [S] and [P] are diagonal matrices, and obtain
their elements. The -impressed field Ei is a free-gpace field, and hence
must be of the form (1-78). Because of linearity, it will suffice to show
that a single-mode impressed field excites only the corresponding modal

current. Hence, we assume an impressed field
E =% +E (1-83)
Then the mode excitation coefficients (1-29) are

* ®
Vi=<J ,E +E>=-<J,2] +2J>
nr m m n m om
= - (LHA o+ 1-30 )6 = - 26 o -88)

Thus, all mode coefficients are zero except Vi which is -2, Trom (1-31) we

have &>
28 ='—2 Em

1+5X
m

(1-85)

‘Hence, ifffin is—ﬁi, then £S5 contains only Em as shown by (1-85). If the
incident field contains many modes as in (1-78), then the scattered field
will contéin a sum of terms of the form of (1-85). By comparison of (1-81)
with (1~85), it is evident that

_ -
!
[p] = T 0 o ...
-1
0 T+in, 0 ... (1-86)

i.e., [P] is diagonal with elements él/(lfjkn). Finally, from (1-82) we

compute the scattering matrix as

1-3A ]
[s] = ‘1+;x1 0 0. .. |
1
1-33,
0 —-IIEK;' o ... (1-87)

i.e,, [S] is diagonal with elements -(l-jkn)/(l+jAn). These formulas agree
with those of Garbacz [1].
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IX, DISCUSSION

An extensive theory of the characteristic modes of conducting bodies is
developed in this report, starting from the operator equation for the current
on the body. These are the same modes obtained by Garbacz, who started from
the scattering matrix. Our approach gives a simpler development of the theory
than does Ggrbacz's, and we have derived a number of additional properties of
the modes not discussed by Garbacz. The statement, made several times by
Garbacz [1,4], that the perturbation operator transforms converging modes into
diverging modes of the same form, is somewhat misleading. Our theory shows that
the converging modes are transformed into diverging modes which are the complex
conjugate of the converging modes. We have not considered the question of com-
pleteness of the sets of mode functions in Hilbert space. Garbacz [1] considers

this question, and we find his arguments convincing.

The eigenvalues An range from -« to +w=, with those of smallest magnitude
being more important for radiation and scattering problems. We therefore order
the modes according to [klI 5_[A2[ 5_[k3] <... . Also, equation (1-24) shows
that those modes with positive A have predominantly stored magnetic energy,

while those with negative A have predominantly stored electric energy. We

therefore call those modes with A > 0 inductive modes, and those with A < O

capacitive modes. A mode having A = 0 is called an externally resonant mode.

The modes corresponding to the internal cavity resonances for the conducting

surface have !k[ = o, and do not enter into radiation and scattering problems.

We concur with Garbacz's speculation that these modes should prove to be
of great value, both theoretically and computationally, for radiation and scat-
tering problems. In part 2 of this report we give a straightforward method for
computing the modes. These computations bear out the speculation that, for -
electrically small and intermediate size bodies, only a few modes are needed to
characterize the radiation and scattering properties of the conducting body.
This property, coupled with the orthogonality properties of the modes, should
make them valuable for synthesis and optimization problems in antenna and

scattering theory.
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PART 2 - -

METHOD OF COMPUTATION

I. INTRODUCTION

A theory of characteristic modes for conductingrbodies, which diagonalizes
both the scattefing operator and the impedance operator, is given in Part 1.
A rather involved procedure for calculating the modes for wire objeéts was
devised by Turpin [3], but because of computational difficulties he was able
to obtain only four or five modes on a wire. Also, he gave no indication of
how to extend his method to solid bodies. In this report we give a straight-
forward procedure for computing the modes on conducting bodies of arbltrary
shape. The number of modes obtained is limited only by the speed and storage
capabilities of the computer, nét by inherent computational difficulties.
Computer programs for conducting bodies of revolution and for wire objects
will be given in future reports. We give illustrative computations of char-
acteristic modes and of their use in radiation and scattgring problems in

this report.

11, BASIC EQUATIONS

The general theory is developed in Part 1 of this report. We here sum-

marize some of the more important equations of this theory.
Given a surface 8, let -L be the operator reléting a current J on S to
the electric field E it produces everywhere in space, i.e.,
L= - % (2-1)

Formulas for L in terms of vector and scalar potential integrals are given
by (1-2) to (1-4). The impedance operator Z is given by L specialized to

tangential components on the surface 8, i.e.,
> -
zd = L), : (2-2)

Now Z is complex and symmetric, i.e., Z = R + jX where its Hermitian com-

ponents
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R

NPA N

@+ 25 (2-3)

X (z -1z ) (2-4)

1]

are real and symmetric.' To diagonalize Z, we consider the weighted eigenvalue

equation

-

2 -+ © (2-5)
p = L+ an) R
where (1 + jhn) are elgenvalues and jn are elgenfunctions, Substituting
Z = R + jX into (2-5), and cancelling the common terms, we obtain
X5 = A RS (2-6)
n non
This is a real symmetric eigenvalue equation, hence all eigenvalues A are

real and all eigenfunctions J are real. The J are called the characteristic

currents of a conducting body S. The electric flelds En'produced by jn accord-

ing to (2-1) are called the characteristic fields of the conducting body S.

It is shown in Part 1 that the characteristic currents and fields have

the following important properties:

(a) The characteristic currents are orthonormal over the surface S with weight
R, 1.e.,

| ‘ 0 m#
#ﬁ) T .rf as = " 2-7)
m n

S

(b) The characteristic fields are orthonormal over the sphere at infinity

8, with weight ve/u, i.e.,

*
(g# 2* .3 4 = (2-8)
u m n
Seo L -

(c) The characteristic currents diagonalize the impedance’ operator for S.
In particular, the current J on a conductor S in an impressed field E is

given by N

hj .

= n £ I : 5

J =7 TR (ﬁ ET - J ds (2-9)
n n S
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(d) The characteristic fields diagonalize the scattering operator for S. ‘

More generally, the field E due to the current on a conductor S excited by

. =1, .
impressed currents J is given by

-5

. E . . - '
> n > >1
E = g i fff E_» Jdr (2-10)

Here the integration extends over all space.

III. REDUCTION TO MATRIX EQUATIONS

The reduction of operator equations to matrix equations can be effected
in the usual way by the method of moments [6]. For the space of square-

-~ -
integrable vector functions A and B on S we use the symmetric product

<A,B> = 3@6 X .3 ds ' (2-11)
S

+
Because the mode currents are real, we use a set of real functions Wﬁ as
>
expansion functions for Jn’ il.e.,

I = g ijj , o (2-12)

where the Ij are coefficients to be determined. Substituting (2-12) into

(2-6), and using the linearity of the operators, we obtain

> >
I.XW, = A I.RW, : S - 2~13
Z 31 n Z 33 ( )
3 J
5
To obtain symmetric matrices, we use the same Wi as testing functioms.

Taking the symmetric product of (2-13) with each %i’ we have the set of

equations
§ L, <Wp,XW> = A Z I, <W;,RW,> (2-14)
J
i=1,2,... . This can be written as the matrix eigenvalue equation
[(X][1], = A, [RI[T] (2-15)

where [I]n is the column matrix of the I;, and
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[R] [<wi,ij>] (2-16)

il

[X] [<wi,xw5>] \ (2-17)

Equation (2-15) is a real, symmetric, weighted, matrix eigenvalue equation,
Its eigenvalues An approximate those of the operator equation (2-6), and its
eigenvectors [I]n define functions according to (2-12) which approximate the

eigenfunctions of (2-6).
The corresponding matrix approximation to the complex eigenvalue equation
(2-5) is
(21111, = (L2 DRI, (2-18)

‘where [Z] = [R + jX]. The matrix [Z] is known as the generalized impedance

of the body [6], and has been evaluated in a number of cases [8,9]. If the

ﬁi are differentiable, a convenient formula for the impedancekelements is [8]
1 >

= ' . —*, .'-> i —>' R -—>' > . 1
Zij ¢i>ds iﬁ dS[JQUWi Wj + Toe (v wi)(v wj)}wz (2-19)
S S

where the primes denote functions of the primed coordinates, and

R >
e—Jk]r - ;'l

v, (2-20)

bo|F - 3]

The Hermitian parts of [Z] are its real part [R] and its imaginary part [X],
obtained in the conventional way. In particular, the elements Rij are given

by (2-19) with wz replaced by

_ sin kT - ?‘[

Y = (2-21)
B jun|® - 31
and the elements Xij are given by (2-19) with wz replaced by
S -
ot
by = cos kit - 7' _ (2-22)

4ﬂ‘¥ - ?'f

Numerical evaluation of these elements is considered in the literature [8,9].
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The matrix equivalents of the orthogonality relationships for the
characteristic currents, equafions (1-16), are also of interest. For example,
that for R is

<J »RI > = <§ LI R§ LA e

I <W, ,RW,>

i,m9,n 3

i,3
= [T [RIT], = & . (2-23)
where ~ denotes transpose. Similar derivations hold for X and Z, giving the

orthogonality relationships.

[T1 [RI[T] =8 _
SMESEs I (2-24)
(11 [2][1] = (@+3r )6

Because the [I]m are real, these orthogonality relationships also apply with

transposes replaced by transpose conjugates (Hermitian transpose).

IV. EVALUATION OF THE MODES

We next discuss solution of the matrix eigenvalue equation
(X1[1] = A[R}[Z] (2-25)

which is (2-15) with the subscript n dropped for brevity. The conventional
method for reducing (2-253) to a symmetric unweighted eigenvalue equation
requires [R] to be positive definite [10]. 1In our problem [R] is positive
semidefinite in theory, but because of numerical inaccuracies 1t is actually
indefinite, with some small negative eigenvalues. We therefore modify the

conventional method as follows.
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Let [U] be the orthogonal matrix which diagonalizes R according to

(W] = [URU] = | uy 0 0. ..
0 My 0. .. (2-26)
where the u, are the eilgenvalues of R ordered By ZHp Zoeee s Premultiplying

(2-25) by [U], and using (2-26), we obtain

~

(0 x U0 1] = A[u][0 1] (2-27)

Only the larger Hy can be considered accurate, and we set all By < Mul equal
to zero, where M is some small number set by our estimated accuracy of [R].

(We usually take M = 10—3.) The diagonal matrix [u] is then partitioned as
Wl = [ eyl 10] (2-28)
[ 0] [0]

where [ull} contains all Hy not considered zero. We also partition the other

matrices in (2-27) conformably with [u], i.e.,

[x] = [01] = | [x] (2-29)
[x,]
[A] = [UX U] = | [a;] [a},] (2-30)

[A1,] [4y,]

Substituting (2-28), (2-29), and (2-30) into (2-27), we obtain the two matrix
equations

(R, l0xy 1 + [4),10x,] = 0 (2-32)

The second of these may be solved for [x,], and the result substituted into

5]
the first to obtain
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EAll 12A2§ 12][}{ I = K[Ull][xl} (2-33)

Now [Ulll has only positive diagonal elements, and we can define the real

matrix
- —_
[ul/z] = /EI 0 0 ... (2-34)
0 /E;' 0. ..
Substituting [”11} = [ul/zl[ul/zl into (2-33), and multiplying by [u l/2],
we obtain
-1/2 _ 1/2 W2y 2 aqul/?
This is now the real, symmetric, unweightéd eigenvalue equation
[Bl{y]l = Ayl (2-36)

where the definition of [B] and {y] is obvious by comparing (2-36) with
(2~35). The eigenvalues of (2-36) are the smaller eigenvalues of our
original equation (2-25), and the eigenvectors of (2-36) give the correspond-

ing eigenvectors of (2-25) according to

-1/2

(1] = [Ux] = [U] (6] (uyy 7yl (2-37)

-1 ~

(-85 &,

where [8] is the identity matrix.

To diagonalize the real symmetric matrices [R] and [B] we used the
Jacobi method [1l], available in the IBM System/360 scientific subfoutine
package (EIGEN). We have also used the Givens-Householder method [11],
but the accuracy of the dominant A, as checked by the Rayleigh quotient,
was not as good as for the Jacobi method. Other methods tried were solution
of [R_lx][l} = A[I] and (1/X)[1] = [X_lR][I] by the QR double step method [12],
but again the accuracy was not as good as for the Jacobi method. Also, as a
numerical check, we used the Gram-Schmidt procedure to calculate a set of
orthogonal eigenvectors corresponding to By = 0. The complete set of eigen~-

vectors [I]n was orthogonal to within the accuracy of computation.
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Finally, the characteristic currents jn are given by (2~12), where I
are the components of [I]n’ and the characteristic fields ére given by

> -+
E =—LJn=-ZI

-
n L Lw:.L : (2-38)

i

However, rather than evaluate Lﬁi numerically, we use reciprocity as dis-
cussed in Section VI of Part 1. For this, we place the unit current element

-5
I = ﬁm at the point of measurement, and compute the m-th component of En as

- - >m >
E 1 Sﬁﬁ ET « J ds
n m - n

S

=71, (}:B . W.ds (2-39)
T 1 i
1 S )

>
The final integrals are measurement coefficients with respect to the W If

i.
the radiation pattern is desired, we place gm on the sphere at infinity and

compute the m~th component of the radiation field as

N N i —jkrm
E » u = =&, z I.R, (2-40)
n m Lrr 2 T

R, = cﬁ}g Woru e ™ 4s (2-41)

The notation of (2-40) and (2-41) is discussed in Section VI of Part 1.

V., APPLICATION TO BODIES OF REVOLUTION

A general computer program for calculating the characteristic modes on
conducting bodies of revolution has been developed and will be publishéd in
the future. An outline of this program and some illustrative examples of

its use are given here.
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Fig. 2-1. Coordinate system for bodies of revolution,
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Figure 2-1 defines the coordinate system used for bodies of revolution,
The body S 1s generated by rotating the contour C about the z axis. The
coordinates on S afe t (length variable along C) and ¢ (angle of rotation
from the x-axis). The spherical coordinates of a field point are r,8,6.
The current 3 on S has two components, Jt and J¢. Letting Et and Z¢ denote

unit vectors in the t and ¢ directions, we can choose two sets of real ex-

pansion functions

{Etfi(t), 3tfi(t) cos né, 3¢fi(t) sin no} (2-42)

and

{u¢fi(t), thi(t) sin néd, - 3¢fi(t)icos no} - (2-43)

where 1 and n are positive integers. These two sets are sufficiently general
to represent an arbifrary Jon S if the fi(t) form a complete set in the t
domain. If the testing function ﬁi is from the set (2-42), and the expansion
function %j is from the set (2-43), then the resulting impedance element (2-19)
is zero. The sets (2-42) and (2-43) can therefore be treated independently.
The impedance matrix for the set (2-42) has the block diagonal form

(21 = | 12551 (o] 0] . . . (2-44)
{ol (z,] [0} . ..
[0] [0] [2,]
where, for n=1,2,..., B
_ tt to
[z 1=|[2"] [z "] C(2-45)
ot 90
(29" 2%

The submatrices on the right-hand side of (2-45) are computed using the follow-

ing expansion and testing functions:
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Table 1

Matrix element Testing function Expansion function
(Z;t)ij thi(t) cos ng gtfj(t) cos ng
(zflq’)ij G £, (t) cos ng 6,£, (£) sin
(Zit)ij K¢fi(t) éin né thj(t) cos nd
(zi“’)ij 3¢fi(t) sin n¢ K¢fj (t) sin no

The orthogonality between sets (2-42) and (2-43), as well as the block
diagonal form of (2-44), is a consequence of equations (33) to (37) of
reference [8], This is equivalent to the statement that a current of the

form'j = GtJt cos ng + §¢J¢ sin n¢ produces a tangential electric field on
-

> -
S of the same form, Etan =u Et cos n¢ + u¢E¢

the form'j = ZtJt sin n¢ -~ Z J cos n¢ produces a tangential electric field

sin n¢, and that a current of

e rt

. ->
E sinng - u

tan = YeP ¢E¢cos ng. Q .

The impedance elements can now be evaluated in terms of those used in

on S of the same form, E

earlier work [8]., Letting the careted matrices denote those of equation

(39) of reference [8], we obtain

(2551 = 125 (2-46)

(2.1 =% | 12551 512t | (2-47)
5ot 766
IEALS I EALS

This result is obtained by expressing sin né and cos n¢ in terms of

exponentials. For example, the elements of [Z§¢] are given by
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")

- - .
<utfi(t) cos nd, Zu fj(t) sin n¢>

n “ij ¢
= L (5to L ate
=37 @iy may Gy
= L (5td : _
=27 @Ga)yy (2-48)

Similar derivations yield the other submatrices of (2-47).

The impedance matrix for the set (2-43) has the same form as (2~44)
except that [Zzt] is replaced by [Zg¢]. The table of expansion and testing
functions must now be changed by replacing all cos n¢ factors by sin n¢ fac-
tors, and all sin n¢ factors by -cos n¢ factors. The relationship of these

new impedance matrices to those of [8] is now given by

(2891 = 12%%] (2-49)
and by (2-47) for n > 0.

For computation, we specify 2N+1 nearly equidistant points to,tl,...,t2N

along C, with tO at the beginning and toy at the end of C., The fi(t) are taken
as triangle functions divided by the radius, each extending over four intervals

(t ). For expansion, the fi(t) are approximated by four pulses, and for

Pl N
teitiiglthey are approximated by four impulses. The details are given in
reference [8]. Because of these approximations, the impedance matrices are
not exactly symmetric, as they would be i1f evaluated exactly. We eliminated
this asymmetry by averaging corresponding off diagonal elements of [Z]. A
number of computatioﬁal checks showed that this averaging had no noticeable

affect in radiation and scattering problems.

The computer program for bodies of revolution was first run for spherical
conductors, and the results compared to the exact modal solution. Table 2
shows a comparison of the exact A (computed from spherical mode theory) to the
approximate A (computed from our general program) for a few of the modes. The
computations are for a sphere of radius 0.2 wavelength using 9 expansion func-

tions for Jt and 9 for J, (the [Z] is 18 by 18). These numbers are smaller

¢

than usually used. Sources of error in the computations are (&) the circular

contour is approximated by 20 straight line segments, (b) the current is

35



tip sphere

(c) Ay = - 1.27

(e) XS = 5,62

Fig. 2-2. Characteristic currents for a cone-sphere, length 1.36 wavelengths,

sphere diameter 0.4 wavelengths.

symmetric modes are shown.

The six lowest order rotationally
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approximated by triangle functions divided by radius, and (c) approximations
are Introduced into the evalﬁéﬁion of [Z]. The accuracy of the approximate
A decreases as the exact Ik] gets larger, but such modes are less important
in radiation and scattering problems. The accuracy of computation increases .
as the number of contour segments 1s increased. Plots of some of the approxi-

mate mode currents, compared to the exact mode currents, are given in Appendix B.

Table 2. Comparison of exact X and approximate

A for a sphere of radius 0.2 wavelength,.

Mode Exact A Approx. A
TEOl ) 2,673 2.682
TE02 21.60 21.82
TMOl _ -1,082 -1.096
TMO3 ~-284 .4 -290.7
TE12 21.60 21.66
TMl2 -11,00 ~11.30
TE22 21.60 21.56
TM22 -11.00 ~11.26

The general program was next run for a number of bodies of revolution
with contours of different shapes. For representative computations, consider
a cone-sphere body, formed by a cone of 10° half-angle smoothly joined to a
sphere of diameter 0.4 wavelength (approximate total length 1.36 wavelengths).
The contour is approximated by 40 straight-line segments of equal length, and
19 expansion functions are used for Jt and J¢ (the [Z] i1s 38 by 38). Figure
2-2 shows the six lowest order characteristic currents for the rotationally
symmetric modes (n=0), plotted vs. the contour length variable, starting at
the tip and ending on the sphere. These modes are the ones which are used
in the solution of radiation from rotationally symmetric apertures. The x's
denote t-directed currents, and the squares denote ¢-directed currents. In

the rotationally symmetric case, if Jt 1s nonzero, then J, = 0, and vice versa.

-
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[ap]
|1
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N

(a) A = - 0.0171

(e) Ay = - 1.27

J

(e) AS = 5.62

e

(b) Ay = 0.524

(£) XG = - 16.9

Fig. 2-3. Characteristic gain patterns for a cone-sphere, length 1.36 wave-
‘ lengths, sphere diameter 0.4 wavelengths. The six lowest order

rotationally symmetric modes are shown.
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Note that the first three modes have only Jt’ and are similar to straight
wire modes. The next two modes have only J¢, and are similar to wire loop
modes. The value of X in each case is listed under the corresponding graph.
The currents are normalized so that their mean-square value over the surface

is unity.

Figure 2-3 shows the characteristic gain patterns for the six lowest
order rotationally symmetric modes of the cone-sphere. They are plots of
the normglized radiation intensity vs., 6 from the corresponding mode currents.
of Figure 2—2. (Tic marks correspond to a gain of 2.) The first three modes
are due to Jt’ and have only an E_, in the radiation field. The next two modes

8
are due to Jé’ and have only an E, in the radiation field. The three-dimensional

¢

pattern is obtained by rotating each plot about the Z axis (vertical axis).
Figure 2-4 shows the six lowest order characteristic currents for the

‘cos ¢, sin ¢ modes (n=1) of the same cone-sphere. These are the modes which

are used in the solution of scattering due to a plane-wave axially incident Qd

the body. Now each mode has both a J_ (plotted by x's) and a J, (plotted by

t
squares), where Jt varies as cos ¢ and J

¢

varies as sin ¢. The graphs are for

¢

J, in the ¢ = O plane, and J, in the ¢ = 7/2 plane. The small oscillations

.t ¢
in J¢ are due to inaccuracies of computation. The true J¢ is probably that

obtained by smoothing out the oscillations. Again the currents are normalized

so that their mean-square value over the surface is unity.

Figure 2-5 shows the characteristic gain patterns for the six lowest order
cos ¢, sin ¢ modes of the cone~sphere. They are plots of the normalized radi-
ation intensify vs. 6 from the corresponding mode currents of Figure 2-4, (Again,
tic marks-&orrespond to a gain of 2,) Now the radiation field for each mode has

two components, E6 which varies as cos ¢, and E, which varies as sin ¢. The graph

¢
labeled g, is the 6-polarized gain in the ¢ = 0 plane, and that labeled g, is the
0 ¢

¢-polarized gain in the ¢ = 7/2 plane,

To illustrate computations for a body of another shape, Figure 2-6 shows
similar -results for a disk of one wavelength diameter. Shown are the three
lowest order characteristic currents and characteristic gain patterns for the

cos ¢, sin ¢ (n=1) modes. The interpretation of the two components of J, and
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(8) Ay = - 1.55 @ (b) AZ = 1,88

2T Jt
0- : i : : —
tip J¢ sphere
24
(e) Ay =- 3.74

(d) A4 = 5,05

(e) AS = - 13.1 (£) A6 = 17.9

Fig. 2-4. Characteristic currents for a cone-sphere, length 1,36 wavelengths,
sphere diameter 0,4 wavelengths. The six lowest order sin ¢, cos ¢

modes are shown.
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(e) r. = - 13.1 (£ A6 = 17.9
Fig. 2-5. Characteristic gain patterns for a cone-sphere, length 1.36 wave-

lengths, sphere diameter 0.4 wavelengths. The six lowest order

sin ¢, cos ¢ modes are shown.

41



(b) mode patterns

{a) mode currents Z 640
ge 8¢
s le— A —»)
Nt
axis edge
H_’_.____P-—OJ""M-—*—.
-2+ o +
Rl = -~ (,0088
a--
» ”* * -Jt
0 1 T e — ; ‘
xRS J edge
-2+ AZ = 2,56
2T J
-\/‘\L‘. '
1] t f } - —| t }
axis edge
2 Jt
)\3 = -26'5

Fig. 2-6. Characteristic currents and gain patterns for a disk of one wave-

length diameter, The three lowest order sin ¢, cos ¢ modes are

shown.
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‘

the two components of g, is the same as discussed for the cone-sphere.,. The
computations were made using 9 expansion functions for Jt and 9 for J¢ (an
18 by 18 matrix). DNote that the lowest order mode is almost resomant, that

is, its A is almost zero.

VI. CONVERGENCE OF RADIATION AND SCATTERING PATTERNS

We have implied that only a few modes are needed to characterize the
radiation and scattering properties of electrically small and intermediate
size bodies. We now demonstrate that this is indeed true by computing the
modal solutioms for varying numbers of modes, and showing that their radia-

tion and scattering patterns rapidly converge to known solutions.

The general theory of modal solutions is given in Section VI of Part 1.
For aperture radiation problems, we use (1-12) in (1-41) to obtain the mode

excitation coefficients as

i > >
Vo= - z I, @Wi B ds (2-50)
8 5
-~
where %tan is the assumed tangential E over S, Similarly, we evaluate the

plane-wave measurement coefficients (1-46) as

R = g I, @ Wocu e U ds (2-51)
S

where Em and ﬁm are the polarization and propagation vectors, respectiveiy,
of the measurement plane wave, In evaluating (2-50) and (2-51) for bodies of
revolution, we use a four impulse approximation to ﬁi’ as discusgsed in
reference [&]. Once Vi and R: are evaluated,.the radiation field is given
by (1-45). TFor plane-wave scattering problems, we evaluate the plane-wave
excitation coefficients Ri, equation (1-48), by (2-51) with ﬁm and Km re-—

> > - .
placed by u, and kif the polarization and propagation vectors of the incident
plane wave., Once R; and R: are evaluated, the bistatic radar cross section

is given by (1-51}).

Figure 2-7 illustrates convergence of the modal solution for the cone

sphere (10° half cone angle, 0.2 wavelength sphere radius, 1.36 wavelengths
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total length) excited by a voltage applied across a narrow slot at the
cone-to~sphere junction. The solid curve in each figure 1s the radiation

gain pattern obtailned by matrix inversion [8], and the x's are the cor-
responding modal solution, The modes used are the rotationally symmetric

ones having only Jt on S (Figure 2-2) and 12 in the radistion field (Figure
2-3), These are the only ones which are excited by an Et on S, The modal
gsolution of Figure 2-7a uses the two lowest order modes, and is nearly zero,
This could have been predicted from the fact that the two lowest characteristic
currents, Figure 2-2a and b, have almost zero amplitude at the cone-to-sphere
junction. The modal solution of Figure 2-7b uses the three lowest order modes,
and shows that the gain pattern is predominantly that of the third mode. The
modal solution of Figure 2-7c uses the four lowest order Jt modes, and that of
2-7d uses the five lowest order Jt modes. Note that the gain pattern is

essentially fully converged when five modes are used.

Figure 2-8 illustrates convergence of the modal solution for the same
cone-sphere scattering an x-polarized plane wave axially incident on the cone
tip. The solid curves in each figure are the bistatic radar cross sectlons
(E-plane and H-plane) obtained by matrix inversion [8]. The x's in each figure
are the modal E-plane solution (8-polarized, ¢ = 0 plane), and the squares are
the modal H-plane solution (¢~polarized, ¢ = m/2 plane). The modes used are the
cos ¢, sin ¢ (n=1) modes of Figures 2-4 and 2-5, The modal solution of Figure
2-8a uses the two lowest order modes, 2-8b the four lowest, 2-8c the six lowest,
and 2~8d the eight lowest. Note that a plane wave excites all n=1 modes, the
six lowest order modes being most important for this particular body. The scat-

tering pattern has fully converged when eight modes are used.

We have also considered the convergence of modal so%utions for bodies of
other shape, with similar results. For example, for the disk of one wavelength
diameter (characteristic currents and patterns given by Figure 2-6), the modal
plane-wave scattering pattern was almost the same as that of the lowest order
mode, which was resonant. The scattering pattern using two modes was almost

identical to the matrix inversion solution.

If a conducting body of revolution is excited by a non-axially propagating

plane wave, the n=0 modes, n=1 modes and higher order sin né, cos n¢ modes are
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all excited. 1If the body is electrically small in diameter (say less than
ornie—quarter wavelength, only the n=0 and n=1 modes contribute significantly
to the scattering pattern. Similarly, in an aperture antenna problem, if the
excitation is not rotationally symmetric, modes other than n=0 modes will be
excited. Again, if the body is of electrically small diameter, usually only

the n=0 and n=1 modes contribute significantly to the radiation pattern.

VIT., APPLICATION TO WIRE OBJECTS

A computer program for the computation of the generalized impedance
matrix of wire bodies of arbitrary shape is available [9]., This impedance
matrix can be used in a slightly modified version of the bodies of revolution
mode program of Part 3 to obtain the characteristic currents and fields of
wire objects. A discussion of the method and some representative computations

are given in this section.

A wire in space is specified by a number of points along its axis, plus
its diameter. There may be more than one wire present, and these wires may
have free ends, may be closed on themselves, or may be joined together. The
expansion functions and testing functions are the same (Galerkin's method),
and are chosen to be triangle functions extending over four subsections of
the wire. TFor expansion, the triangles are approximated by four pulses, and
for testing they are approximated by four impulses. Because of these approxi-
mations, the impedance matrix is not exactly symmetric, as it should be. It

is made symmetric by averaging corresponding off diagonal impedance elements.

Computations of charactefistic currents and characteristic fields have
been made for a number of wire objects, and these modes have been used in modal
solutions to demonstrate convergence in radiation and scattering problems. As
an example, congider the wire arrow shown 1n the central insert of Figure 2-9.
The parameter "a' is 0.25 wavelength, and the wire diameter 1s .004 wavelength.
The graphs of Figure 2-9 show the six lowest order characteristic currents,
plotted as a function of the,contoﬁr variable, starting at the tip and ending
at the tip. Note that the modes are either symmetric (even) or asymmetric
(odd) about the mid-point with respect to the wire length variable. This could

be predicted from the symmetfy of the géomeﬁr§ of the wire. We did not use
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this symmetry in the computations because the program is written for objects

of arbitrary shape. The currents were normalized by choosing their maximum

amplitude to be unity.

Figure 2-10 shows the characteristic gain patterns for the six lowest
order characteristic fields of the wire arrow. The arrow 1s considered to
lie in the x-z plane, with its axis along the z axis. The two patterns shown
are the gain in the x=0 plane (labeled gx) and the gain in the y=0 plane
(labeled gy). The gy pattern is always 8-polarized, and the 8. pattern 1s
p-polarized for even currents and 6~polarized for odd currents. The scale is
linear, with each interval between tic marks representing an increment of two
in gain. The gain patterns in other planes, such as the x-y plane, are not
simply related to those in the x-z and y-z planes. For complete information,
some sort of three-dimensional presentation of the gain patterns would be

desirable.

Modal solutions for wire antennas and wire scatterers were also made
and compared to the matrix inversion solution [6,9]. As modes were added, the
modal solution converged to the matrix inversion solution in about the same

way as for bodies of revolution. 1In the antenna problem, given a voltage source

at some point along the wire, the modes are excited in proportion to theilr cur-
rent amplitudes at the point of excitation. By using several voltage sources

at several points, the excitation of a number of modes could be completely con-
trolled. In the scattering problem, the excitation of modes could be controlled
by placing lumped loads along the wire. However, if the loads were restricted

to be passive, only partial control of the mode excitation would be possible.

VIII. DISCUSSION

The method of computing characteristic modes developed in thils report
can be used for conducting bodies of arbitrary shape, provided the body is
not electrically large. General computer programs for determining the modes
of bodies of revolution, and for using them in modal solutions for antenna
and scattering problems, will be given in a later report. Computer programs
for determining the generalized impedances for wires of arbitrary shape are
also available [9]. Computer programs for bodies of arbitrary shape have not
been written, primarily because of the difficulty of specifying coordinates

on a three-dimensional surface S.
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The characteristic currents are relatively easy to graph because they
are real and exist on a surface, For example, on bodies of revolution there

are at most two real components Jt and J, which, for each cos né, sin n¢

variation, can be expressed as a functioi of the single contour length vari-
able., Similarly, on wire objects, there is a single real current I which is

a function of the wire length variable., In contrast, the characteristic
fields are complex and defined over three~dimensional space. Even on the
radiation sphere we have four real functions to describe, namely, the real

and imaginary parts of Ee and E,. In this report we have plotted mode
patterns in terms of g = ]Ee[2 or g = IE¢[2, which shows only part of the
picture. For example, note that all plots of g are symmetrical about 6 = w/2,
even though the bodies do not have the corresponding symmetry. However, the

field components E, and E_ do not have this symmetry. For example, for bodies

8
of revolutiom, Ee(n-e) = (—l)n E;(e) and E¢(ﬂ—8) = (—l)n+lE:(e). All such

information is, of course, included in the general computer output, and could

be plotted if desired.

The characteristic modes of bodies of arbitrary shape have most of the
properties of the classical spherical modes, and can be used in much the same
way. Because of their orthogonality properties, they are convenient to use
for problems of analysis, synthesils and optimization of radiation and scatter-
ing. Now that we have an efficient way of calculating these modes, the theory
can be applied to practical problems involving antennas and scatterers of

arbitrary shape.
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APPENDIX A

UNWEIGHTED MODES

If we are interested only in diagonalizing the impedance operdtor,
then any choice of weight operator M in (1-10) will do.  The case M=I,
the identity operator, is considered in this appendix, Then (1-10) becomes

the unweighted elgenvalue equation
-+ -
2d =17 J
n nn

(A-1)

where ;n‘are eigenvalues and jn are elgenfunctions., With respect to the

symmetric product, we still have the orthogonality relationships

> >
éi)Jm . ZJnds =0, m# n (A-2)
5 .
However, the mode currents are usually not real, and we lose orthogonality
with respect to the Hermitian product (except in the special case of a

sphere),

Only orthogonality of the type (A-2) is needed to diagonalize the
impedance operator, and hence solutions similar to (1-30) reﬁain valid.

For example, we have a modal solution

-
J .
J=7 ;’1—-@ J - B'ds | (4-3)
n

2 =<ﬁ> T 2d ds (A=t)
nn L n -

The admittance operator also continues to have a spectral representation

of the form of (1-54), with l+j>\n replaced by Znn'

What has been lost by using the unweighted eigenvalue equation is
orthogonality of the radiation patterns over the sphere at infinity, that

is,
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@ B Eds # 0 (A-5)

[oe]

for m # n (except in the special case of a sphere). This means that the
radiation pattern computed from an unweighted modal solution is no longer
a least-squares approximation to.the true radiation pattern. Hence, we
should expect a slower rate of convergence to the radiation pattern when

unweighted modes are used than when the weighted modes are used.

For computation, the operator equation (A-1) was reduced to a matrix
equation by techniques similar to those of Part Z, Section III. Char-
acteristic currents for the unweighted modes were computed uslng a complex
version of the Jacobi method for general matrices.* Figures A~1 and A-2
give some results for the unweighted eigenvalues and mode currents of a
cone-sphere with 10° half cone angle, 0.4 wavelength sphere diameter, and
1.36 wavelengths total. length. Figure A~1 shows the rotationally symmetric
(n=0) modes, which can be compared to the corresponding weighted modes of
Fig. 2-2, Figure A-2 shows cos ¢, sin ¢ (n=1) modes, which can be compared
to the corresponding weighted modes of Fig. 2-4. Figure A-3 illustrates
convergence of the unweighted modal solution for the radiation gain pattern,
compared to the matrix inversion solution, as the number of modes are in-
creased. The illustration of convergence for the corresponding weighted
modal solution is Fig. 2-8. Note the much faster rate of convergence of
the weighted modal solution, due to its least-squares approximation

property.

"p. J. Eberlein, "A Jacobi-like Method for the Automatic Computation of
Eigenvalues and Elgenvectors of an Arbitrary Matrix," Journ. S.I.A,M.,
vol. 10, No. 1, March 1962, pp. 74-88.
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APPENDIX B

COMPUTATIONS FOR A SPHERE

To check the accuracy of our general computer program, we used it to
compute the eigenvalues and eigencurrents for a conducting'sphere, and com-

pared them to the exact eigenvalues

A

Jm(ka)
,Anm(TE) =T
Nm(ka)
. (B-1)
J'(ka)
A (TM) = - B
nm §1 (ka)
ke
and the exact eigencurrents
* _ * n_cos ng _n > 3 _
Jnm(TE) = Uy I0 o Pm(cos 8) + u¢51n g¢ Y Pm(cos 8)
. (B-2)
+ _ 9_.n > n sin n¢ o0
nm(TM) = ~U,cos n¢ Y Pm(cos ) + u¢ ey Pm(cos 8)

Here jn and ﬁn are spherical Bessel functionms, Pg is the associlated Legendre
polynomial, and a is the radius of the sphere. Equations (B-1) and (B-2) can

. *
be derived using the conventional spherical mode theory.

Figures B;l and B-2 show the eigenvalues and eigencurrents for the lowest-
order modes of a conducting sphere of 0.4 wavelengths diameter. The n=0 modes
are shown in Fig. B-1, the n=1 modes in Fig. B-2(a) to (d) and the n=2 modes
in Fig. B-2(e) and (f). In each case the exact solution is shown solid, and
the approximate solution is indicated by x's and squares. Both the exact and

approximate mode currents are normalized so that

L Zig = -
g@ﬁ]ds 1 (3-3)

s
Note that the accuracy of the approximate solution tends to decrease as the

mode order increases.

" , :
R. F. Harrington, "Time-Harmonic Electromagnetic Fields,'" McGraw-Hill Book
Co., New York, 1961, Chapter 6,
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