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Several discrepancies are discussed, both qualitatively and quantitatively,
concerning procedures of obtaining surface current densities from total
currents. Itis shown that for frequencies corresponding to a large por-
tion of an EMP spectrum, significant errors are made by inferring sur-
face current densities from a calculated total current. This has impor-
tant implications in that it is surface current densities that are required

in order to calculate the currents induced on cables within the structure.




L LOW FREQUENCY SURFACE CURRENT DISTRIBUTIONS ON .
AIRCRAFT

In determining the EMP interaction with systems within an aircraft,

a wire model of the aircraft is often assumed [1]. This model often
assumes a single straight wire to model the aircraft fuselage and other
straight wires to model the wings and tail structure [2]. In working with
wire models one can at best predict total currents flowing along the
various wires. Since the EMP interaction with systems within the air-
craft is dominated by aperture coupling through the various ports of
entry, what is really needed is the surface current distribution. The
usual way of connecting the total currents predicted by the wire model
with the required surface current is to assume a uniform current dis-
tribution around the various aircraft elements modeled by the straight
wires (a more sophisticated version of this assumption is to distribute
the surface current according to the simplest static solution carrying
the same net current on an infinite cylinder of the same cross-section
shape [3]). There is undoubtedly a range of frequencies where this '
approach is adequate, But clearly, at wavelengths short enough that

a half wavelength becomes comparable to the diameter of, say, the
fuselage, the wire model is inadequate to predict surface currents

since surface current then tends to concentrate on the side from which
the energy is incident as can be seen from an infinite cylinder analysis,
([4] fig 2.3). Another study of a finite hollow cylinder also shows a
shadowing effect for moderately high frequencies [5]. It is not so clear,
initially, that the wire model approach also breaks down at low frequen-
cies, but this fact also becomes obvious after a few elementary quasistatic
calculations. Since a significant portion of the EMP energy occurs in
what we have called the low frequencies it is worthwhile to bring atten-

tion to these quasistatic calculations in this note.

The basic reason that the wire model approach breaks down at low fre-
quencies is that the currents predicted by using such a model are really
those currents associated with charge transport. The circulating sur-

face currents associated with the interaction of the aircraft with the

magnetic field of the incident wave are neglected (this separation of .

the effect of the magnetic field interaction from the electric field inter-
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action is only possible in the low frequency quasistatic regime). As

a preliminary estimate of the effect of the quasistatic magnetic field
in inducing surface currents, we can note that if we have an infinite
circular cylinder of radius a, whose axis is the Z-axis of a Cartesian
coordinate system, immersed in an incident wave propagating parallel
to the x-axis we have, if the incident H field is in the negative y direc-

tion, a magnetostatic surface current of the form [6]

K = z_e_zHocos &) _ (1)

where Ho is the magnitude of the incident field and @ = tan—l(y/x).

For a really infinite cylinder this surface current is dominated by the
uniformly distributed surface current associated with charge transport,
which diverges like (W ln w )"1 at low frequency, but this che.),rge trans-
port current really approa;hes zero in proportion to W at low frequency,
if the cylinder is of finite length, while the magnetically induced current
is still approximately given by equat-ion (1), if one stays a few radii

away from the end of the cylinder.

The other case of incident wave polarization on an infinite cylinder,
where the incident H field is parallel to the cylinder, demonstrates a
more clean-cut cése of the inadequacy of wire models in predicting
surface currents. In such a case the wire model current is zero (the
electric field is everywhere perpendicular to the wire so there is no
forcing function in the wire-current integral equation). This is true
in the sense that there really is no z-directed current, but there is a

circulating current equal in magnitude to the incident H field [6].

The infinite cylinder results are a little unsatisfactory in that we had
to say the charge transport current goes to zero at low frequency by
making the cylinder finite in an ad hoc rnanner. A more convincing

argument for the importance of magnetically induced currents can be
made by looking at the prolate spheroid, which can also be treated in
an elementary analytical manner. For the prolate spheroid it is obh-

vious that the charge-transport current goes to zero at low frequency.
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The magnetically induced surface currents can be calculated by solving
an appropriate magnetostatic problem. Let the axis of the spheroid
lie along the z-axis of a Cartesian coordinate system and the incident
H-field be in the negative y direction. By introducing a magnetostatic
potential, (Q, we can reduce flow of an ideal fluid and use reference [7]
(p. 535, ‘eq. 4) to say that the total potential, on the surface of the

spheroid, is given by

2
Op = H, V(z-ao) @)

where, if a and b are the semimajor and semiminor axes of the ellipse,

respectively, we have

¢ =ab? ax 3)

(o]
° w22V el

The integration defining o, can be performed in an elementary way

([8] nos. 105 and 103) to obtain

Z 2 )
N o

°© 1-¢ 2Vl-¢ 1 F\V1-¢2

where € =b/a. If e=.1, we have o equal to . 9797 and {0, from

T,
equation 2, given by

QT = 1.?6 Hy (5)

We can calculate the surface current from this expression by forming

-n X VSQ where n is the outward normal from the spheroid and v

T 5
denotes a surface gradient. The surface current has various compon-

ents, but at the central cross-section it is given by

K=1.96e cos® (6)
= =s :




i.e., within 2% of equatioﬁ (1). This result is also in excellent agree-
ment with the results presented for a finite cylinder contained in a sub-

sequent section of this note.

There may be an objection to the type of calculation given above because
it is based on perfect conductivity at low frequency. Since at d.c. the
magnetic field penetrates the aircraft almost completely, one might ask
héw high in frequency one has to go in order for the perfect conductivity
assumption to be reasonable. The answer to this question is given in
reference [6] where it is shown that as long as W o4 b is much greater
than unity the above calculated current distributions are accurate, where
o and A are the conductivity and wall thickness of the aircraft (prolate
spheroid) and b is the radius (semiminor axis). At the same time we
must have a frequency low enough so that the length of the spheroid is

a small fraction of a wavelength in order for the quasistatic approach

to be valid. Is there a frequency region where both conditions are met?
Yes indeed, in fact, assuming reasonable physical parameters, the

approach is valid for 100 < £ <,106, a rather wide range.

All in all, it is clear that the wire model approach to surface current

prediction is inadequate at low frequencies as well as at high frequencies.



IL. PROOF THAT AT LOW FREQUENCIES THE CURRENTS
INDUCED ON A FINITE CYLINDER ARE NOT UNIFORM )

Consider the following situation concerning the cylinder depicted infigure 1
v

zh

fo o s = - - —a

FIGURE 1

with incident magnetic field given by

H, = -4 e (7)
Y

The usual magnetic field integral equation is given by

206 = 3,00+ X Gox) - ) as, ®)
S i

where S is the total surface of the cylinder. We now break up the total

surface S into two surfaces S+ and S where the + and - sign corres-

pond to the sign of z. We also designate radius vectors r and_l_'o as _g+,
+

ros L and_l:; according to the sign of the z component of these vecltors.

We now rewrite (8}

e =1,6M +f:z<<§,;_;>- J@has, +S[ K@hzl)  Jzj)ds, ()
S
+ -

and

2z ) =3,0) +j_1__<§_‘,_:g§> - _§<£;L>dso+f§fz‘,_:c;> cJzo)ds, (10)
S-I— S_

In order to decompose these equations into symmetric and antisymmetric

parts we introduce the reflection operator

R, ==_35-2é,é (11)

where I is the unit dyadic. We also introduce the notation




- + o R

__{3__1'_{(50)=§<_:1-_{(B___-5)E%(z) (12)
Using the fact that
By Ry cL 13)

and scalar multiplying (10)by R,, we obtain

1’
SRS S + -+ -+ g + k4
1707) = 3 +!§_(z i) Tle)ds +f K Ryrr)) Ry T (x))ds
G S, o
+ + + _+ o+ , ' R R SN
) =By LB s Ry KRy xheg) T60)ds, of By ERy 2R 2 ) R
+ ' +

(15)

Recalling that }_((_{,_1;0) = A x [VGO % I], the following relations can be proved
+ o+ + + _ -+
é{_;(m,%):_R;l KRz Ry )R =Ak,z) (16)
and
+ + e e +ot + o+
B Rz )Ry =R BERy-xhg )= BE,x) o (17)

Substituting (16) and (17) into (14) and (15)and then adding and subtracting

the resulting equations we obtain are

el =5 [xe ) 1wl as ©as)
5.

and

e =neh ke o wl)as, (19)
Sy

where

.
Ieh =it ¢ 7 e (20)



I (@) =303E") ~ 3 )] (21)
e = g v Ry LR 2] 22)
5@ =2 E) - Ry LR ] (23)
Kl rh=ae ) +8e"x]) : (24)
K (z =£;L) = é(;f,;_;r) - g@f, 5:) (25)

. +,_+ -t .
Once we have determined J (z ) and J (r ) we can determine the current

density on the +z and -z portion of the cylinder as follows

1N =3 (26)
and
i(%l-_rf) =Ry {f(f) - g_“(f)] (27)

Noting that the unit vector in the longitudinal direction is ‘é\.s{ , We see

that




4 I® x24T

IR =28 PR

- X

Next we will argue that

limit I ) =0
1

k=0

(30)

If (30) is true, then it follows from the uniqueness of a solution to (18)

that

limit 37 eT) =0
k=0

From (28), (29), and (31) it follows for small k that

81N ~-4 I

(31)

(32)

which shows that the variation about the cylinder is anything but uni-

form as has sometimes previously been assumed.

In order to show (30),

we look at the explicit expressions for the source term. Recalling that

ii = ﬁx_I:Ii with H, given in (7} and using the fact that

Ry [ﬁ(—_fil' x") % Qy]: A x 5

we can write the explicit expressions for_gj(r-l-) and _L_Tihg_l_ﬁ) given in

(22) and (23) as

and similarly

J-(r+) = [ﬁ(r+) X éy] (-cos kz)

(332)

(33b)

From (33a) we see that the limit expressed in (30) is true and consequent-

ly so is the surprising relation given in (32) which was the statement to be

proved. '



IIL. NUMERICAL ERROR'IN ASSUMMING THAT THE LONGITUD-
INAL CURRENT DENSITY IS UNIFORM

We have made calculations for the following geometry depicted in fig-

ure 1 where the incident field is given by

H,_ = -H4 ¢
=inc o7y
We have chosen the cylinder to have dimensions a/h = .1 so that except

for a relabeling of coordinates we have the same situation described in
[9], figure 2. We now define three quantities that we have calculated

with our new computer code.
o
szJX/hI—IO (x =h/10, 8§ =45") (34)

J, =J /hH_ (x=h/10, 9 =135°) (35)
X ]

b

If the field were uniform, independent of §, then J‘f =J. =J
where

Jold =(1/21"T’a)/hHo . (36)
QOur results show that for frequencies corresponding to a significant
portion of the EMP spectrum Je = Jbt Jold’ and the use of ‘Told rather
than J, and T

f b
accurate.

for the calculation of interior cable currents is very in-
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I

b

h =5m =10m h= 20m k% %

kh f(MHz) f(MHz) f(MHz) Re(Jf) Irn(Jf) Re(Jb) Irn(.Jb) Re(Jold) hn(Jold) error
(front)

. 025 24 .12 . 06 1. 41 ~-. 079 -1.41 -. 079 ~0 —.079; 99+
. 05 .48 . 24 .12 1. 41 -. 159 -1.41 -. 159 ~0 -. 159' 99+
. 075 .72 . 36 .18 1.41 -. 239 ~-1.41 ~. 239 ~0 -. 239 98-+
.1 . 95 . 48 .24 1.41 -.319 -1.41 -.319 ~0 -.319 97+
.2 1.91 .95 . 48 1.41 -.651 ~-1.41 -. 651 ~0 -. 651 90+
.3 2.86 1.43 .12 1.41 ~-1.01 ~-1.40 -1.01 . 005 ~1.01 81+
.4 3,82 1.91 .95 1.42 -1.41 -1.39 ~-1.41 . 015 ~-1.41 70+
.5 4,77 2.39 1.19 1.45 -1.88 -1.36 -1.87 . 045 ~-1. 88 59+
.6 . 5.73 2. 86 1.43 1.51 -2.44 -1.29 -2.44 . 109 -2.44 49+
T 6.68 3.34 1.67 1. 64 -3.14 -1.15 -3.14 . 246 -3.14 40+
.8 7.64 3.82 1.91 1.93 -4. 05 -. 862 -4, 05 . 533 -4. 05 32+
1 9.55 - 4. 77 2.39 3.87 -6.71 1.10 -6.69 2.49 -6.70 20+
>k% error lJf ~ Joldll v 100

(front) lJf[

Seok

Re( ) corresponds to the real part of ( )

S slesik

Im( ) corresponds to the imaginary part ( )




IV. EFFECT ON THE CALCULATION OF INTERIOR CABLE CURRENTS

According to[10}there are two types of equivalent sources used to cal-
culate volta:ges and currents generated on cables internal to a cylindri-
cal portion of conducting body containing ''small' apertures, when the
body is exposed to an incident EMP. For most bodies of interest, all
apertures are ''small' compared to the surrounding geometry as well
as the wavelengths corresponding to most of the EMP spectrum. The
equations that describe the voltage and current at any point on an inter-

ior cable are

vV, ,=AV_ + Bl (37)
int eq eq

I . =CV__+ DI - (38)
int eq eq
where A, B, C, D depend on the internal geometry and termination of

the cable. It is important to realize that

Veq = Kth (39)

and
I =Kv-.J (40)

where Kv and KI depend on the shape of the aperture and the internal
geometry; however, Jt and \78' J are calculated as though the body con-
tained no aperture. It is important to note that KV also is proportional
to frequency. Specifically, J is the total surface current density in-
duced on the body and is given by

J=3 8+7 % . (41)

where /% is defined along the axis of the cylindrical portion of the body

while 8 is the other orthogonai surface tangential vector chosen so that

Sxt=4 (the outward normal to the body).
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It is important to stress that the main output of previous computer codes

yields the total axial current I, and it is assumed that

Jt = 1/2Ta
where a is the radius of the cylinder. In the previous section we showed
that this calculation is highly in error; however, it should be mentioned
that the effect of this error is diminished by the frequency dependence
of Kv' Also, we note that there is not even a procedure for obtaining
JS from I, and from (40) we see that Ve Js': Vg [Jsé\ +—Jt /t\:[ is necessary
to obtain Ie . It is now apparent that a knowledge of the total current I
induced on the exterior of a structure is insufficient to calculate the volt-
ages and currents on cables within the structure. This conclusion has
implications for all methods used to calculate the total current. Specific-
ally, the integral equation method as well as the SEM method must be

employed in a manner to obtain surface current densities rather than

the total current.
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