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Abstract

The time domain magnétic field integral equatioh is.used
to calculate the surfacé:current density ¢aused by an-incident
plane wave, induced on a fat cylinder. Results that illus-
trate shadowing on the cytinder are given for two different

incident polarizations.




INTEGRAL EQUATION SOLUTION FOR INDUCED

SURFACE CURRENTS ON- BODIES OF REVOLUTION

I. INTRODUCTION

When a metallic objoct is- iiumfﬁatbd Ly an* e}uctromavnetlc wave
E é:f o B - e e B e EVN

surface currents are induced. If the surface’has cracks, apertures, or
penetrations of some kind, electromagnetic £iéid$ will couple into the
interior of the metallic object. These penéfrating Fields can often be
defined in terms of the surface current density.that.e€xists on the structure
if no surface imperfections are present. Thus, if one desires to study the
problem of coupling of-incident, electromagnetic energy to the inside of a .

metallic body with surface discontinuities, calculation of the surface cur-

rent densities is important.

The problem addressed in thls paper is the calculatlod of the
surface‘current den51t1es 1nduced on a fat body of revolutlon by an
1nc1dent_plane wave. Many~researchers [1-5} have calculated total cur-
pénfs in&uced on'ion thln cylinders whose length to dlameter ratlos

are greater than about 6. Kao [6] has con51dered scatterlng from a

short tdbular cyllnder (no endcapa) In‘this study, induced

current densztles are calculated on cylinders whose length-to- dlameter

ratios are_dn the,order‘cf unity. o S




The method used employs the time domain magnetic field inte-
gral equation (MFIE), following the work of Bennet and Weeks [8], which
is also discussed in Poggio and Miller [7]. Eennet and Weeks have
applied this method to scattering from cylinders; with the quantity of
interest.being the scattered far fields;

The quaqtlty of 1nterest here’is the surface current den51ty
‘1nduced on bodies of revolutlon by an 1nc1dent plane wave. It is gpplléd
spec1f1cally to a cylinder w1th ell;p501da- end caps, althoughAother‘
linteresting shapes éould'bé easily studied. Sha@owing‘effects are clearly
seen, as the current densities may be éalculated equally well on the end
~caps, illuminate@VSidej Qr'shaﬁo#ed siderof the body.
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II. | TIME DOMAIN MAGNETIC FIELD INTEGRAL EQUATION (MFIE)

The time domaln MFIE used in this study is given in both Pogglo

and Mlller (71 and Bennet and ¥eeks[8] as
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x; = space coordinate of observation point
et |

x = space coordinate of integration point

3; Cig,ti) = surface current demsity at space coordinmate X,

and time coordinate tj

fi i) = unit normal vector directed outward from the surface
Cii,t.) = incident magnetic field vector that exists'if_the
scatterer is not present

l'._f,:";,.';lxi"x'l L

i T ¢ . ,retarded‘time o f_‘f K

c

i

speed of light

ds' = differential surface area.

Also, the prinéipal value of the integral, indicated by‘jc, means that

the integration does not Iinclude the elemental area surrounding the

singularipoint x5 =x'. | ‘ '

By inspection of (1), it is obvious that the surface current
at a time tj is the sum of two terms. The first term on the right-hand
side of (1) may Ee fegarded as a "source" termf It involves only ﬁ(E;)
.(whichiis knnwnrfo; a particular Bédy) and thé incident magnetic field
.{which is a known‘inppt to the problem). Therefore, this‘whole tefm

;invoives functions tﬁaﬁ are given in fhéAstatement of the proBlem, and
;is'qﬁite siméif calculated.
Thé second term involves the surface inteérél'ovef the bodf;

‘The integrand contains a term involving the value of the surface cur-

oo T E R o X. .= X'y
Tent and its time derivative at some past time, namely tj -J'lc l




If it is assumed that the surface current at past times has already .
been calculated, then the vhole integral involves known functions.
Therefo:e, the surface current E'IEA,tj)'is completely specified in

texms of known quantities,
II1. ~ NUMERICAL SOLUTION OF THE MFIE

A computer code has been written which solves equation 3y for
a given bo&y of revolution. A body of revolution is defined as the body

generated by a curve p(z) as it is rotated about the z axis. The inputs
+ . ~ e _.-. — . ) .' . ’ . '
required for the code are p(z), 3%§El-, Hlnc(xi,tj), and inputs relating

tc the time and spece intervals desired for the numerical solution,

In cyiindricai coérdinates, the differential area is given by -’
. A 2 ' '
ds' =1 +<°_p_§§l>‘ 0(z) dzdo .. | | (2)

and the unit normal is given by

) 2 ' ' :
Ba) = @ - 2L a1 (ngzl) o )

The integrand of the surface integral in (1) is evaluated in
rectangular coordinates, since this coordinate system does not depend

upon the location of the integration point.

Since in the numerical solution the time valugs‘tj are neces-
sarily discrete, the values of the surface cﬁrrént are only compﬁted'at
discrete time values. The surface integral, however, involves values of
thé‘surface currents at a refarded time T, which in'generalldoes not

correspond to any discrete time value. To overcome this difficulty, a



parabolic (second order) curve fit [9] is tsed to evaluate the surface .

current at the retarded time, - The time derivaiive of the surface cur-
rent is obtained by analytically differentiating the second order poly-~
_nomial approximation. The code is set up in spgh'a'way that the discrete
fiméléoint‘at the centé;Aof the polynﬁmiai fit is,éet'as close to>£he re-

tarded time T as.is possible, thereby insuring that the surface current and

el LEllEe fiwEPibllibivWE LA Oy

i a5 close to the center of the polynomial
fit as possible.

The surface integral is evaluated by the rectangular rule. That
is, the surface is broken up into a mumber of patches according to a
segmention scheme in z and ¢. The Integrand is evaluated at the centexr:

of a given patch, and its contribution to the integral is obtained by

mulfiplying the  integrand evaluated at the center of the patch by the .
area of the patch. The integration is thus repiaced Ey a summation,

The principal value of the integral is obtained by numerically skipping

the evaluation of the integrand over the self pétch; i.e.; where ‘

x; = X' | |

The solution proceeds as follows. It is assumed that at

t 0, the incident field has not yet arrived and, therefore, all

3
qf the surface currents are zero. t tj,= At {where At is the time

interval), it is assumed that the incident wave arrives on the body, and
then the surface current depends only on the source term, and the contri-

bution from the integral is zero. This is because the integral depends




. )

upon surfacé cp:rent values of past times, all of which are zero. At
tj = 2At, the surface current then depends upon both the source térm
and the surface integréls because there now are valués of the éurface
currenté for past times. The solution then proceeds'in the same.manner

up to the desired end point in time.

Although in general the surface current density has 3 vector
components, it is necessary to find only the ¢ and either the z or p
components, because the other one can be found from -

A —_— ‘ - . ‘

n{x.}) * J{x.,t.) =0 : ) ' 4

) - TG, =0, 4)
which yields

TRt =T .t e B | )

IvV. NUMERICAL RESULTS

In order to demonstrate the accuracy of the code, a comparison was
made with known results for a plane wave incident on a sphere. Figure 1
shows the coordinate system and geometry used for a fat cylinder. In
terms of the notation of Figure 1, a sphere was defined as a fat cylinder
of half-height h = 0, and with the end caps as hemispheres of radius a = 1.
The surface current component in the ¢ direction was calculated at ¢ = 135°
and z = 0, and compared with the result given in reference 10 at the same
location. Figure 2 shows the comparison.‘ The excitation for Figure Z2a
(Reference 10) is a unit step plane wave traveling in the negative x
direction, with the E field directed in the negative y direction. The

+ excitation for Figure 2b is also a unit step except that the leading edge
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Figure 1. Fat Cylinder Diagram and Coordinate System.
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is replaced by the leading edge of a gaussian pulse which is described ‘
below. This gaussian pulse which has a risetime of about 2 nanoseconds

was used because the MFIE solution was unstable for a perfect unit step

input. Thus, the only difference between the twe curves 1s in the high

frequeﬁcy content, and is caused by the longer risetime of the input

for Figure 2b.

sav ear Suapu SLUGLSU Was the cylinder shown in Figure 1,
with its coovdinate system. As can be seen, the half height equals the
radius of .5 meters, The end caps are ellipsoids of revolution, whose
semi-major axis is the cylinder radius, and whose semi-minor axis is ,02
meters. Two cases of incident polarization are considered. In both cases,
the incident wave is a gaussien pulse traveling in the negative % direction,

R
_ i S . ad

which for unit peak amplitude is given by f(x,t) = exp (—-3.69(10*/(6 + (x#.) .
[ /

The first case considers an incident field such that the electric field

is in the positive z direction with a peak amplitude of 377 V/m. This
corresponds to the incident magnetic field in the y direction and having

a peak amplitude of I a/m. The second case considers an incident field
such that the electric Tield is in the negative y direction; and is,
therefore, perpendicular to the cylinder aéis. It is also a gaussian pulse
with peak amplitude of 377 V/m. The magnetic field is in therpositiva

z direction with a peak amplitude of 1 a/m.

The segmentation”scheme used was as follows, Each of
the end caps was divided into three equal segments in z, The main cylin-
der body was divided into 6 equal segments in z. The entire body was

uniformly segmented into 18 segments in .

10




The surface currents were calculated in the time domain, and the
Fourier transform taken to obtain frequency domain response. The Fourier

transform 1% defined as
m -
N 11 -
F(w) = chtje Py . | ) (6)

This transform was then divided by the Fourier transform of the
input gaussian pulse, yielding the system transfer function (impulse
response) in the frequency domain. These transfer function magnitudes
are plotted in Figures 3 and 5 for the two polarizations. Figures 4 and
6 show the variations of the time domain response with coordinates z/h
and ¢ of Figure 1. These plots show the absolute value of the largest
half cycle of the time domain response as a function of ¢ (to illustrate
shadowing) and z/h. Typical time domain waveforms sre shown in Figures
3s and t, and in Figures 5s and t for the two different polarizations.
Although these time domain waveforms have been truncated to show the early
time history of the response, the time domain solution proceeded until the
surface current densities decayed to zero, thus ensuring the accuracy of -
the Fourier transform in the low frequency regime. The surface currents
stabilize and decay to zerc rapidly, normally much before ct/h = 18. The
time step was 2xlO'lO seconds, and thus less than 150 time steps were
required until the surface current densities decayed to zero. Trial runs
were made with varying degrees of segmentation in both time and space until
the solution converged, thus ensuring that numerical error was minimized.

Symmetry considerations should be noted. It is observed that
for the incident wave polarized parallel to the z axis, that Jz(z,é,t) is

an even functiocn of z and ¢, while J,{z,$,t) is an odd function of both z

¢
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and ¢, while J¢(z,¢,t] is an even function of both z and 4. Of course, -

for both polarizations, the magnitudes ofrthe C¥ response for both current .
components &re even functicns of both ¢ and z.

It should also be noted with regard to Figures 3 to 6, that for
the location given on the end cap (z/h = 1.034) the z-component of the

current 1s not given since at this location ljpf= 37.69 IJ?}.
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