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ABSTRACT :

The effects of finite conductivity in the shield conductors and of the
presence of dielectric weatherproofing jackets on coaxial cable shielding
are investigated by considering three coaxial-cable shield models. The first
of these is a bidirectionally conducting shell; the second is a concentric
pair of counterwound unidirectionally conducting shells; and the third is a
palr of M~filar counterwound filamentary helilces with a (possibly lossy)
dielectric jacket, TFor each model, the transmission~line parameters are
determined, Comparison of the results for the first two models indicates
the importance of the ﬁoven shield structure, in that for the fifst model,
the coupling impedance decreases exponentially as the shield thiékness
increases; and for the second, the decrease is generally only algebraic,
The.results for the third model indicate that a dielectric jacket tends to
reduce the electric~field coupling to the interior of the cable, and that
the finite resistance of the shield conductors for thisréaseris not of great

importance as long as it is small,
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SECTION T ’ ‘

INTRODUCTION

The topic addreésea in this report is the détefminatioﬁrof thereffécts
of finite braid resistance and/or diclectric weatherproofing jackets on
coaxial-cable shielding. To this end, we have considered three gpecific
shield models and have determined the transmission~line parameters for a
coaxial cable with each type of shield, '

Typically, coaxial-cable shields are constructed of many fine copper
wires arranged in bands, these bands being ﬁo§eﬁ together in a herringbone
pattern., At the positions ﬁhere the bands of wires overlap, there occur
small diamond-shaped apertures in the shield. Thus there exist two princi-
pal mechanisms by which electromagnetic energy can be coupled from the
-exterior to the interior of a cable: diffusior across the shield wires and '
penetration of the apertures. The calculation of the diffused field is
. complicated by the fact that the shield is neither isotropic nor homogeneous,
owing to its braided construction; and the aperture-penetration calculations
are difficult because the shield apertures are not of a shape for which
exact solutions are known. Additionally, the effects of mutual coupling
are difficult to take into account.

If the shield wires were perfectly conducting and if there were ho
apertures in the shield, the shield would be perfect in the mense that ne
energy could penetrate into the cable interior from the exterior. The
finite braid resistance of an actual shield without apertures 1s part
and parcel of the imperfect shielding inherent in such a shield, since the
finite braid resistance results from the finite skin depth, which permits ‘

diffusion to take place. Furthermore, for a shield without aperturcs



N

{optical coverage = 1), an external dielectric jacket surrounding the cable

will have no effect on the cable paraméters, and thus on the shielding

.effectiveness, so long as the jacket is electrically thin, This is so

because the jacket will not carry any appreciable current, and thus will

-not "help" the conducting shield. Additionally, if there are no apertures

in the shield, electric field lines in the interior of the cable will
terminate on the inner surface of the shield and not penetrate the jacket,

If, on the other hand, the shield is "sparse," that is, if its optical
coverage is much less than unity, the finite resistance of the shield wires
would not be expected to be very important, since the primary coupling
mechanism in such a cable would be through aperture penetration. In this
case, an outer dielectric jacket on the cable would be expected to have a
significent effect on the cable pavameters (at least the shunt admittance
and current-source terms) since the electric field of the cable interior
would penetrate the jacket.

The three probléms considered in this report are intended to illustrate
these notions. In the first and second shield models, there‘are no shield
apertures; and the third shield model is sparse, and includes a dielectric
jacket.

In Section IT we review the basic transmission-line theory and indicate
how the cable parameters are obtaiued from the plane=wave seatterlng pro-
blem. In Scction III, we investigate the shield model comprising a lossy
bidirectionally conducting shell; in Section IV, we conﬁldcf two concentrie

lossy unidirectionally conducting shells as a shield model; in Section v,

a sparse filamentary shield with a possibly lossy diclectric jacket 1is

considered. The results are summarized in Section VI.




SECTION IT

GENERAL CONSIDERATIONS .

Wi

We shall assume (and suppress) the time dependence exp(juwt) for all

R P

field quantities, currents, and voltasges throughout this report. Under

this assumption, the transmission~lire equations are’

%% =~ -2I -z I (1a)
dr
5= <YL+ juT_ Q (1b)

in which z is the coordinate along the cable axis and where I and V denote
the line voltage and current respectively. For the coaxial cables to be
considered here, I is the current on the center conductor, taken to be
positive in the +z-direction; and V is the potential of the center conductor
with respect to the shield. Z and Y denote respectively the series iwmpedance
per unit length and the shunt admittance per unit length of the cable; and .
Zs and Ts are respectively the transfer impedance per unit length and the
(dimensionless) capacitive coupling coefficient per unit length. It is
the total current and Qt is the total charge per unit leangth on the cable,
‘For a lossless structure, the cable parameters Z, Y, ZS, and Fs ére

related to the cable parameters L, C, Los and SS used by Latham (ref. 1)

as follows:

Z = jul (2a)
Y = juC (2b)
Z, = Jul (%¢)
T, = CS, (2d)

in which L and C are respectively the serles indnctance and shunt capacitance

per unit length; Ls is the inductive coupling'cbéfficicnt per unit lengihs

6
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‘and S, 1s the mutual susceptance per unit length. L and C are sometimes

conveniently written in the forms -

c s , ,
C=3"Is (3b)
c 8

where, if the shield is confined toianrelcctrically thin cylindrical shell

reglon around p = Py Lc and SC are given by

U P
D P §
e " T o , (4a)
: p
S = ~l——-£n L (4b)
c Zwel a ~ ,

The radius of the center conductor is denoted by "a" and y and e, are the

permeability and permittivity of the (assumed homogeneous) medium filling

the region a < ¢ 2 04. |
1f the cable is axially uﬂiférm (or if if has a periodic shield struqture

whose period is much less than the axial wavelength), and if the excitation

is assumed to have exponential form in the axial direction, the currents,

voltage, and charge on the cable will all vary as exp(—jBoz). Thus the

transmission-line equations (1) become

a . a
-Z1 ~- ZS It ) (5a)

—JSOV

A

--jBOI = --YV + ij‘S Q. , (5b)

. ;
in which V(z) = Vexp(—jﬁoz), etc, Furthermorve, it is easy to show that

A ’ ' ‘

Qt = (Bo/w) It, so the cyrrent-change equation (5b) may be written in the

form

~ L]

-~
-0 o 20 2
8.3 Yo+ §B. T I (5¢)




AN o N
‘The transmission-linc parameters may be obtained if I/It and V/It are

known as functions of Bo' If we define

Iore) (6a)
I [a]

t
Y os s (6b)
I 4] o . o -

t

it is easy to show that for B # 0,

2
jBOS(BU)
4= r(BO) ~ 1 (0) (72)
z, = -r(0)7 A (7b)
jle) - x (O]
Y Sy TGy (7e)
r(0)s(p ) - r(&O)S(O)V
T T TR TSR o

The functions r(BO) and 5(80) are obtained from the solution of the
boundary-value problem of plane-wave scaftering by the particular coaxial
cable model under consideration, in the low-frequency limit; if the
illuminating plane wave is incident at an angle 6 with respect to the
cable axis, then BO = ~kocosﬁ, where ki = wzuoao. We assume that the medium
exterior to the cable is free space (ro, uo);vnnd we shall also asgumo Lhat
all dielectrics occurring in the various models are nonmagnetic (n = “0)‘
The dielectric filling the region between the center conductor, of radius
a, and the inner surface of the shield, at p = Pys is lossless and has

permittivity € If the cable has a dielectric jacket surrounding the

1°
shield, its (possibly complesx) perwittivity is: denoted €93 and the outer

radiuns of the cable will bhe p = £




I - The electromagnetic field 1s convenicently cexpressed in terms of two .

solutions ¥ and ¢ of the scalar Helwholtz equation as follows:

E=-vx 02 + T}”‘V x ¥ X Ya (8a)
.tz dwe z
- - 1 T -
" H=VxV¥a ++—Vx VX da (8b)
} Z Jew z

If the cable structure is uniform in ¢ and z, then only the axially
symmetric TM7 portion of the field is importantrin the region a < p E_pl,

since it is only this part of the field which gives rise to axial currents

on the structure. Thus, denoting the axiallf.éymmetric parf'gf y by ¥ s

o
we have
PN "80 P
Ve Y p) ©a)
1
ii.' - d?o
I = -27a 3 (9b)
p=a
vhere
¥o= KLI (vq0) Y (vja) = I (vya) Y (v;p)] (10)

with K a constant and Yi = ki ~‘8§, ki = wzuoel. In the low-frequency limit,

we find

O gn — : © (Lla)

&~
V= TWE a
1
I = 4K (1L1b)
As a consequence,
68 ) = 5 an L p(p ) (12)
o 2ﬂwcl a o '




and therefore; choosing BO = kl= we have from Eq. (7)

Jong P1 r(kl)

T N NI (13a)
ZS = ~r(0)Z (13b)
Zﬂjwel v 7
¥ = . (L4a)
in -
a
Po= 0 : (14b)
s

Thus it is evident that for such structures, only Z and ZS depend upon the
specific shield model chosen., This will be the case for the first two
models we shall consider, but not for the third, -in vhich the assumption

of azimuthal and axial shield uniformity is relaxed.

e

‘Finally, we point out that the total current J, on the cylindrical

t

cable styructure is given, in the low-frequency limit, by

~ 4EO
It = @15)

(2)
Ny Yo Ho " {¥,0.)
_ 2 2 2 . NP
where n_ = Vi /e and v° = k° - 85, E_ denotes the electric field amplitude
o o' "o o o 0 0
in the incident wave, whiclh is assumed to be polarized TMz' This result
applies to any circular-cylindrical cable model whose outer radius is Py

We shall now investigate some specifiec shield models.

10



. SECTION ITI

SHIELD MODEL A: A BIDIRECTIONALLY CONDUCTING SHELL

ihe shield model we shall consider fifstrié a physicalli thin (but hotrirr
' necessarily electrically thin) cyiinarical shell with a bidirectionél con-~
duction charactefistic. Such a shell is a simple model for a braid shield,
which has preferred conduction directions by virtue ofrits woven constructilon.
We neglect consideration of the effects of the shield apertures.
Consider a material having two preferred directions of conduction,
~ each making an angle ¥ with respect to the z-direction as shown in Figure 1.
In each preferred direction, let the conductivity be denoted 0y across each

preferred direction, the conductivity is Oy Then denoting by Ef}"z) and

E{l’z) the components of the electric field péraliel and péépeh&icﬁlat to

’ each preferred dircction, we have for the current density J:
= _ s =) ~(1) , =(2)
J =0y, By + EpyT) +0p (B0 4+ B0 (16)
or
J = G¢)E¢a¢ +0Ea, @17
where
. U
g, = 20 (sinzw + »l*-COSZW) : ' " (18a)
¢ 11 g
11
o i
g = 20 (coszw +-£~ sinzw) (18h)
z 11 011

Now if it is assumed that the physical thickness d of the ghield layer
is much less than its inner radius Py we may readily obtain the matrlx
‘ boundary conditions connecting the tangential components of B and i across

the shield:

11




w1
P

Fig. 1. Conduction directions for a bidirectfonally~
conducting medium,
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L - jwu 1T

E cosh 1. d - 0 sinh 1 d E
2 -4 : T, 4 pa
= (1%a)
H - sinh 7 d cosh 17 d H
¢ Juu, z B 1L
Tpmpytd T ' P=py )
- - - - i jw’lio - - -
E¢ : cosh T¢d - T¢ sinh T¢d E¢_
= (19b)
T¢ :
H - sinh T.4d cosh 7.,d H
Z Joug ¢ d Z
p=p,+d R TeEpy
in which 12 = Juwy o
z,('f) o Z,q)‘

We are now in a position to solve our fundamental boundary-value
problem. Since this shield is uniform in ¢ and 7, we may use the results-

obtained in the previous section to write, for a < p S Py

N
?_l vr ‘
¥, =7 I (vy0)Y (vj2) = J (v;2)Y (v;0)] (20}
and for p 2Py =0 d, we have
~ juwe E
_ oo (2)
N Yz sind J (v _p) + QH_ "7 (v _p) (21)
o

The first term on the rhs of Lq. (21) is the axially symmetric part of the
L)
incident wave, and Q is as yet unknown, as is 1. Constructing the axially
symmetric partS‘Ezo and H,. from Wo via

¥}
~ Ii~ -
Ezo = Jjwe Woi (224)
H¢O = - e (22h)
13




and connecting the ficlds across the shield using Eq. (19a), we find that

in the low-frequency limit

a
Q= 7{-3— (23a)
2
a Yl pl ' -1 pl 'S
I = |{cosh 1d+ T p, == 40 — sinh 1_d —= I (23b)
z z"1 k2 a Z p t
o
— — l - -
As a consequence, the function r(Bo) is given by
. 2
P1 1 P1 . -1 )
r(BO) = 55 cosh Tzd + T,01 ;i-zn £—>51nh Tzd (24)
' 1

Now Z anthS may be evaluated using Egqs. (13a) and (13b). We obtain

Jwp o) coth T d
7 = 2°;zn—i{1+ z } (25a)
o oy
: szlrﬁu E—
jwuo ] '
ZS = -y 5 csch Tzd o . (25b)

z" o

This completes the formal evaluation of the trénsmiséion—line paraméters

for this shield model. The results are identical to those which we prld
obtain if the shield were isotropic with conductivity . Oné will gote

that 0¢ does not appear in the results because the axially symmetric TEZ

and TMZ parts of the electromagnetic field are not coupled by the shield

boundary conditions.

If the shield is “'good," i.e., 1if |Tzdl >> 1, we may write for 7

and ZS the approximate expressions

- 14




Jou 01 Juou
z = 2m n a 21 T (262)
'zpl'
: o dep . -Tod ‘
e e 2 (26b)
s ™ TP . 3
_ z o -

One will note that the shieid's anisotrqpy”pénvchange'the effectiveness

of the shield only for the worse, since if dl/cll <1,
R g 9 11/2
szd[ = lrzmgl [cos v+ EZisln_w] i-Iszd[ @7

vwhere 12 = 2jwy o Curves of |t [/t f vs. ¥ are shown in Figure 2 for
Zm o] z zm : C- o

11’

various values of the parameter 01/0 It is evident from these curves

11°
that for maximum shielding effectiveness, ¥ should be as small as possible
and that the contact.between the shield wires should be as good as possible,
consistent with economy and ease of manufacture. The first observation has
also been made by Vance (ref. 2).
It should also be remarked that the presence of an outer dielectric

layer on the cable can be easily shown to have no effect on Z and ZS unless
it is electrically thick. A typicalrweatherproofing_layer of carbon-loaded

polyethylene is electrically thin at the frequencies of interest, and so

does not affect the shielding.

15
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SECTION 1V
SHIELD MODEL B: TWO CONCENTRIC UNTDIRECTIONALLY CONDUCTING SHELLS

In this section we consider a shield model comprising two concentric
lossy unidirectionally conducting shells, whic£ are assumed to berphysically
thin with respect to their radii of cufvature, but which are not neéessafily
electrically thin. Thus the analysis of this model which has been done
previously for the lossless case (ref. 3) is extended to the case wﬁerera
finite resistance in the coﬁduction direction of each shell is allowed.
However, we shall limit our comnsideration to the special‘case where the
shells have the .same conductivity in their conduction directions, - have no
separétion between them, and have equal and opposite 'conduction aﬁglés}

| Considér first a single unidiréctionally'éonducting shell of inner
radius oy and of thickness d/2, vhere d << Py Let the conduction direction
of this shell make an angle } with the positive z-directicn, (Refer to the
(1) - superscripted directions §f Fig. 1). The tangential parallel and

perpendicular components of a vector field A are related to its ¢ and =z

components by

11 - z
= T(}) (28)
Al A¢
where
cosi’ siny
T(Y) = (29)
~siny cosy

::-__l == - - - - -
and T 7(y) = T(-¥). Across the shell, the tangeutial components of E

and H are connected by

17




- 1 - Tcd jmuo Téd- v ~
Ell cosh 5 . Tc' sinh = Ell
= (30a)
T T d T d
H sinh —— cosh —— H
1 Jw 2 2 iR
" Co=p,ta/2 o ° " pep
P=Pq : 1
B By
Co= (30b)
H H :
11] 11
p~pl+d/2 p=p4

where Ti = jwuoac, with o, denoting the conduéﬁivity of the shell material in
the conduction direction. J

We may now construct the boundary conditions across the shield 1ayef
in terms of the ¢ and z components of the electric and magnetic fields.
By transforming the ¢ and z component representations of E and H into
representations in terms of parallel and perpendicular components, apélying

Eq. (30) to these, and then transforming back to a cylindrical coordinate

representation, we obtain for a single shield layer the relation

& ] g ]
z z
E¢ T(-y) 0 Bll B12 T() 0 ’E¢
Hz 0 T{-y) BZl ,B22 0 T(¢) HZ
H
¢‘ H¢
p=p +d/2 - “n“pl
E denot%s a 2x2 null matrix and
Tcd
_ cosh = 0
B,, = (32a)
ut| )
L
18



i

12

I

21

1

ool

22

0 ——-— ginh 5
0 0
L J
B
0 0
T. Tcd
ij“o sinh 5 0
]
1 o]
Tcd
0 COSh'—Ef_

Let us introduce the shorthand notation

-

-

ar
T(~y) 0 By; "E‘lz T ()
K@) =
0 T(_w)JL B21 7322. L 0
and
E
VA
E
|9
I
zZ
0=
i
¢
Then for a single shell,
= K()
i E
p=ol+d/2 p=p4

of

T(Y)

(32b)

(32¢)

(32d)

(33)

(34a)

(341)

(35)




Now if the shield comprises two concentric unidirectionally conducting
shells of equal thickness and with equal and opposite conduction angles, .

the connection between the fields inside and outside the shield is given by

5 _ _ s —
= K(-y) K@) (36)
H| #
p=pq+d P=pq
Thus, 1f
T() = K(=3) K(¥) (37)
we have L
B E
= T A , (38)
By H|
in which
| 2 S ) ®
Fll = cosh Tcd cos2y cos ¥ + cosh 5 sin 2y - cos2y sin’ Y (39a)
1 : : Tcd ' : C
1’12 =% {cosh Tcd ~ Zcosh 5 + 1] sin 4y (39b)
1 jwuo ”Ccd Tcd ‘
P13 =~ - sinh 5 (cosh ~5 - l]sin AN (39¢)
jwu‘ T d - T d B
Pig = Tc" sinh —— {sinzzw + 2cosh ~- cos 2 cos’) (39d)
1 Tcd '
PZl =-7 [cosh er - 2cosh =+ 1) sin 4y (39¢)
2 Tc:d 2 2
'y, = —cosh t 4 cos2i sin Y + cosh ~5~ sin 29 + cos2y cos (391)
20



Juu T d T d

P23 = —,~;:2 sinh *%— (sin22¢ - 2cosh —%— C0§2¢ sipzw} (39g)
1 jwuo Tcd I fcd T ‘ '

P24 = -3 T sinh —5= (cosh - l]sin 4y ' (39n)

1,1 T, Tcd‘ - Tcd - S ) '
P3l = 5 -3-23-1:;- sinh 5 (Cosh 5 - l] sin 4y (394)
T Tcd 9 Tcd 2
Pap = - Fon_ sinh —E—-{sin 2y ~ 2cosh —— cos2y sin w} (393)
2 ' 'ﬂ‘;c‘d | 2 2 ‘
P33 = -cosh Tc&'cbs2¢ sin"{ + cosh —— sin"2y + cos2y cos™y (39k)
1 Tcd ' '

Ty, = Z-[cosh T,d = 2cosh —3— + l}sin 4y o (392)
Tc Tt‘d 2 TCd 2

Pyy = E;E; sinh -~ (51n 2y + 2cosh —7— cos2y cos ¢] (39m)

1 e Tcd Tcd

Tho = E‘jwuo [cosh - - 11sin Al 81nh-75~ : : (39n)
1 ' Tcd ' :

F43 = - Z-[cosh Tcd ~ 2cosh -5+ lein 4y (390)

2 d 2
F44 = cosh Tcd cos2y cos“ Y + cosh - sin”2y - cos2y sin"y (39p)

We are now in a position to solve the boundary-value problem of plane-
wave scattering by the structurp. Since the Tﬂz and TMZ puftu aof the
axially symmetric portion of the clectromagnetic fleld arce cvidently coupled
by the boundary conditions at the shicld, we shali conﬁidor:both parte of

the field to be present and write, for a < p i-pl,

21
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L)
o

o

[35,0r0)¥ (@) = 3 (rya)¥ (o)l (402)

R O
o]

g

3,000, (a) = 3. GadY (red]  (40b)

and for p z_po =Py + d,

- jwe E_ sind ,

Q- i P A A oS (41a)
Y5 '

$§°) = SHéz)(yop) (41b)

‘A
in which I, P, Q, and S are unknown. It is now necessary merely to construct

the axially symmetric parts of Erand fl on each side of the shield and then

SRR LTS et S I T

to connect them across the shield using Egqs. (38) and (39). The resulting
o - . ~
four equations may then be solved for any of the unknowns I, P, S, or Q.
[} L}
The tangential field ccmponents are obtained from Yo and @o via the
relations ‘ S
A ;'l'
~ d@o B
E¢0 = .5(.:)-— (42a)
& 2 a
zo jwe o
oo (42¢) f
¢o dp :
“ - :
S 4
Hzo Jou Qo (42d) 5
and after the tedious but straightforward process of solving for the unknown ' i,
of interest I in the low-frequency limit, we obtain
) = == (43) L
Y 2
Znc
12
1 =
22



in which

e 2 -2
A= To_ (t. Wl 39 = 7a F33) (44a)
ZTCWZ t 1 ' 2 ' T ot 44b>
B = (TgqTyg = Tyglag) ~ T wz(rn 42~ TarT3p) (44b)
2T W
_ 232 1 c 1 ' '
¢= (W) apl (F43P34 - I133 4Q) + ﬂpl (P44F32 r34r42) (44e)
vhere
¥ TC : 1 ° 45 )
T31,32,41,42 7 Tau, '31,32,41,42 (452
P
W, == {——l - 3—] (45b)
1 7w {a 0q 7 7
- P
2 1
= = — . 4
Wz —~ in " (45¢)
Z and Zs are now cbtained from Hqs. (13a) and (13b):
Jwu P
0 1 C
Z=-——n—-= @1+ 3) | (46a)
juu pi'A

T se)

Under the conditions 1. d >> 1, ¥ # 0 or n/4, we obtain the following

-

approximate results:

T d
T e ¢ 2y (o
A= ? 5 - cos2y sinzw[l - é})[*lJ ‘ (47a)
1°a o Pa
1
2
T p o -2yt d
c 1 1 a c 2,
L e e - el — e i 4
B 2ﬂ2 = in - (l z]e sin” 2 (47b)
Pl .
T, 2 1 d
C = 2 (] - -l(oou 29 - e © (47¢)
2ﬂ a

23




so that

2% === 7= 1+ £ ’ (48a) @
ﬂ a ,
TeP1 n a
jwﬁ .
R L \ ‘ .
2s * Thm % o g (b, 7::(48b)
o
where
S 1 - cos3w 1
£ = S = oSk ¥ T ooeny (492)
sin 2y .
_ ‘cosﬁw
g(¥) = 1 + cos2y (49b)

The functions £(y) and g(¥) are shown in Figures 3 and 4. In the event

that ¢ = 0 or w/4, we have the following results:

Jum o) coth Tcd
= 0 4 0= 5T n ~—-(l + - (50a)
7 a P
| TP T ®
Jwu
Z = - o 1. csch T d (50b)
s 2 T Oy c .
Tcd
Jou 0. f coth ~——
(il _ 0 1 : 2
b= 2 5 tn 7= |1+ 5 ] (51a)
Tef1 in a
jwuo 1 d , 7
’ = em - - P o . "
Z, T eseh ; (51h)
co

Thus one will note that the transfer impedance Zs decrcases exponentially
with Tcd only when ¢ = 0 or w/4; otherwise it decreascs only algebraically.
A comparison of these results with those of the previous section would

indicate the importance of actually braiding a shicld, rather than congtructing

it of two separate layers,
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‘ As in the previous shield model considered, the presence of an

exterior dielectric jacket can be shown to have no effect on Z or Z_, as

long as it is electfically thin.
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SECTION V-

SHIELD MODEL C: TWO COUNTERWOUND M~FILAR FILAMENTARY HELICES SURROUNDED ‘l’ ,
T “BY A DIELECTRIC JACKET e

We consider in this section a coaxia1~cabl; modelrcomprising as before
a perfectly cénductingrcylinder of radius a as center conductor surrounded
by a lossless dielectric of pérmittivity el for a <p f_pl. At p = pl is
located a pair of M~filar counterwound filamentary helicgs, egch filgmentr
of which is an imperfectly conducting wire of radiusrb, where b << pi. The
filaments themselves make an angle ¥ with respect to the positive z-axis.

A (possibly lossy) dielectric jacket of permittivity €, surrounds the
helices and extends to p = pé z_pl. The geometr; of the model is shown

in Fig. (5). As in the cases considered previously, the cable is illuminated
with a low-frequency TMz—polarized plane wave incident a2t an angle 9§ with
respect to the z-axis. The cable parameters are to be obtained from the 0
solution of the scattering problen,.

Of particular interest in this problem is the effect of the dielectric
jacket around the cable on the cable parameters and on the shielding effective-
ness. In the other two cases considered in this report, the azimuthal and
axial uniformity of the shield determined the values of Y and Ps to be
those given in lLgs. (14a) and (14b). Since this assumption is not appli~
cable for the present shield model, we expect Y and P“ Lo take an valuceu
different from those obtained previously, and to depend upon €,y a8 well
as upon &y, since the electric field can pemnetrate the apertures in the
shield. We particularly expect that Iy # 0 unless the conductivity of the
dielectric jacket is sufficient to obscure the effects of the individual

shield filaments. Additionally, one would not expect that Z and Z, will
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FPig. 5. Geometry of multifilar hellz shiclded cable,
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depend upon £, as long as the jacket does not cérry'any aﬁpreciablé cﬁfreﬁt,
comparéd to the currents in the shield wires. |
The approach to be taken in solving this problem 1s one involving two
steps. In the first step, the shield conductors are assumed to be absent
"and we shall obtain the "primary" cuirent on ihe center conductor and the
potential difference developed across the inner dielectric, when the cable
is 1lluminated by an incident plane wave. In the second step, the fields
created by the filamentary currents on the shield conductors will be obtained
in terms of these (unknown) currents. Then by imposing an impedance condi-
tion at the wire surfaces the two problems are connected; and the cable
parameters may then be obtained.
The first problem is very simple. We obtain the following results:
\ 4

primary center-conductor current: Ip = - (g) (52a)
noYo B (v e )

N ~N
total primary current: Itp = Ip (52b)
- 50 pl"‘b ~
primary potential difference: V_ = n 1 (52¢)
: P Zﬂwel a o]
a By
total primary charge per unit length: Qp == Ip (524d)
2
~ Y p]—b ~
i i i slectrd feld = e I et A 1 Wkl
primary tangential electrie field at p Ny b }ZP anlegn lP
(H2e)
. : .
E, =0 (521)

The second problem is a little more involved. The fundamental
assumption to be mude is that each filament carries the same current 10,

where
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A "‘j BOé
I =1e (53)

o )
The assumption that all filamentary currents are identical is valid in the
low-frequency limit since thé“35minant‘tcrm’in the incident-wave expansion
at low frequencles is axially symmetric, so that each wire is excited
identically; and the neglect of the space harmonics‘of the filamentary
currents 1s. justified also by the facérthaﬁ we intend térconsidef only
the low-frequency pése where the period of the shield structufe'is much
less than the axial w;veiéngth; .

Consider first the case where M = 1, i.e., tﬁere is only one pair of
condﬁctors in the_shield, located at p = Py ¢ = % z/pl tany. We obtain
the electric and magnetic fields E and H from the functions ¥ and ¢ as
indicated in Eq. (8); since the shield is periodic in ¢ with period 2=
and in z with period p = Zﬂplcot¢, aﬁpropriate Floguet formg for ¥ and ¢

are thelfollowidg:

- -~ - -—
Il e o | Yan ing=36 2
=y 7 e (54)

n:—-oo m::-.oo ~

P o)
i | ] nnﬂ

A A
an and Qnm are functions only of p, and

Lo 2w
By = Byt N EE

L3 A ) -
Appropriate formz for an and @nm in each reglon are as follows:
asep <pgs
«
b4 = A L (A 4 a) = | : &
nml = Apml Ty Grpp02K, Gpgad) = LA a0 O )] (56a)

~

: ' 1 '
¢uml = Bnm[In(Amlo)Kn(Amla) - In(lmla)Ku(Amlp)], (i6h)
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Py <P Pt
ﬁnm2 =C nmIn( mZC) + D Kn(lmZD) (57a)
san = EnmInL(}t e) + angn(meD) (57b)
P 2Pyt |
§nmo - Gnu§h<xmop) | (58a)
| gnmo - Hann(Kmop) | | rr’<58b)-
where |
22 =8l -ad (59a)
al=gkal (59b)
ookl ‘ (59¢)

Now in oxder to solve for the unknown coefficients Anm - Hnm in terms

R A
of the unknown currents 10 one merely needs to ensure continuity of

tangential E and H at p =0, and‘téngéntiai Eatp = Py3 and to ensure the

appropriate discontinuity of tangential i at p = The surface current

pl'
density represented by the shield filaments is easily shown to be

- P - A _ _ ini-iB 2
"JS B é_m mz~w (Jsznm % * J3¢nm a¢)erl o —(60)
in which
~ Iocosw
Jsznm n 2npl Ea‘(n~m) + 5k(n+m)] (61la)
- I /1nw
Jogam = T LG - 8 NEEN 61h)
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where § ( ) denotes the Kromecker delta"function. It is evident from Egs.

(61) that only those coefficients A - Hn for whlch n=m or n=-m will be
&N
nonzero.. Further, each nonzero cocf 5c1ent is dlrectly proport10nal to I .

In the event that more helix palrs are added to the shield, symmetrically'

A
spaced around the z-axis, the coeffincients JS and J - are multiplied by

znm sénm
M, the number of helix pairs, and by Gk(n—kM), where k is any integer. We

now have all the information necessary to solve for the unknown coefficients

. (4] .
Ahm - Hnm in terms of Io and thus to obtain the solution to the second phase

of our problem. Let us now presume that this has been done (details are

- ]
given in the Appendix) and write, e.g., A.nm = MIO Anm as appropriate, under-

standing that the allowed values of n are kM, where k is any integer.
The coupling of the primary field to the grid-induced field will now
be carried out. Let us denote by E+ the component of the total electric

field parallel to the right~handed helix wires:

E, = siny E¢ + cosp E, (62)

Evaluating this component of electric field at'p = - b, ¢ = 2wz/p, and

°1

L] -
equating it to Zwl'o, where ZW is the wire impedance per unit length, we

have
~ 1
bt pis j“z"‘_ﬂz(n*m) nf Slnt,) T M “)
X F [ - A ‘cost{)J LU )
e OO m=‘..cn p] ml jU)EA anl
n=ki{
1{2 p
11! ’ ( ) .].'-.. ] - 1_ ° v A ’
.+ A,y sind L B M Iénm} 7 Joe, oGy D == Jp - Awlo (63)

in which b is neglected with respcct to ey everywhere except in L}wé and
. n

(-)

L wheire
“hnm?
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I (A (p 1"h) 1K (f\mla) - In(?\mla)Kn[kml (e l—-b)] (64a)

-) _
Llnm -
) 1 1 t ,1
4nm = In[xml(pl_b)]Kn(Amla) - In(xmla)hn[kml(pl-b)] (64b)

and Zw is given by

nW IO (wa)

e N (65)
w 2ub Il(lwb)

Z

s 1/2 ! , 2
with n, = (pro/ow)i ? where o denotes ;he wire_conducFiv1ty and Ty
jwpocw. Considering only the n=m terms in the double summation in Eq. (63),

. ~
we have after a little algebra the total shield current IS:

E Z 2 1
: Y PeY~
:i = {l + ‘ww v {—~% coszw n —iJ
I U™ gk
P 1
2 ' . ')
S Pl ~1 ? Bn siny 2 , AnnLlnn
+ [-=5 ¢0s v n —— A — - A, cosy| ——5~
L2 a o nl 2
1k g k== 1 k
1 : 1
‘ k#0 o ,
n=kM 7 ('l’
: _ (
BnnLéni -1
g e ) =
- nl Jurg

. 1 . ]
We have made use of the facts that Abb = % cosy, BOO = (0 (see the Appendix);

2 2 ISP C) RN .
'AOl = =Y (by definition); Ligg = n (pl b)/a in the low~frequency limitj
~ ~
and I = 2MI cosl.
8 o
ol -
Now the total current on the center conductor, IC, i Just tha aum of

~

Ip and the current Induced on the center conductor by the prid, asud {1

easily shown to bhe

Lal

“~ L] ]
I =1 =~ 2%MI A
c P o

“
00 =2 Ip - Ig 67)

Furthermore, the total current on the structure ic given by
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P ~ - a 1 - )
. I =1 471 -2iMIL A =1 (63)
s o oo P

by e
Z
.Y 1
I P(B ) + To qu
I Z Y p
P S APIS S e
F(B ) b om——— T ﬂkz cos Y fn
1
where
A 1 -
S Bn'Sinw 2 AhnL{ni ) ' BnnLéhi
F(BO) = Z [LB-——-— - A 1 COSQ)J "“—’2‘———‘ - )\nl siny ‘-5‘&')';—'—
SO 1 kl 0
k#0
n=kM 70

That portionrof the potential of the center conductor with respect to

‘ the shield radius pl—b which is due to the shield currents is given by

v = - IEP. cf cg AR eJnfb j2'ﬂmz/p 71)

g Wey Z o o, WD Inm

n=kM

On an individual right-hand helix wire, ¢ = 2nz/p; thus

- 80 ' 01 & B T secy .
Vg = - 2nwe in E—'Is - ——E;BE—*_ I G(B ) (72)
1 ‘ 1
where
=) 8 ' .
- _n (~) .
,G‘go) - kz B AnnLlnn (73)
E—= s o) o
- k#0
n=kM

The total potential on the center conductor with reapect to the shiceld fn

therefore

o . )

: & - 0 1 "
| Vc =‘Vg + Vp = 2%5?1 {[Zn E—'+ ngecy G(Goi}l - nsec) G(L )I } (74)
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so that

’ p . .
s(B) = ,l {{R,n 'éi + msecy G(BO)JI(BG) - Tsecy G(Bo)} (75) ‘

Having obtaineé't(ﬁo) and 3(80), we may now obtain the transmission-
line parameters Z, ZS, Y, and I’S. We have

Z

W
F(0) + Jou_H
r{0) = : (76a)
e I
F(0) + jwqu + = cos ¥ 4n e
1 Py
s(0) = e {r(O)Qn ~— + msecy G(0)[r(0) -~ 1] (76¢)
ey a
p
S L
o(kl) - 27ru)€1 in - ~(764d)
and therefore, from Eqs. (7), we obtain .
jop P 2 Z
_ O o1 msec ¥ W
Z = —5— fn — {1 Al (F(O) * o M} (77a)
: o
&n —
a
juu Z
- - o 2 W
ZS 5 sec U [F(O) + jwquJ (77b)
Jw2we -1
Y — L [1 +—-—~“se§“’ c(o>l (77c)
in L in —
a
r= - 158 6(q) {1 + -“Msec‘pc;(m} -1 (774)
& P1 Py
in — in -—
a a

The evaluation of F(0) and G(0) in the low-frequency limit 40 carried
out in the Appendiw, with the following results: i1if l—u/pl andd no/p1 -1

are not too small and 1f M »> 1, then ‘
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cosyp -re/2
- L e

rO) =~ 222 o0 (1 - ) - (78a)
o T ey coszw C —ne/2
G(0) = g (1 - e "¢/%) (78b)

™ (el + 82)

c denotes the optical coverage of the shield .

C=£I"£Q'S€C'~p<l (79)
'ﬂ'pl - 7

In order that the assumption of continuity of the tangential electric field

through the wire grid be valid, c << 1, in which case

ro) = £ o0 (B (80)
2 ) :

. . g, cOs Y .

(0) = —1 n (& |

G(0) = — Ay m (%) (80p)

Thus explicit forms for Z, Zs’ Y, and PS arc given in the Jow-frequency

limit by

2
Jwu o Juu . Z sec ¥
=0, 1 ) . S
Z = 5w in = + = sech lg.ﬂc + o (81la)
Juy . Zw seézw
Bs T T T SeV Am T - oy (810)
Y = ju . n il-+rr COéw 7 Ariﬁr—gJ;l (8£ )
SRR e P a 21 (e, + €,) 7 wce ¢
1 1 2
fos cosl h 2 Y ‘ (t1d)
’s 2uM (cl -+ gz) e Jw ' )




This completes the evaluation of the cable parameters for this shield

model. We may write Z in the form

Z =17 =14
¢ s
where
' iy p
Z = ijC = 5 !Ln-;-

Y = ._.ig___.
S =~ 8
c s
where
P
Sc = ‘2%:? i o
1
- cosy 2
ss 21 (sl + 52) n Te
also
Ss
I|s - S -8
c s

(82)

(83)

(84)

(85a)

(85b)

(86)

ZC and Sc are. the quantities descriptive of a shield confined to a thin

layer around p = Py3 ZS contains a term due to the "openness" of the shield

structure and one due to the finite resistance of the shield wires.

S
s

includes the effects of the open shield structure and the prescnce of the

dielectric jacket. One will note that ZB and Sﬁ both decrease an M In

made large but ¢ is held constant. This is dn agreement with the rewnltn

obtained by other authors (refs. 2,4), who have indjcated that for flxed

optical coverage, better shiclding 1s obtalned 1f there are many amall

holes in the shield than if there are few large ones.

¢
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The relative importance of the finlte resistance of the braid-shield
conductors and the finite optical coverage in contributing thZs is easily
found. The ratio of the magnitude of the second term im Eq. (81b) to that

of the first is given by

o 21 secy Zw _ sec Io(wa) )
Zs Juy Rn-g~ in-g— wa £1(wa)
) me e
If the shield wires are highly condﬁcﬁive;:tﬁéhrlfgﬁlr>$'l,'éﬁd
. sec ¥ 1 ‘
A I Y H (88)
s fin —— w
: Te

so that the finite braid resistance makes a far less significant contri-
bution to ZSkthan does the finite optical cqveraée of the shield, as long
as ¢y is not too iarge.

Finally, the effect of the diclectric jacket is evident in Eq. (85b);
If the jacket is lossy, Lhen €y ~3~ in the low-frequency limit, so that
SS + 0. This physically occursjbecause the shield léyer becomes cffectively
an equipotential and the effect of the iqdiyidual shiéld wires is unimportant
insofar as the capacitive coupling is concerned. It will be noted that
the thickness of the dielectric jacket does not appear in the expression

for SS. This occurs because SS is indqpendent of d = Po ~ Py for most cases

of interest (seec the Appendix). If d = O, €, should be replaced by €,
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SECTION VI

SUMMARY AND DISCUSSION ‘

In this report we have>considercd the effects of finitely-conducting
shields and dielectric weatherproofing jackets on three coaxial-cable
models. In the first two models considered, the optical coverage was
unity, so that the only field-penetration mechanism through the shield was
diffusion of the field through the:con&ucting shield material. Thus the
finite resistagéé éfrtﬂe éhieidréﬁartﬁérihﬁérfééé sﬁiéldiﬁg'afe esééﬁi&élly
the same phenomenon: the finite skin depth of the shield. The results
obtained for these two models had significant differences in that for
the first case, the bidirectionally conducting shell, ZS decreased
exponentially with td, while in the second case, the two unidirectionally
conducting shells, ZS decreased only algebraically. This difference seems
to point up the importance of actually weaving the braid conductors together, .
as is done in practice. In neither case does the presence of a dielgctric
jacket have aﬁy’effect on the shielding, since the capacitive coupling
through a shield which is axially and azimuthally uniform is nil.

In the third model considered, the shield was sparse, being made up
of filamentary helical conductors with relatively small optical coverage.
For this shield, which has a periodic structure around and alony flu axin,
aperture penetration is the dominant field-coupling mechanism and the fact
that the wire resistance is not zero is not as important to the coupling
as is the low optical coverage. The presence of a dielectric jacket can have
a significant effect on the nutual susceptance SS, inasmuch as SS is decreasced
by a factor (Erl + J.)/(&rl + erz) if the jacket is thick, 1If the jacket is
dossy, Ss will vanish in the low-frequeney Mimit and thus eliminate the ‘

aperture coupling eniirely,
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In all cases, the "best'" shielding is obtained when the braid angle ¢
. is ‘as small as poséi.ble; when the conductivity of the shield material is as
high as possible; and when apertures are present, their total area should

be divided as finely as possible.
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APPENDIX

In this Appendix, we attend to certain mathematical details relevant to
the solution of the multifilar helix shield model. It was pointed out in
Section V that solutions for any of the unknown coefficients Anm - Hnm could

o~
be obtained in terms of the current in each filament Io’ and that these
Al .
solutions would take the form, Cefes Anm = MIoA&m Gk(n~kM), where k is any

integer. are thus the coefficients which would be obtained if

Al - !
nmn nm
there were a single helix pair (M=1), with each filament carrying one
ampere. It is also evident from Section V that a solution for all the
unknown coefficients is not necessary for the problem at hand, A;n and Bén
being sufficient to yield all the information required to evaluate Z, Zs’
Y, and T .
s
If the clectromagnetic field components ave derived from ¥ and &

using Egqs. (8), (54)-(59) and the bourdary conditions at p = Py and p = Po
L.

imposed using Egs. (60) and (61) with IO = 1, there results the following

system of equations in the unknowns Aém - H'

nm’
_ . | ar o on
ary 0 aj3 2, 0 0 0 0 Aém 0
B3 By A3 Ay 25 8y 0 0 PIBLL 10O
0 ag, 0 0 agy oage 0 0 G by
%1 %2 %3 M4 M5 Mg O O [IDL | by
0 0 ag, ay, O 0 a, 0 || 1o (A1)
O 0 agy A, 25 % 27 g ||,y |0
0 0 o 0 8,5 Aye 0 asg G;m 0
%0 %3 Ay g5 g %y gy ||| | O
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where

L G

A
= - m2 (
276 jopu
o
a,, = X (

- 1
a83 - >‘m2 In()\mZp
= 1
gy, = “Apg Ky (P

g5 = Jan o O
. nf
m
a,, = K (A
86 jwuopo n

w1l Btm
age = K (A p )
g8 quopo - 1o O
.. siny _
b37 Zﬂ [6 (v~m) - § (n%ﬂO]

mlpl)Kn(Amla)

-1 7 N -
ln(xmlpl)hn(kmla)

f
In(xmlpl)Kn(Amla)

1 1 ”
In<kmlpl)Kn(Amld)
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mlpl)
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Equation (Al) is solved for Aﬁm and B&m by systematically removing the
other unknowns, The procedure used was to solve for Cém - F;m in terms of
t ' . . . ' . At
Gum and Hnm’ using the last four equa§1ons of (Al); then to solve for Gnm
and "' in terms of A' and B' wusing the thixd and fourth equations; and
nm nm nm
finally to solve the first and second equations for A;m and B;m' The

results are as follows:

gt o 2271 7 Yo"y

- (Ada)
w4339 T 93292
' -
o G1%2 T 91M (Adb)
Jurg 933999 7 93090
in which
-.'an Kil
r: . T s 1 —
qll k2 LlA t “23 k2 Ll)‘mokm2po(>‘m2K'ooL5 kmoKboL6)
11 1
AZ
-1, 2E1 8 K L., - 1) (452)
24 kz 1 "m o075 12
1 .
2 R
G2 7 At 7 Tostnrbaeeeots T (e, = 1)
2 1 2 1 2,
I124)kmlpc>1'.'3 k2 (AmZAmoKboL6 - €po xmolmz ooLS) (A3b)
o
2
Aml
= D ) 1 -
923 AmlLZA + r43 k2 LlkmohmZOo(}\mQIKooLS AmoKooLé)
1
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—--,I‘44 ;?“'Ll anKOOLS(ch -~ 1) (ASc)
1
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-— —— 2 r V - ___I'__ 2 rt -— r?
A= Motm2 2 (KmokmzhooL6 €9 AmokmzkooLS)(AmbKooL6 AmZRooLS)
o . . ,
nZBiKgoLg : 2
-——= (e, - 1) - (Abe)
€ r2
r2
— Y - AY
LS In(kmzpl)\n(AmZDO) In(AmZDo’Kn<Am201) (a6£)
- e t - 1 7
LG In(AmZQl)Kn(Amzpo) In(AmZDO)In(km2pl) (abg)
= T - '
L7 In(KmZQl)Kn(Am2po) In(meOo)Kn(AmZpl) ‘,(Aﬁh)
= T1 -t - Tt 1 7 :
LS In(;\mZQl)I\n('XmZDo) In(AmZQO)Kn(AmZpl) (a61)
Koo = Knckmopo) - (A6])
1 = 4
K00 - Kn(hmopo) 7 (A6k)
When n = 0, Q37 = g = 03 and if m = 0 as well, b3,=,0 so that r, = 0.
Thus it is evident frem Eq. (A4b) that B! == 0; additionally, Al ro00/
49100 and in the low-frequency limit, it is easy to show using the small-

argument approximations to the modified Bessel functions that

' = = }
A COSII) (A )

We shall for the remainder of this Appehdik be concerned with the
case m=n, n#0, in the low-frequency limit. In this limit,

A 8| (A8)

S
no,1,2
and we find after some manipulation that the low-frequency limiting formg

for qij’ rys and ¢, are given by

2
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15 , 2 _
q11rm ’ 2 nBnpo(LrZ 1)1\00(1‘61'7 LSLS)
kl .
2
L p .
1 .50 - 1 _ ot
* "0 5, (epg = e Kools ~ T2 Ko Ls)( K 5)
1 v r2
p2
7___0_ 14 _.__l___ 1 T ’d - ]
qunn}+ anl k2 (LooL6 8r2 KooLS)LLl&(I\ooLG KooLS)
‘o
- ( ; - Al
L3(1001‘8 1\ooL7)]
p2
7__9__ 'd 1 1.,__. t
991nn > IBnl 2 (kooLé KooLS)[L2(KooL6 € K 5)
,ko r2
€
r2 , A
T Ll(hooLS T e 1\001’7)]
rl . r2
q > LB (6, = LK. (Tl = Lelg)
22nn 3 "0 2 LK “6°7 58
2
Lngd e e e Y® L, - KU LO® L - K! L)
3"n Py r2 rl oo 6 €r2 00 5 00 6 5
2
. siny o 5 _ 1 ' Tt
“lon i’ Zﬂpl k IB l (K L6 €9 K )(K00L8 kooL7)
p2
cosy "o 1 ./ o
Tonn 27rpl k? P 6 (KooL6 € 9 KooLS_)("oo‘I"G hooLS)
o
r .
Thus in the low-frequency limit,
K L - R L[, T - 2ok
nn Zﬁp l f € o6 £ 065
l r2 r2
€ \
_r2 ' SRS o
€1 Il( 001'8‘ - K 0 7)]
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] \
Bnn siny Kn(lsnlpl)

Jouz 718 ] K (I6_Ja) (A10D)

where the last result has been simplified by using the definitions of L,.

3

Furthermore, in this limit,

_ R, S o
B, > == » tany (All)

We are now in a position to conslder the two functions F(0) and G(0).
It is clear from Eq. (Al0a) and the equation defining F(Bo), Eq. (70), that

the Aén terms do not enter into F(0), and thus

sinzw ,m L(_) Kg(n tand)

F(0) = - : (A12)
k=1 4nn K;(n 2. tany)
n=kM P1
Furthermore, from Eqs. (Al0a) and (73), we have
o 2, o
Gy = L8chcos b g L A P ST
7 L n Jun Voo 6 ¢ 00’5
k=1 r2
n=kM .
. R S I
[LZ(K00L6 £ KooLS) € Ll(KooLS T e K00L7)J
r2 rl rl
- (A1l3)

In Egs. (A12) and (Al13), we have used the facts that the summands are even
functions of n. One will also note that F(0) does not involve either €.y

or 0, and so 1s characteristic only of the helical shicld; on the other

hand, G(0) depends on the shield atructure and on the dielectric Jnekot
surrounding the shield. If the dielectric jacket s absent, G0) bocomes
" K (v tany)
cos! -
c(o) = 2k ) AL . (A1h)
ki Inn i
k=1 Kn(n‘mm Lani)
n=ki -1
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In order to simplify the evaluation of F(0) and G(0) we shall assume
that M is suff1c1ent1y large that the modlfled Besgel functions may be

replacad by their uulform asymptotic Forms [S] Introduc1n0 these

‘approximations in Egs. (A12) and (Al <), we obtain after a 1ittle algebra

_sinh mq- | ' (AL5)

8

-kMQ

=

sinh kMQ (cosh kMq + E£~ sinh kMq)

G(0) = cos®y OZO 1 ' r2
™ Rk , 1 .
k=1 7 [e_. cosh kMQ{cosh kMq + —— sinh kMgq)
rl €r2
+ €_, sinh kMQ(sinh Kiq + E'l“ cosh KMq)]  (AL6)
“r2
in which
Q = E(a/pla \b) . (Al7a)
~-g-J& . \ '
Q 5N | (A17b)
q= E(po/pl: 11’) (A17C)
E(z,$) = |n(tany) - n(ztany)| | (A174)
and

n(x) = /1 + %% 4 n —E  (A18)
1+ fl + x2 :

The‘optical coverage ¢ is given by

c = 2 sec) < 1 (A19)
1np -
B
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1t is easy to show that

CE@z,) > £(z,0) = |inz|

and as a consequence

MQ > 2M in

2MQ > 2M In

‘-

2Mq > 2M fn

B¢
Now in typical coaxial cables in E}‘ is

M is large, as we assume, then

(A20) .
p ,
-;:-L- (AZla)
Pl o
—= - fc (A21b)
19
2 (A21c)
1

of the order of unity, so that if

M >> 1 . (A22a)
aMq >> 1 (A22D)
and we readily obtain
_ cosU S 1 -kme/2 '
FO) = o ) % °
o kj—=l
_ cosy me/2 o
= = 5 == in (l-e ) (A23)
a(0) = coszw Er1 czo_]; e—knc/2 14 f (z"ZkMq (A24)
: M €.+ € k ~2kMq
rl r2/ k=1 1~ 1{g e
where
€ o = 1
r2 v
f o= — (A25a)
€0 + 1
€ ., - €
g = €17?_ - Erl (A25D)
2 rl

s




If the diclectric jacket 1s absent, then qh= 0 (po/pl = 1) or €y = 1

and G(0) becomes

2 e .y ' ' S
, - _ Cos"y rl -1c/2 . . '
G(®) Sl [1 T erl] gn (l-e '%) (A26)

no jacket

On the other hand, if 2Mq >> 1, i.e., if the jacket 1s thick and M is 1arge,r

+ €

' coszur “ri - ¥wc/? .
G(0) = - ¢ [e - ] tn (l~e ) (A27)
o o rl r2

To examine the behavior of C(O) for moderate Qalues of ZMq, we define a

funetion h as follows:

—nM seczw,G(O)

‘h(e_., €., ¢, 2Mg) = (A28)
rl r2 ’ n (1—e~ﬁc/2)
80 that
. , .
_ rl
h(srl, €hgs Cs o) = ——iT (A2%a)
rl
| “r1 | . »
®) = - — 2
h(erl’ €rar ©» ) e, + ¢ (429b)
. rl r2

A plot of q = E(po/pl, V) as a function of po/pl for various values of ¥ is
shown in Fig. Al and h is plotted as a function of 2Mq for various values

of ¢ , and ¢ in Pigs. A2-A7, It is evident in all the cases

r1® “r2
shown that h has essentially reached its final value for 2Mq > 43 therefore,
for large M, the result for G(0) given in Eq. (A27) may be consldered ta be

accurate whenever po/()1 > 1 4 2/M.

The dependence of h upon the optical coverape ¢ may be aecn by comparing
Figs. A2 and A5; A3 and Ab; and A4 and A7, lIncreasing o cauccs b to Iherenne

slightly so that its final value is not reached as qulckly as 2Mq 1o
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increased. This result is reasonable from a physical viewpoint, since an

 increase in the optical coverage of the shield means that less of the ‘
field in the caBlelintgriorrcan‘penet;age theréie%¢¢tric7jacke;. For very

‘small values of Vc,;tr’ine'rfipa?.r \{alues cf h are r_eached very rapidly as .'ZHq

is increased.
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Fig. Al. E(po/pl, ¥) vs. pO/p1 for various values of .
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h vs. 2Mq; ¢
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Functions, Wational Bureau of Standards, AMS-55, June 1964, p. 378.
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