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Abstract

The electric-field formulation of the electromagnetic scattering problem

. is used to derive analytical expressions for the natural modes of the following
thin-wire structures: a straight wire of variable radius, a wire bent into an ’

L-shape, two collinear wires, two nonstaggered parallel wires, and a thin ring.

The natural modes are used to derive expressions for the induced currents on

some of these structures.
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I. Introduction

The transient analysis of thin-wire structures has been the subject of
many numerical investigations. The time dependent transmitting and scattering
problems involving an infinitely long, perfectly conducting cylinder can be

[1-4]

from a wire of finite length can be reduced to the solution of a space-time

L 5-6]

integral equation

reduced to the evaluation of an infinite integral The transient scattering

or to the solution of a space integral equation in the
L7

all transient analyses of thin-wire structures have been based on the numerical

frequency domain combined with an inverse Fourier (Laplace) transfo . Sofar,
solution of the integral equations and little or no attention has been paid to
analytical solutions of these equations. Based on the analytical properties
in the complex frequency plane of the field scattered from a finite body[8’9]
and certain properties of the electric-field integral equation for thin wires
we will derive in this note analytical expressions for the currents on a thin
wire induced by an incident pulsed plane wave or excited by a pulsed slice
generator.

The natural oscillations of different thin-wire structures have been

[10]

differential equation for the induced current on thin wires and used this

investigated extensively in the past. Pocklington derived an integral-
equation to derive approximate expressions for the fundamental natural frequency
of a thin straight wire and a thin circular ring. Expressions for the magnitude
of the induced current of the fundamental mode were also derived in [[10] when
the ring is exposed to an incident plane wave propagating along the axis of

h[ll] are

limited only to the weakly damped oscillations of a ring. Oseen extended their

the ring. The results obtained by Pocklington and Lord Rayleig

results to include the more attenuated part of the spectrum of a perfectly
conducting ring as well as the natural frequencies of a resistively loaded
[12-14]

ring and those of two perfectly conducting, coaxial rings Oseen also
constructed the time history of the induced current from the natural modes when
the incident electric field is a step-function modulated, time-harmonic, plane
wave. By expanding the field quantities involved in a Fourier series around
the circumference of the ring the time history of the current induced in the
ring is calculated from the natural modes. The formal appearence of the

expressions thus obtained is very similar to the general expressions in £8,15]




or those obtained either from the magnetic-field formulation[g] or from the
electric-field formulation as presented in Section II of this note.

The method of separation of variables was first used by Abraham to
calculate the fundamental natural frequencies of a slender prolate spheroid[16].
By solving the Helmholtz equation in spheroidal coordinates, Page and Adams
calculated the wavelengths and logarithmic decrements of the lowest natural
oscillations of a prolate spheroid[17_193. The forced oscillations due to a
uniform time-harmonic electric field parallel to the axis of the spheroid were
also calculated in [17,19] around the three lowest resonances.

L20]

The first treatment of the thin wire was given by Oseen who applied

the method of retarded potentials to straight thin wires. Besides deriving
asymptotic forms for the natural frequencies of a thin wire Oseen also calculated
the current induced on a wire by a transient incident wave. Using a slightly
different form of the so-called thin-wire approximation Hallén derived a pure
integral equation for the induced current on a thin wire[21’22}. This equation
was then used to derive analytical expressions for the natural frequencies and
the current distributions of the natural modes. Although the approximate
treatment of Oseen and Hallén only yields the weakly damped natural modes the
existence of the highly damped modes of a thin wire was already pointed out by

[20]

Even though these early results on transient scattering from certain thin-

Oseen

wire structures are formal in the sense that the scattered field is assumed to
be expressed in terms of the natural modes alone, they are very useful in view
of the recent results obtained in [9]. The simplicity of various approximate
analytic expressions for the induced currents obtained in [14,20] is striking

[23-28] that have been

in view of the rather lengthy numerical investigations
undertaken recently. Indeed, the present investigation has been motivated by
the simple results that were obtained in many of the early papers quoted above
which, judging from recent numerical investigations, seem to have been forgotten
nowaday. Some of the results presented here are therefore not new, they are
included here merely to make them more readily available to workers in this area.
The outline of the note is as follows: in Section II the method given
in [9] based on the magnetic~field formulation for calculating the transient
currents from the natural modes is extended to include the electric-field

formulation. In Sections III we present a method of calculating the first~




branch natural modes of a thin, straight wire of variable radius. The approach

[ 20]

we use follows closely that of Hallén s since we find this approach the
simplest and most straightforward. In Sections IV and V we consider some
special cases which can be of value for certain EMP applications. The natural
frequencies of two perpendicular, connected wires (L-wire) are calculated in
Section VI. Finally, in Section VII we present the natural frequencies of

two parallel wires and those of a thin circular ring (TORUS).



ITI. Some Properties of the Electric-Field Integral Equation

Consider a perfectly conducting body illuminated by an electromagnetic
wave, The induced surface current demsity j on the scattering body satisfies

the integral-differential equation

£:] = sc e o (1)

where .glnc is the incident tangential electric field on the surface of the

scattering body, £ a linear operator defined by
£03 = -wax(€; -3 = -mxax(&,-3) (2)
where

€ D@ = s’ J G(z,r'ss)i(x)ds’ = ¥ f G(z,r'ss) V' 1(x")ds",
S

S
(3)
. V) ' s (rtydat
(§2-_J_) (x) = (8"c 7 = VV:) J G(r,r';s)j(x')ds?,
S
G 1s the free-space Green's function
G(x,r'ss) = (bnlr - ') exp(-s|r - x'[/c), (4)

¢ and £, are respectively the speed of light and permittivity of free space,
s 1is the complex frequency, and n = n(r) is the outward unit normal to the
surface S of the scattering body.

From the expressions (2) and (3) it follows immediately that the operator
£ 1s a symmetric operator when operating on functions j that are tangent to
S and square integrable on S, i.e.,

*
f=gM=g (5)

where gf is the adjoint operator to £, the asterisk denotes complex




conjugation and the scalar product between two functions ji(g) and 12(5)
are defined by (j;,1,) =Jgl, (®1,(®ds,

‘ When the incident wave is a delta-function plane wave we know from previous

L9l

function of s. This implies that the inverse operator éﬁl(s) is a meromorphic,

investigations that the induced surface current density is a meromorphic
operator-valued function of s and that the locations of the poles of this
inverse operator are given by those values of s, S,» for which we have a

nontrivial solution of the homogeneous equation (1), i.e.,
. . t =
L£(s )3 =0, i #0 and L (s )-£ =0, £ # 0. (6)

v *
From (5) and (6) we see that without loss of generality we can choose —f~n = -ln
To find the solution of the inhomogeneous equation (1) we follow the

procedure used in finding the forced solution of the magnetic-field integral

9]

equatio . From this solution we derive the following representation of

gfl(s) for the special case where gfl(s) has only simple poles,

e = 1 {6 - M@ 1 b1 17 G +R (D} + e @)
n,m
‘ where @‘n = (dgL/ds) (sn), @ﬁ(s) is an operator valued polynomial of s and

Eﬂs) is an operator-valued, entire function of s. The summation over m
takes care of the degeneracy of each natural frequency, i.e., the number of
linear independent solutions of (6) for fixed n.

When the incident field has all its sources outside S we show in the
inc
e
-
electric field on S evaluated at s = S, Thus, in this case we have the

Appendix that (ginc,jn) = 0 where denotes the incident tangential

following solution of (1)

inC}

1= Fo egt {Sn(s - Sn)_l[qgninm’inm)]—l(Einc’iﬂm)inm * gﬁn(s)ﬂg
+ e st' (s) -g_inc (8)

where &'(s) is an entire operator and Zt denotes summation of external
- ex

modes only. TFrom (8) we can derive the following alternative form for the

induced current density on the scattering body,




inc inc}

d= o z {Sn(S - Sn)—1[q§ninm’jﬂm)]-l(g ’iﬂm)inm + S-g'n(s)'-E

ext

+ eosg'(s)ﬁginc

(8"

where Qn(s) is an entire operator,

inc

+ e g (s - sn)-l[Q@ninm,jnm)J-l([sginc - s e ]’inm)inm;
[15]

Baum has coined the expressions ''class 1" and "class 2" coupling coefficients
for the first term in the sums of (8) and (8'), respectively.

The time history of the current due to an arbitrary, incident, transient
electromagnetic field can be obtained from (8) by using the same methods as in
[9].

In the next sections we will investigate the operator £ for several
different thin-wire structures and find approximate analytical expressions for

-1
the inverse operator £ .




ITI. A Perfectly Conducting Wire of Variable Radius

In this section we will investigate the integral-differential equation (1)
for a thin, perfectly conducting wire with variable radius. For a thin wire
the surface current density is predominantly independent of the azimuthal angle,

If we consider only this part of the current we can reduce the vector equation
(1) to a scalar differential-integral equation for the total current that passes
through the cross section of the scattering body. By allowing the radius of the
wire to vary along the structure we are able to treat, besides the "ordinary"
straight wire with constant radius, such structures as a thin prolate spheroid
and two or more connected wires with different radii.

Consider a perfectly conducting, straight wire of length £ and variable
radius p(z), 0 =z S ¢, exposed to an incident electromagnetic field whose
axial component of the electric field along the axis of the wire is Eo(z),
see Fig. 1, A time dependence exp(st) is assumed and suppressed throughout
this section. The total current I(z) on the wire satisfies the following
approximate equation, with terms of order polz (po is the mean radius of the

[22]

wire) being neglected
LI = -se E . 9

Here, &£ is a linear operator given by

2 2 L '
_|da- _s” exp(-sR/c) ot o 1 [p'(2)
(L1 (2) = [;;f CZ:IJO AR I(z')dz"' + o [E?;Y— I(zﬂ s (10)

Rz(z,z') = (z - z')2 + pz(z') and the prime in the second term of (10) denotes
differentiation with respect to z.

Some comments are now in order concerning (9) and (10). The kernel in

' whereas

the two-dimensional equation (1) has an integrable singularity at r = ¢
the integrand in (10) is regular for all values of z'. This discrepancy between
(1) and (9) is due to the fact that (9) is only an approximate equation for I(z)
and that terms of order polz have been neglected in obtaining this equation.
We notice however that the kernel in (9) is "almost singular" in that it gets
very large for 2z = z'. It should also be mentioned that (9) is not valid

close to the end points of the wire and at points where the wire radius changes




im

1=

»2

Figure 1.

A thin wire of variable radius illuminated
by an incident electromagnetic field.




abruptly., The extent of the regions where the approximations involved in -
obtaining (9) are not valid is of the order of the wire radius. Despite all
the approximations and limitations introduced in (9) this equation can be used
to obtain approximate expressions for global quantities such as the natural
frequencies, the errors in these quantities being of the order of po/2. The
approximate equation (9) can alternatively be obtained from (1) by requireing
that the total axial component of the electric field vanishes on the axis of

[21],

The natural modes of a thin wire are given by the nontrivial solutions

the wire

of the homogeneous equation (9). To find these solutions it is advantageous

[21]

first to integrate (9) and obtain the following integral equation
-1 [%
C£lI)(z) = -7 f E (z')sinh[s(z - z')/c]dz’ (11)
o Jgo©

where

L Z v 1 [ '
<£11) (z) = J _GER[%.ER_/_C_)_ 1(z")dz' + J p'(z )ISZ ) cosh s(z-z') dz'
0 R 0 2mp(z") c

+ A sinh—sf-+B

sz
1 cosh = (12)

1

Al’ B1 are constants of integration to be determined from the end conditions
I(0) = 1I¢x) =0, and 2Z is the wave impedance of free space, Z0 ~ 377 ohms.
Next, we follow Hallén[2 ] and approximate the first integral expression in (12)

and neglect terms of order po/R to get

R 22

* exp(-sR/c) L2z
J exp(=sR/C) 1 ,1ydz" ~ QI(z) + ln|——-=2|T(2)
0 ) 2707 (2)

(13)

L
I(z")exp(~slz~z']/c)-1(2) ' -1 e
; Jo et az' +0@h) + 0

where 0 = 2 ln(z/po). Equations (11)-(13) combined with the end condition
I(0) = 0 results in the following equation

10




2
T(z) +_1_ ln[M]+ Jz I(z')exPL—slz-z'I/C]_I(z) dz'

PR

"L %k 0 B

% ! ~gz! L ' '
. - cosh 2% I(z )exp[; sz'/c] 4,0 4+ 2 p'(z )¥(z ) cosh ££272") 4,1

¢ Jo z p(z') c

0
sz _ 4r_[* 'y sy 8(z=2") |
= A sinh o —-225 joEo(z )51nh~——7;——— dz (14)

which with the end condition I(L) = 0 gives

2 ' - ! . 2 ' —an!
J I(z )exp%;isz Z )/cl'dz' - cosh sf f I(z )exgg sz'/c] dz'
0 0 (15)
IO s(4-2") s 4m (F s(2-2")
+ 2 ; cosh ————= dz' = AQ sinh — - — | E (z')sinh =—=~—=+* dz'
p(z'") c c Z ) c
0 o0 -0
where A = 4w9—1A . It is in principle possible to eliminate the unknown

1
constant A between (14) and (15) and thus obtain one equation for I(x).

However, we prefer to keep the form with two equations and an unknown constant.
The natural frequencies sy and the current distribution In(z) of the

natural modes can be obtained by finding the nontrivial solutions of the

. homogeneous equations (14) and (15), i.e., by putting Eo(z) = 0 in these
equations. If we neglect terms of order po/z, the nontrivial solutions of
the set of equations (14) and (15) are the same as those of the homogeneous
equation (10).* Expanding s, and In(z) in a power series of Q-l and
assuming that the lowest order term in the expansion of In(z) is independent
of Q we arrive, after some tedious but straightforward algebraic manipulations,
at the following expressions by equating terms in the power series expamnsion in

g'l, c.f. [21]

2
s, = (mre/2)[1 - o7 Eam) /(am) - 127" J cos(2nrz/2) 1n[ p (2) /p dz + o™ %),(16)

0

*
Note that the nontrivial solutions of the homogeneous, approximate equations (14)
and (15) only give the exterior resonances whereas the nontrivial solutiomns of

the exact homogeneous equation (1) give both the exterior and interior resonances,
c.£. [29].

11



In(z) = gin(nnz/8) + Q-ICin(z) + i;(z)] + 0(Q~2) (17)

where
in(z) = i[exp(-invz/l)E[an(z - 2)/%] - exp(inmz/L)E(2nnz/2)
+ (2z - 2)cos(2nﬂz/£)E(2nﬂ)/2]/2

- sin(anz/L)1n[4(2 - z)z/zzj, (18)

z
i&(z) = sin(nnz/z)[Z ln[p(z)/pO] - I [1 - Cos(Znnz'/z)][p‘(z')/p(z')]dz|]
0

2

+ cos(nwz/Z)[z/z J sin(2nrz'/)[e0'(2") /o (2")]dz2’
0

z
- f sin(2nnz'/£)[p'(z')/p(z')]dz'], (19)
0

E(2)

2 -1
JOEI - exp(-ig)]z "dg

y + 1In(z) - Ci(z) + iSi(z), (20)

y is the Euler comstant (y = 0.577...), and Ci(z) and Si(z) are the cosine
and sine integrals, respectivelyESO].

Since In(z) is a solution of the set of homogeneous equations (14) and
(15) In(z) can be determined only within a multiplicative constant. In (17)
we have made a perticular choice of this constant, so that the leading term
in the current distribution is equal to sin(nrz/2). The induced current on
the wire is, of course, independent of the choice of the value of this constant,
c.f. (8).

This systematic way of finding the natural frequencies of a thin wire
can only be applied to those frequencies that are close to the imaginary axis

in the complex s-plane. The highly damped natural modes of a thin wire cannot

12




be found by using these perturbation techniques. From previous numerical

calculations[23’24]

of transient scattering problems we know that the contribu-
tion to the induced current from the highly damped modes is important only for
early times. TFor these early times i1t is felt that an expression of the induced

L29]

current based on a traveling wave expansion is more advantageous from the
computational point of view than an expansion in natural modes (i.e., standing
waves) . | ' ,‘
After determining the natural modes of a thin wire, let us now see how we
can use them in constructing the forced solution of (9). We first assume that
all poles are simple and non-degenerate (this assumption has been substantiated
in all cases that have so far been investigated). Following the general theory

in Section II we have the following approximate solution of (10),

s C
I(z,s) = ] [:SS“ 7 L2 + (mnE0><z,s>] + (EE_)(z,8) (21)
n n n

where

2
Cn = JOEO(z,sn)In(z)dz,

Bn - ((Bnln’In) ’

mn is a operator-valued polynomial of s and &n is an entire operator-

valued function of s. The operator @n is given by @n = &(sn) and
®(s) = (d/ds)L(s). From (10) we get
2

2 s £ I _(z")exp(-s R/c)
d n n n '
«BnIn)(z) = [; 2 2] J 41c dz
A c 0]
2s 2 I (z")exp(-s_R/c)
n n n .
+ 5 Jo AR dz'. (22)

(o4

The representation (22) for @n can be simplified somewhat to

13




8 ‘ 4(2—z)zp§
((BnIn) (z) & ; 5 Q ~ l)In(Z) + 1n ——2—2—— In(Z)
me 2707 (2)

dz'}.

2 I (z")exp(~-s_|z~z"|/c)-I_(z)
+ f n n n (23)

0 |2-2"|

An expression of GBnIn)(z) accurate up to order 0° is then obtained by

substituting the expressions (16)-(19) for S and In(z) into (23). Thus,
B,1)(2) = [in2/(2e0)]{sin(arz/2) + 97'[b_(2) + b!(2)] + 0(2™ D)} (24)
where

bn(z) = (z/%2)cos(awz/L)E(2n1), (25)

2
bé(z) = sin(nwz/L) J [sin(2n7mz'/2) + cos(2nmz'/%) - 1{e'"(2")/p(2z")]dz"
0

2
+ cos(nnz/l)[z/% j sin(2nnz'/2)[p'(2")/p(2")]dz"
0
: z
- J sin(2nﬂz'/2)[p'(z')/p(z')]dz']. (26)
0

A simple integration of the expressions given by (17) and (24) then yields

B, = ®I,I) = L in0/(4c)][1 + Q—l(bn + Db+ 0(9‘2)] (27)
where
bn =[1 + i/(4nm)]E(2n7) - 21n 2, (28)
. -2
b; = J daw (L - z)2 sin(Znﬁz/E)ln[p(z)/pOsz. (29)
0

14




In constructing the time history of the current on the antenna we also
need to calculate the scalar product Cn as given by (21). We will here give
explicit expressions for Cn in two special cases, namely, (1) when the wire
is excited by a slice generator (the antenna problem) and (2) when a plane
wave impinges on the wire (the scattering problem).

In the antenna problem we assume that the wire is excited by a slice

generator located at z = b and whose output voltage is V(s), so that

Eo(z,s) = V(s)8(z - b). (30)
In this case we get the following expression for Cn’ Cint
2 = v(s )[sin(n-nb/z) + o lli ) + i'(b)]] (31)
n n n n

where in(z) and iﬁ(z) are given by (18) and (19), respectively.
In the scattering case we assume that the direction of propagation of

the incident plane wave makes an angle 6 with the positive z-direction so that
Eo(z,s) = Eo(s)sin 8 exp(-szc~l cos 0). (32)

After some lengthy algebraic manipulations we arrive at the following expressions
sc

for C 7,
n

1

Cge = Eoz[}nw)_l sin 6{1 - cos[nn(l - cos 6)]} + Q (cn + ca) + O(Q-Z)J (33)

where

15




c = [[1 + 2(1 + cos’8)/(inm sin’6)]E(2am) - 4 In 2
. + cos 8{E[nm(1 + cos 8)] - E[nn(l - cos 0)]}
- [sin®0/(1 = cos 8)]E [nn(l - cos 8)] (34)
- [sinze/(l + cos 8)]E [nm(l + cos e)]:l [{1 - exp[inn(l - cos 68)]}/(2nm sin e)]

+ [E[nw(l + cos 0)] - E[nn(l - cos 6)]} [{1 + exp[inm(l - cos 6)]}/(2n7 sin e)],

£
c; = 2(1 + cosze){l - explinn(l ~ cos 8)]}/(nns sin36) [ cos(2nnz/2)ln[p(z)/pojdz
0
2
- 2 exp[inn(l - cos 6)]/(% sin 8) j sin(2nﬂz/2)ln[p(z)/p0]dz (35)
0
2
+ i sin6 (1 + cos 0)/[22(1 - cos 6)] [ exp[ -inw(l + cos e)z/RJln[p(z)/pOsz
0
2
- i s8in® (1 - cos 68)/[22(1 + cos 8)] J expl inw(l - cos e)zlljln[p(z)/pojdz
0

®

To sum up this section we have derived, from an approximate form of the
electric-field integral equation, asymptotic expressions for the natural
frequencies, the current distribution of the natural modes, and the excitation
coefficient of these modes when the driving field is either a slice generator
on the wire or an incident plane wave. In the next two sections we will study
two particural cases somewhat more in detail, namely, (1) a straight thin wire
of constant radius and (2) two connected straight thin wires having constant

but different radii,

16




IV. A Straight Thin Wire

The straight thin wire has been the subject of exhaustive investigations
due to its relative simplicity. Approximate expressions for the natural
frequencies were obtained by Oseen as early as 1914. He also derived approximate
expressions for the current distribution and the coupling coefficient of a few
modes when the incident field is a plane wave whose direction of propagation
is perpendicular to the wire. 1In calculating the transient response Oseen
used the eigenvalues and eigenfunctions of the operator &£ in (9), i.e., he

finds the nontrivial solutions of the equation
(LI)(s,2) = A(8)Q(2)I(s,2) (36)

where Q(z) =% In[4z(% - z)/az] is a positive weighting function (the term
characteristic modes has been coined later for solutions of equations similar
to (36)). The results thus obtained are formal in the sense that it is
assumed without a proof that the functions In(s,z) given by the nontrivial
solutions of (36) form a complete set and that the inverse eigenvalues A;l(s)
are meromorphic functions of s. Nevertheless, in view of the rather cumber-
some numerical calculations performed lately, the simple results obtained by

(20]

Oseen have motivated us to undertake this approximate, analytical investi~
gation of the natural modes of certain thin-wire structures,

The approach used here is conventional in that we are solving the integral
equation directly with perturbation techniques. This approach seems to be the
most effecient way in the general case. In the case of a straight wire,
Fourier transform methods combined with the theory of Wiener and Hopf may be
used to find the natural frequenciesEBl]. However, the complicated expressions
thus obtained forces one to resort to approximations which may be very accurate
for thin wires when [Re{s2/c}| < 1 and [Im{sa/c}| << 1.[31] It is therefore
possible to use this approach in calculating certain natural frequencies. But
using these approximate expressions to determine the analytical properties of
the scattered field is bound to fail due to the approximations introduced, and
we therefore disagree with the conclusions drawn in [ 32] that the delta gap
introduces a branch cut in the scattered field. Also, the existence of the

branch cut is in direct contradiction to the general results obtained in [9].

17




The rather crude way used to evaluate inverse Fourier transform in [32] also
gives rise to an unphysical result for the late time behavior of the current
on a center-fed antenna (that the total current behaves like the outgoing wave
from the gap and that it decays like the inverse logarithm of time).

To get some quantitative information about the accuracy of the asymptotic
expansions discussed in this note we have in Fig. 2 graphed three different
representations of the fundamental natural frequency of a straight, thin wire,

namely, (1) an asymptotic form which is correct up to order Q-l (c.f. [20],

[21], (17)), (2) an asymptotic form which is correct up to order 9_2 (c.f.
[21]), and (3) the numerical results obtained in [23]. We note that for

a/f = 0.01, the natural frequenies calculated from these different ways all
differ about 20% from each other. We also note that the asymptotic form which
is correct up to order 9_2 gives a too large value of ]Re{sn}[, whereas
the asymptotic form which is correct up to order Q-l yields a somewhat too
large value of Im{sn}. Since the convergence of the asymptotic expansion is
doubtful[21] and judging from the results presented in Fig. 2 it is questionable
if the accuracy of the approximate solution would be improved by including the
Q-z—order term when a/% = 0.0l. For that reason and also because of the fact
that the complexity of calculating the Q-z-order term is rather large for
more complicated structures, we choose to include only terms of order Q-l

in all other cases that will be treated below.

The seven lowest first-branch natural frequencies calculated from (17)
are graphed in Fig. 3 for different values of a/%. We note that the imaginary
part of the complex frequency is almost constant and that the absolute value
of the real part of the complex frequency decays rather slowly with' a/t.

Before concluding this section we want to point out that in the case of
a straight wire all quantities denoted by a prime in the previous section are
zero, i.e., ié(z) = 0, b; =0, c; = 0. Furthermore, the results obtained
already in [9, 20, 21] answer two of the questions raised later in [ 23], i.e.,

that the current distribution of the first-branch natural indeed is complex

and that the delta gap does not introduce a branch cut in the induced current.
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Figure 2. The fundamental natural frequency of a thin wire.
The natural frequencies for a/% = 10—10, 10-5,
-4 -3

i0o °, 10 7, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05,
0.06, 0.07, 0.08, 0.09, 0.1 are indicated in the

figure.
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Figure 3. Natural frequencies of a thin wire.
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V. Two Connected Straight Wires of Different Radii

Another case that can be treated with the general theory developed in
Section III is that of two connected straight wires of different radii. The
two wires are smoothly connected to each other in a junction region whose
length A is much smaller than the lengths of the two wires but much larger

than their radii, i.e.,

a, << A, a, << A, d >> A, g=d >> A (37)

1 2

where ay and a, are the radii and d and ¢&~d are the lengths of the

two wires (see Fig. 4). We define the mean radius Py and the quantity @

in the following way:
o, = [da1 + (l—d)aZJ/Z, Q=2 ln(z/po). (38)

The natural frequencies of this type of structure is approximately

given by
s, = (ame/L)[1 - Q_lE(an)/(nw) + iQ—l ln(az/al)sin(Znﬁd/z)/(Znﬂ)
+ 0% + 0(a/0)]. (39)
For this special scattering structure we obtain the following explicit
expressions for the quantities denoted by a prime in (17), (23), (26), and
(33):
ié(z) = 2[ln(a1/po)U(d -z) + ln(azlpo)U(z - d)]sin(nmz/2)

- ln(az/al)[[l - cos(2nnd/2)] sin(arz/2)U(z - d)

- [z/2 - U(z - d)]sin(2mrd/2)cos(nnz/2,)] + 0(a/2), (40)
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Figure 4.

Two connected straight wires of different radii.
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=
8-
Il

2 ln(allpo) + 2 ln(az/al)[(l - d/%)cos(2nwd/2) + 1/(2nm)sin(2nnd/R)], (41)

|

= [ln(allpo) -~ exp[ inn(l - cos 6)]ln(a2/po)]/(nw sin 6)

+ 1n(a1/a2)[2(1 + cosze){l - explinn(l - cos 0)]}(2n2ﬂ2 sin36)-lsin(2nﬂd/£)

2 exp[inn(l - cos 6)] (2n7 sin e)'1[1 - cos(2nwd/4)]

- sin 6 exp[-inm(l + cos 6)d/2]/[2nm(l - cos 6)]

sin 6 exp[inm(l - cos 6)d/2]/[2nn(l + cos e)]} (42)

where U(z) is the Heaviside unit step function.

Let us briefly investigate some of the properties of the current
distribution of each mode near the junction between the two wires. From (40)
we see that the current distribution itself is a continuous function in this
approximation whereas its derivative has a discontinuity at the junction.

This discontinuity is given by

<dI > <d1 )
§ =\-—2 -2
nooNdz /o _qras2 V92 pegens2

a
2ntm 2 nnd - A
alr) In N cos — + O(QZ) + 0(@)
a, [dI a, /dI
=21 53 (5—> -2t (ﬁ) + 06D + 0. (43)
z=d+ Po z=d~

Thus, we observe that the discontinuity of dIn/dz is proportional to Q_l;

so, in this asymptotic sense the discontinuity is small. The continuity
equation implies that the so-called linear charge density, i.e., the surface
charge density multiplied by 2w times the radius of the wire, of each mode

is discontinuous at the junction. We also note that the surface charge density
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of each mode is discontinuous at the junction. We therefore disagree with
the junction conditions used in [333. The conditions that actually should be
used require that (1) the total current and (2) the scalar potential ¢ be
continuous at the junction. It is easy to show that the current distribution
of each mode satisfies these junction conditions in the approximation used

to obtain (40). Equation (43) suggests that instead of using the junction
condition of ¢ being continuous we can use the following approximate :
condition: the quantity

dI(g,) 2 . %
———dE. l—ﬁlnr
i )

is continuous at the junction. Here, we use the arclength gi of the ith
wire as measured from the junction and the direction of the current in the
ith wire is along the unit vector éi (see Fig. 5). We note that if all
wires have the same radii then the junction condition simply becomes I and
dI/df being continuous at the junction.

Finally, we note that in the approximation used in this section, the

junction condition obtained from (43) agrees with that derived by King[341.
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Figure 5. A junction of thin wires.
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VI. The L-Wire

Another structure that lends itself to an analytical analysis is a thin
wire bent into an L-shape. 1In Fig. 6 we have depicted two, connected, straight
wires of constant radius whose axes are perpendicular to each other. Note
that although the radius of each wire is constant it is not the same for the
two different wires. The dimensions of the wire structure are shown in Fig. 6.

To find the natural frequencies of this structure we introduce the
quantity & measuring the arc length of the structure from the point P such

1
that

X + Zl’ § belongs to wire 1
g (44)

v+ 2 ¢ Dbelongs to wire 2

l’

i.e., £&=0 at P and § =24, + %, =% at P Denoting the total current

1 1 2 2°
by I(f) we derive the following equation for I(E):
L 32 sz o )
j 320L" G(E,8") + =5 G(g,8")E-8"| I(g")dg" = se E-E(£) (45)
0 (o4

where £ is the unit tangent vector at §. This equation can be integrated to

yield the following equationEBSJ

2 2
f R(E,E')T(£')dg" - cosh == f c(0,&")I(E")dE"
0 0

g, et
= A sinh-%? - Z;l f E'-go(g')sinh §£§€§_L dg! (46)
0

where

R(E,E') = G(E,£')E.E" = f 36M,eD) 1.¢

0 an
+ BG(SAE ) + G(n,E") Q&%ﬁé_l cosh‘EL%;ﬂl dn. (47)

Neglecting the contributions from terms of the order of the wire radii to their
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Figure 6. Two, connected, perpendicular, straight wires (L-wire).
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lengths we can use the so-called thin wire approximation of G(&,£'),
o -1 2 . '\ 2 2
G(E,&') = (4mR) “exp(-sR/c), R(E,8") = (£ ~-8")" + 07 (8). (48)
Note that the integral equation (46) has been written in such a form that any

solution of (46) satisfies the end condition I(0) = O.
For the L-wire we can split (46) into the following set of integral

equations
" Y8 s, (-n)
f G(,6")T(E)dE" - f f e cosh 25 4y 15 dg!
0 2. Yo &
1
2
e [l
- cosh = f G(0,8")I(E")dE"
¢ Jo
et _1 f&. -
= A sinh §£§E§~l - Zo1 IOE"EO(E')sinh §£§E§Ll dag’', 0<¢g < %
. (49)
* L5 sem,eh) s(&-n)
[ G(g,8")1(5")dg" - f f =St cosh 257 dn 1(5")ag!
%4 0 e,
% )
g 1 . s(£=2.) 1
- f J 3G(gg? ) cosh SCE:”) dn I(£')dE' + cosh L f G(2,,8")I(8")dg"
2. 40 0
1
s(e-1)) (& .
-cosh——-———f (8,8 I(E)dE" —cosh—c—f G(0,£')I(g")dg’
2 0
st -1 [ s(E-£")
= A sinh i Zo f E"EO(E')sinh —= dz', zl < E < 8.
0

To find the natural frequencies of the L-wire we use the other end condition
I(2) = 0, By employing the same methods as in Section III we derive the

following expression for the natural frequencies of the L-wire:
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nw(zl—zz) A

_dnme 1 | q\D s _~ L
s, = < + q [1( 1) sin 7 In 22
-2inmwl 2nwl -2inm¢ 2nml
1 1 ( 2) 1 2>£ ( 1)
-3 ;1 + exp< 7 >§ E 7 ) 1 + exp 7 E 7
L. & 1
n L2 exp[-inn(u2+v2)2/2] ny (+utv) + nﬁ(zl 22—u+v) du d
vy 7 7.% cos T cos 3 u dv
0’0 (u™v5)
-2
+0(2 ) (50)

where Q = 2 1n[22/(zlal + Qzaz)]. The double integral in (50) can be expressed
in terms of elementary functions and the function E(x) defined in (20), and the
integrals defining the kernel in (49) can be expressed in terms of elementary
functions.

The function vn(zl,zz,z) within the square bracket in (50) which is
multiplied with & to give the natural frequencies is graphed in Figs. 7a-~7c
for n=1,2,3 and 0 = 21 < 2/2. TFrom symmetry it is clear that
vn(zl,zz,z) = vn(iz,ll,ﬁ) so the range plotted covers all possible cases. A
comparison was also made between the approximate results obtained here and the
numerical results reported in [ 28] and an agreement within 20% was found for
a/f = 0.0l. This difference is approximately the same as the variation of the
natural frequencies with 21. When making estimates of different quantities
based on an approximate thin-wire analysis it is therefore worthwhile to

simplify the model judiously and yet maintain a certain accuracy.
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VII. Some Other Structures

The method described in Section III can also be used to calculate the
natural frequencies of two wires whose axes are parallel and those of a thin
wire bent into a circular ring. We will, in this section, calculate some of
the natural frequencies of the following structures: (1) two collinear wires,

(2) two parallel nonstaggered wires, and (3) a thin ring (TORUS).

A. Two Collinear Wires

The natural frequencies of two collinear wires (each wire has length
%, radius a and the two wires are separated by a distance b, see Fig.

8) are given byEzo]

s; = A0e 4 28 i@ + 0@, Q=2 in% (51)
where
£ . (1+5) 2
o_(£) = -E(2am) 5 i sinfar(1+¢)]1n T
T % exp[imr(l+£)][E[2mr(2 + £)] - 2E[2nn (1 +£)] + E[Zmrg]:l. (52)

In this expression the + sign (- sign) corresponds to the case where the
current distribution is equal and in the same (opposite)direction on the two
wires. The functions oi(g) are graphed im Figs. 9a-9c for =n = 1,2,3 and
different values of §. From these curves we note that the loci of the
functions cz(g) form spirals with the center at ci(w) = -E(2nn). TFor large

values of £ we have asymptotically

E_Z explinm (1l + &)]. (53)

N

ci(g) ~ -E(2nm) %

This rather fast convergence for large values of b/& of the natural frequencies
towards their values for two noninteracting wires can be understood as a weak
electromagnetic interaction between the two collinear wires. The loci of the
natural frequencies as calculated from the theory presented in this note are

roughly the same as those calculated numerically for two, solid, collinear
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cylindersEsz. The difference between the loci can be attributed to the fact
that the approximate theory presented in this note only accounts for modes

with a small damping constant.

B. Two Parallel, Nonstaggered Wires

The natural frequencies of two parallel, nonstaggered wires (each wire
has length &, radius a and the two wires are separated by a distance d,
see Fig. 10) are found to be
d

-2 _ 2
(Eo +0(0 %), Q=2 ln(a) (54)

* inrme
n 2

8o+

+%%r
where
Ti(&) = ~E(2nw) * LZE[nngj - E[lnn(¥1 + 52 - )] - E[nn (/1 + Ez + l)]J (55)

and again the + sign (- sign) corresponds to the case where the current
distribution is equal and in the same (opposite) direction on the two wires.

+
The functions T;(E) are graphed in Figs., lla-llc for n = 1,2,3 and different

values of §&. For large values of £ we have asymptotically

Ti(&)’* -E(2nw) * ;?é [(—l)n exp(-inn/l + 52) - exp(-inn&)]. (56)
From Figs., lla-llc and (53), (56) we note that the electromagnetic interaction
between the two parallel nonstaggered wires is much stronger than that of two
collinear wires, as expected.

For small values of £ we note that r:(g) a =2E(2n7m) + 2inmE showing
that in this case the two parallel wires act like one wire whose = 1n(%/a).
For & >> d >> a and in the approximation we use, this result agrees with that
of Schelkunoff, @, = In(2/a) + 1n(2/d). On the other hand, T (&) v -2intg
for small values of & so that s, % inme/% and in this case the two wires
act like an open ended transmission line and the natural modes are the standing

waves on this transmission line. We also note that for small values of d&/%

the natural frequency s; can be written as
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s; = inwe/ (L + zc), EC = d/1n(8/a) + O(Q-Z) (57)

where QC/Z is the so-called end correction for an open ended transmission-

line, i.e., the extra length that accounts for the end capacitance between the
two wires[36].
by Wu for a/% = 0.05.

The expression (57) agrees within 20% with the results obtained

The results obtained in [27] by numerical means for the natural frequencies
of a wire above a ground plane should be compared with the results obtained here
for s;. Both the results in [27] and those of this note show a spiraling
behavior. However, due to the approximations introduced in this note we can
only account for modes with small damping constants and this fact is attributed
to the discrepancy between the results presented in Figs. lla-llc and those

presented in [ 27].

C. The Ring

Let us next consider the natural frequencies of a thin wire bent into a
ring. The radius of the ring is b and the wire radius is a (see Fig. 12).
To find the natural modes of a thin ring we first expand the current in a
Fourier series
fee)

I(9) = ) I_exp(im¢). (58)

m=-—ow

The natural frequencies Sm are given by s = ccnm/(Zb) where the cnm

are the solutions to the transcendental equations[14j

2 2 _ _
8Ly (2) - L, ,(2) + L, ()] =0,  m=1,23,... (59

where

/2
(62 + sin2¢)—%exp[-;(62 + sin2¢)%ﬂcos modd (60)

c

(@ = f

and & = a/(2b). The lowest root of each one of the equations (59) is given
by[11,14J

0
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Figure 12. A thin wire bent into a ring.
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= 2m|i + é%-[Fzm_l(Zm) - (2m)] + 0(9"2)], (61)

Im F2m+l

where

Q = 2 1n(8b/a), (62)

-1 (T .
Fm(;) =T j exp[i(z sin ¢ - m¢)]do, (63)
0
and F () =J (g) - iE (¢ ) where J (z) is the Bessel function of the first
m m m m [ 30]
kind and order m and Em(c) is the Weber function . Observing that the

functions Fm(g) satisfy the following recursion relatiomship

-— = !
F 1) = F (@ = 2F (o) (64)
and using the method of stationary phase we get the following asymptotic form
of ¢ for large values of m, (c.f. [11]),

1 1/

32
, m. 2. .
T v 2im -5 @) I@ G+ ). (65)
Another limiting form for the natural frequencies can be obtained by
observing that (59) has the following asymptotic solution for large ,Cnml’

(c.£. [14])

¢ %5 ln 6+ TG mt 2m), (66)

This last formula is of limited value, since it requires that the natural

frequencies are very large (so that their wavelength is of the order of the

wire radius). Nevertheless, it is interesting since it shows that for each

m all natural frequencies have a finite damping constant (although large).
Before concluding this section we briefly compare the first-branch

natural frequencies with the fundamental resonance for each m in the ring

case. In the case of the wire we have for large n,
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N\ ,\J._Z_&_ §¥ In(2nmy) v 0.16 Inn 67)

n n°’ n 27 1n(&/a) 1n(2/a)
‘ and in the case of the ring
1/3 1/3
r 2 r /3 2. m m
Mo Vm S V5 TR T 8t e (68)

where A denotes the wavelength of the oscillations and 6 the logarithmic

decrement.



VIII. Concluding Remarks

The general method of obtaining the time history of the currents and
charges on a perfectly conducting body based the magnetic~field formulationﬁgj
has been extended in this note to incorporate the electric-field formulation.
Asymptotic expressions for the natural modes have been derived for certain thin-
wire structures. The analyses are based on an integrated form of the electrie-
field formulation for thin wires (the so-called Hallén integral equation.)
Based on the results obtained in this note the time domain response to an
incident transient wave can easily be obtained. The natural-mode representation
of the induced current is most useful for late and intermediate times because
in this case only a moderate number of natural modes are sufficient to
accurately describe the induced current., For earlier times other approaches,
such as the time-domain integral equations, are more useful and it would be
very valuable to get some approximate analytical solutions of those equations
for early times, i.e., times of up to the order of two to three times the
transit time along the structure. For a simple straight wire, the early-time
response can alternatively be obtained by using a traveling wave method[29’3l’37j.
There are several applications of the method presented in this note. One
case is the EMP response of a long trailing wire antenna of the AABNCP. To get
the currents and voltages induced on the terminals of this antenna one can
model the effects of the aircraft itself with a set of intersecting wires.
Also, in certain space systems one has two or more bodies connected with long
rods. In calculating the currents induced on those structures one can model
the bodies attached to the rods with some lumped network-parameters (impedances
and generators) and then use the thin-wire scheme described in this note. The
incident field can either be an incident, pulsed plane wave (EMP) or moving
charged particles (SGEMP).
One other structure that can be treated with the method described in
this note is the thin-wire model of an aircraft. In this case we find it most
profitable to use the integrated form (ll) of the electric-field equation for
each straight-wire section of the aircraft model. The unknown constants thus
introduced can be determined by requiring that the current vanishes at the
free ends of each wire and that the scalar potential is continuous at the

junction between the wires and that no net current flows into the junction.
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When all wires have the same radius, the first one of these'junction conditions"
can be replaced by the condition that the derivative of the current is
continuous at the junction.

In determining the late-time behavior of the current on the RES simulator
it is helpful to have the natural frequencies of a resistively loaded antenna.
The methods described in this note can also be used with ease to find the
natural modes of an impedance loaded thin wire. For such a structure one can

derive the following approximate equation.[ZJ (c.£. (9) and (10))
LD (z) - seoZ(z,s)I(z) = —seoEo(z) (69)

where Z(z,s) 1is the impedance per unit length of the wire, and the operator
£ 1s defined by (10). Equation (69) can be integrated to yield a form very
similar to (11), and this equation can be solved with perturbation techniques,
The first approximation is equivalent to an impedance-loaded-transmission-line

model of the antenna[38’39].

In the next approximation we take into account
the damping of the modes due to the radiation losses as in the perfectly-

conducting-wire case,
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Appendix
In this appendix we will show a feature of the scalar product (ginc,jnm)
that enables us to distinguish exterior modes from interior ones.
Let inm denote the surface current density on S of an interior mode.
From this current density we can calculate the electromagnetic field Enm’ﬂnm
of this mode in V, the region inside §. Furthermore, let E;nc and Einc
denote the incident electromagnetic field evaluated at s = S, Some vector

algebraic manipulations combined with the Maxwell equations give

-—1im —m
= f V. xEyav
v —m -
= f ECvsE - B vxEI")dy
e —nm = —n
= f (¢ s EXPCE  + u s HI®.H )dv
v O 1 —fm " -1nm
= f E vt - gl gg - 1370 g yay
y mmo-m -nm -n -
= f v-(gianE )dv - f S A
' v
= f ne (B "OxE_)ds - f itPCEg av
S Vv
=-| B . (axe )das - | i*™™C.g av. (al)
g n =~ —nm v —om

Since 8 1is a perfectly conducting surface we have nxe =0, and

o) = - [ 1 =
\Y
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where E}nc denotes the sources of the incident field. If the incident field

has its sources outside S, as is the case of a plane wave, we get
i) = 0. (A3)
Equation (A3) implies that all interior modes are orthogonal to any

incident field provided that all sources of the incident field are outside the

perfectly conducting, scattering body.
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