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SUMMARY

The problem considered is that of a multiple conductor transmission line with arbitrarily
positioned impedances in series with each wire. The objective is to determine the currents in
each of the loads in terms of the amplitude of the incident electric field. The groundwork is
laid in this paper for a very general theory for N wire structures when the impedances are
situated at the centers of the conductors. If the load elements are in echelon rather than
centrally positioned, it appears necessary to abandon the simultaneous integral equation
approach employed and resort to the use of two network theorems: superposition and com-
pensation. It is demonstrated that the results depend on a synthesis of antenna and transmission
line behavior, This work is an extension to the theory of end-loaded conductors published

previously in the G-EMC Transactions.



MULTICONDUCTOR ANTENNA TRANSMISSION
LINES WITH ARBITRARILY POSITIONED
LOAD IMPEDANCES IN AN INCIDENT FIELD

Introduction

This paperis a sequel to an earlier investigation undertaken to determine the currents in
the load impedances of a multiconductor transmission line excited by an incident plane wave
electromagnetic field, ! In the preceding paper the load elements—consisting of combinations of
resistors, inductors, and capacitors—are assumed to be in series with the wires at their ends
(see Figure 1, Reference 1), For this location of the lumped circuit elements in the structure,
only transmission line currents flow in the impedances, because the antenna current vanishes
at the ends of the wires., If now the loads are located elsewhere in the conductors, the impedances
carry antenna as well as transmission line currents. This fact complicates the problem of
calculating the total current in each load. It has been the experience of the writers that it is
not too difficult an undertaking to obtain the currents flowing in N load impedances centrally
oriented in the conductors of a multiple-wire antenna transmission line for parallel incidence of

the electric field, However, for staggered loads the problem becomes more tenuous.

Some of the principles needed for the analysis of multiconductor antenna transmission lines
in an incident field for arbitrarily positioned load impedances have been elucidated elsewhere, 1-3
Familiarity of the reader with the contents of the referenced papers is assumed, In the present
paper attention is directed, in the interest of brevity, toward finding the currents in the loads of

two-conductor configurations excited by an incident plane wave electromagnetic field,

e, w. Harrison, Jr,, '"Generalized Theory of Impedance Loaded Multiconductor
Transmission Lines in an Incident Field, " IEEE Transactions on Electromagnetic Compatibility,
Vol EMC-~14, No. 2, pp 56-63, May 1972,

2C. W. Harrison, Jr., ''Reducing the Response of Single-Phase Transmission Lines to
Electrical Noise,' IEEE Transactions on Electromagnetic Compatibility, Vol EMC-14, No. 2,
pp 79-81, May 1872 (Correspondence Item).

3C. W. Harrison, Jr,, ""Bounds on the Load Currents of Exposed One- and Two-Conductor

Transmission Lines Electromagnetically Coupled to a Rocket, " IEEE Transactions on Electromagnetic
Compatibility, Vol EMC-14, No. 1, pp 4-9, February 1872,




The Short-Circuit Current in a
Two-Conductor Antenna Transmission Line

Consider a two-wire transmission line with short-circuited terminations, as {llusirated by

Figure 1. The line lies in the y0z plane, with conductors parallel to the z axis. The wires are of

length 2h and of radius a, and the spacing is b, The incident electric field E;nc is polarized

parallel to the axis of the wires and arrives at the azimuth angle p, measured from the positive

x axis.

Following Reference 2, the equations for determining the currents in this circuit are as

follows:

Conductor 1

inc
E
E E _ . 4q . Bb .
I+ 1@y + (2, = ] % C, cos gz + exp (J 5~ sin ¢)
Conductor 2
Einc
E E _ . 4g ( gb ..
Jd(z) + Il (Z)wb + 12 (z)zpa = -j % C2 cos Rz + exp {-j 5~ sin @)

Here Jd(z) has the same significance as in Reference 2;

d d
wa=2ln(g) ;¢b=21n<g); 3=21r/)‘

(1)

(2}

is the radian wave number; 3 is the wavelength of the field E;nc H C1 and C2 are constants, and

Lo is the characteristic impedance of space. In the rationalized mks system of units used in

this paper, coz 1207 ohms.

The right-hand sides of (1) and (2) are proportional to the vector potentials on the surfaces

of the conductors established by the currents flowing in them. These currents are, of course,

excited by the incident field E;nc . The boundary condition at each end of the line is

34,(2) i 38, (2)
2z 32

=0, z=zxh

where AI(Z) and Az(z) are the vector potentials on wires 1 and 2, respectively.

(3)
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By using (1) - (3), it is a simple matter to show that the short-circuit currents in con-

ductors 1 and 2 of the transmission line pictured in Figure 1 are

£ 2 E;nc sin (Lb sin ¢)

E T 2
Il (z) = 5 + 57 (4)
c
E inc _. (b _.
I~ (2) 2 B sin sin ¢
I (2) = o - —2 5 ) : (5)

P BZ

Here Zc is the characteristic impedance of the line;

g
z =% (P.) . (6)
c T a
Also, IT(z) = I1 (z) + 12 (z) is the current flowing at the point z in an unloaded receiving dipole of

effective radius d = +ab for parallel incidence of the electric field,

Determination of the Currents in the
Conductors of an Antenna Transmission Line
Driven by Two Generators

Figure 2 portrays a two-conductor antenna transmission line center driven by two
impedanceless generators, The dimensions of this circuit are the same as those of the circuit

pictured in Figure 1. In the previous section of the paper the currents I? (z) and I‘ZE(Z) were

v

found with V_ and V, suppressed., In this section it is proposed to determine I\ll(z) and 12 (z}

1 27T
with the incident field Elznc suppressed, The simultaneous integral equations applicable to the

circuit of Figure 2 are as follows:

Conductor 1

\%
4 .
Jyl2) + IZ(z)zba + I;(z)zpb = -j E%(cl cos Bz +7-1- sin BIZI) . 0
Conductor 2
Ty +(2)y, + 1) (g = -5 2L (C 2e 2 g (8)
a'® T B, T LB, = ) , 5 COS B 5— sin gizi] .

Jd(z) is the same as in Reference 2 except that now the current I;\(z) = I\ll(z) + I\zl(z) occurs under

the integral sign instead of I?(z) = I?(z} + I];(z).



By adding (7) and (8) and setting by = "4y SO that d = +ab, one obtains

C, +C V, +V
Jd(z) = -j z—g <_12___§) cos gz +<-—1—4——-2-)sin glzit. (M

Equation (9) is in standard form; i.e.,

4 Vk
Jd(z) = ~j EB <C cos gz + — sin 5'29 (10}
inasmuch as I,‘ll., (zh) = 0,
The solution of (10) is
\%
Vo) = =X
IT(O) %z (11)
d
It follows from (9) - (11} that
V, +V
v 1 2
IT(O) e (12)
d
In (11) and (12), Zd is the driving point impedance of a symmetrical center~driven dipole of
half-length h and effective radius d. Tables for Zd are available in numerous places in the
literature. 4,3 By subtracting (8) from (7) and applying (3), it is a simple matter to show that
atz =0,
v
1I.(0) . v, -V
Vioy=L_. - (L 2 :
1,00 == A < 3 ) cot gh (13)
c
and
v
I.(0) . V. -V
v _T j 1 2

where I‘,;,(O) ig given by (12).

4R. W. P. King, ""Tables of Antenna Characteristics' IFI Plenum, New York, 1871.

E'R. W. P. King, Theory of Linear Antennas, Chapter 2, pp 169-179, Harvard University
Press, 1956, - - -

10
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The Currents in the Load Impedances of an Antenna
Transmission Line When the I.oads are at the Centers
of the Conductors

The objective is to find the currents in the center-loading impedances caused by the incident
. i . . .
field Eznc . Refer to Figure 3, By use of the compensation theorem, one may write

vV, = -Il(O)Z

1 11 ' (15)

and

V2 = -I2(O)ZL2 , (186)

where 11(0) is the current in the lumped impedance ZLl’ and 12(0) is the current in the lumped

impedance Z Also, by use of the superposition theorem,

L2’

Y E

Il<0) = 11(0) + I (0) (17}
_ gV E .

12(0> = 12(0) + 12(0) . (18)

Equations (12) ~ (18) are now solved for Il(O) and I2<0)’ The results are

_ G+ H

Il(o) =<5 (19)
_J+L

L(0) =~5—=, (20)

where

- E E .

G = ZZd [Il (0) +12 (0)] {:Zc tan gh - JZLZJ
$)) E

H= Zc tan Bh[:ll (0y - 12 (O):I [2 Zd +'ZL2]

B E E .
J = 2Zd [Il (0) + I2 (0)] [ZC tan gh - JZLI]

(21)

) E E
L= -2 _tan Bh[ll(o) -1 (o)j][zzd+ ZLJ~
D= [2 Zg+ sz] [zc tan gh - jZLlJ

+[zzd+ le] [zc tan gh - sz2] .

11




Also, by using (4) and (5),

E E,. _.E
I1 (0) + I (0) = i (0) (22)

4" sin (%3 sin ¢)

E E Z
0y - = :
Il( ) I2 (0) Bz’c (23)
It is of interest to observe that when ZLZ =0,
2Z IIE(O)
1.(0) = s (24)
1 lec
ZZC+—'§ZE—-JZLI cot Bh

This result is easily verified, The short-circuit current multiplied by the impedance looking back
into a network gives the open-circuit voltage VOc‘ As illustrated by Figure 4, the open-circuit
voltage drives a circuit consisting of the source impedance in series with the load impedance.
Thus

_ LE
, VOc = Il (0) Zinl (25) .
and
E
\Y 0)Z,
inl L1 ini L1
The well-known formula for the input admittance of a two-wire folded dipole isG
v -1 . cot gh ] (27)

: =
inl 42d 2Zc

As before Zd is the driving point impedance of a symmetrical center-driven dipole of half-length
h and effective radius d = v/ab. The source impedance is then
Z
4 czd

Ziny = MV Z_-2Z cot gh (28)

6C. W. Harrison, Jr.,'""Folded Antennas," PhD Dissertation, Harvard University,

Cambridge, Massachusetts, 1954,

12




Substituting (28) into (26) yields (24) as anticipated.

The short-circuit currents IE(O) can be found for any N conductor antenna transmission line
by solving the applicable simultaneous integral equations. Also, the driving point currents can he
found for the same structure by using similar techniques. It follows that the load currents, for
center-loaded configurations, can be found for N conductor circuits in terms of the incident field.
It is assumed that transmission line theory is not violated; i.e,, 8q << 1, where g is the maximum
transverse dimension of the antenna transmission line, Also, it is required that the inequality

q << h be satisfied.

Staggered Load Impedances in a
Two-Conductor Antenna Transmission Line
Excited by an Incident Field

The circuit to be discussed (in a semiquantitative way because of its complexity) is

illustrated by Figure 5f. The currents in the loads ZLl and ZLZ excited by the incident field
ine

E‘z are determined by the use of the superposition and compensation theorems. This requires

introduction of circuits illustrated by 5a to 5f in Figure 5. Evidently, when the load impedances

are in the center of the wires, as in Figure 3, the problem can be treated in the manner set forth
. here. Earlier in the paper the authors presented a technique of solution that may be applied to

N conductors, provided that the antenna transmission line is center loaded.

To obtain the currents Il and I2 flowing in ZLl and ZL2’ respectively, requires complete

analysis of the individual circuits a to e in Figure 5, To facilitate solution of these problems, it

is convenient to introduce three coordinate systems. The load ZLl is located at z = 0, the load

ZL2 is located at z’/ = 0, and the center of the structure is located at z'' = 0, The distance between

Z and ZL

L1 is £. The relation between the coordinates is

2

z=2z'-4

h, - h
z =z" +<2—2—1> ‘ (29)

The ends of the structure are located at z = -hl, z = h2; z! = -(hl - 1), z'= h2 + £; and
z'' = -(h1 + hz)/z; z" = (1'11 + hz)/2. These results follow from (29).

The assumed current directions are indicated in each of the drawings constituting Figure 5.

It follows that the currents I1 and I2 are given by

_ B Vo,V VoY .
11-11a+1b+1d+1f Ih (30)

13



and
=i +1 -1 +1" +1) . (31)
a ¢ e g i
E n . inc \
I13 and I2a are functions of Ez and are computed from such expressions as (4} and (5) for an
antenna of effective radius d = vab. All other currents appearing in (30) and (31) are functions of

V1 or VZ‘ These voltages are eliminated by use of the compensation theorem; i, e.,

vV, =-1.2 (32)
V, = -I,Z . (33)

Thus (30) and (31) become simultaneous equations involving the desired currents I_ and Iz.

1

The authors now consider the circuits appearing in Figure 5 individually.

As indicated above, Iil is obtained from (4), and I2Ea from (5). The current I,? must be
known at z'' = ~(h2 - hl)/Z and at z'' = - - (h2 - hl)lz for an unloaded receiving and scattering
antennaT of radius d = vab.

Figure 5b represents an asymmetrical dipole. Note that the placement of shorting bars
across the top of the generators and across the bottom does not alter the circuit. The effective

voliage is V]./Z’ and each generator carries half the current. Accordingly,

v Vl
10 = —2 . (34)
b 4Zd1

Here Zdl is the impedance of an asymmetrical dip01e8 of leg lengths h

radius d = vab.

1 and h2 and effective

The current IZ at z = -4 in Figure 5b is obtained directly from the formula for the current

along an asymmetrical dipole. 8 Note that Iz is one-half the total current in the structure at z = - £,

7Liang-Chi Shen, ""A Simple Theory of Receiving and Scattering Antennas, ' IEEE Transactions
on Antennas and Propagation, Vol AP-18, No. 1, pp 112-114, January 1970,

8Liang-Chi Shen, Tal Tsun Wu, and Ronold W, P, King,"A Simple Formula of Current in
Dipole Antennas,' IEEY. Transactions on Antennas and Propagation, Vol AP-16, No. 5, pp 542-547,
September 1968,

14




The circuit pictured in Figure 5c is a transmission line, From simple transmission line
theory one obtains

3V
v L (35)

I,=- ’
d Zc(tan Bhl + tan th)

where Zc is given by (6),

The current IZ in the circuit of Figure 5¢ is also obtained from simple transmission line

considerations., The internal impedance of the generator of voltage V1 is

Zg = JZC tan th . (36)

The input impedance of the line looking down from the generator terminals is

=32t h . 37
Zm‘]canﬁl (D

The equivalent circuit is shown in Figure 8.

Clearly,

-JV
s * Z Ttan gh ];tan ) : (38)
¢ 8 1 B 2

V1 tan Bhl

V =1 Z, = . £39)
s s in tan5h1+tan3h2

The current IZ at distance £ from the generator is

A%
1"=I_ cos gy - j~Z—S— sin g9 . (40)
. e

Substituting (38) and (39) into (40) yields

(41)

v ; V1 [cos B + sin gg tan 5h1]
e Zc tan 3h1 + tan th

provided that the transmission line is dissipationless.

15



The current I; occurring in the circult pictured in Figure 5d is given by

V.2, (42)

where ZdZ is the driving point impedance of an asymmetrical dipole of effective radius d = vab
8

and leg lengths h2 + £ and h1 - £.° The current I, at z' = £ is obtained from the formula for

f
the current in an asymmetrical dipole. Again note that I: is one-half the total current in the

structure at the cross section under consideration,

Again circuit e in Figure 5 is a transmission line, By analogy with circuit ¢ in Figure 5,

one obtains

\

v 2

Ii =Tl Z l-tan g (h, + £) +tan gth, - !)] (43)

c 2 1
and
R E cos g4 +sin gy tan g(h, + ) (44
nT I Z |t g, F Drtan g, - D |
This completes determination of the individual currents constituting Il and 12, Figure 5f, It .

is interesting to observe that among other factors the load currents depend on the input impedances

of two asymmetrically driven dipoles.

The evaluation of the ten component currents in the circuit would normally be dene by use of

a computer,

Conclusions

A general theory has been developed for the response of an N conductor impedance-loaded
transmission line to an incident electric field when the loads are centrally positioned, Simultaneous
integral equations for the currents appropriate to antennas driven by lumped generators, as well
as antennas driven by incident fields, are employed. When the loads are in echelon, a general
theory does not appear to be feasible, The solution of the problem is effected for a two-conductor
configuration by using the superposition and compensation theorems. The modes of asymmetrically
driven dipoles and transmission lines are involved. Exiension of the theory to more than two

conductors becomes a Herculean task.

16




' APPENDIX

Ifgh < 3p/2 and € =21n 2h > 8, the current IE (z) appearing in (4) and (5) may be com-
d T
puted from the formula
Einc
E . 4n Tz cos Bz - cos gh
I (2)=j — ' (45)
T L, B L%u cos gh - wu(h)}
where
1 h
Yay = (1 - cos Bh)_ / (cos Bz/-cos Bh)[K(O, z’y - K(h, z’)] dz’ (46)
~h
h
zpu(h) =f (cos Bz’ - cos gh)K(h, z/) dz/ (47)
~h
with
K(z, z) = {exp jAR}/R (48)

R=V\(z-20%+d® | (49)

The half-length of the antenna is h in the notation employed here. One should anticipate need for

a computer to determine I,}Ii,'-‘ (z). The impedance and current distribution along electrically short,
moderately thin asymmetrical antennas driven by a generator (in contrast to an incident field) may

be determined by reference to the literature, 9,10
At high frequencies, when the antenna transmission line becomes electrically long, the
brilliant work of Shen'r-8 should be utilized to find the currents along dipole receiving and scatiering

antennas, T as well as the impedance and current distribution along asymmetrical dipoles. 8

QR. W. P. King and T. T. Wu, "The Cylindrical Antenna with Arbitrary Driving Point, "
IEEE Transactions on Antennas and Propagation, Vol AP-13, No. 5, pp 710-718, September 1965.

10C. W, Harrison, Jr., C. D. Taylor, E. A, Aronson, and E. E. O'Donnell,"On the Driving

Point Impedance of an Asymmetrical Dipole,' IEEE Transactions on Antennas and Propagation,
Vol AP-14, No, 6, pp 794-795, November 1966,
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The following remarks apply exclusively to Reference 7, The assumed, but suppressed,

time dependence employed in Reference 7 is exp (~it). The writers prefer the time dependence

exp (jut). Accordingly, replace i by -j throughout the theory. For Equation (3) to be dimensionally
correct, multiply it by Eiznc . Set ei = g/2 and note that log means In. Also, replace z by [zl

in Equation (3), since ISa(Z) = ISm(-z). Using the notation employed in the present paper, Equation (8)

of Reference 7 should be written

E tt - i1 1h 1" -
IT(z ) ISQ(Z )+ CSl Iw(z +h) + Cs Im(z h) . (50)

2

From (29) or Figure 5a of the present paper, it is noted that h — (hl + hz)/2 and -h — —(h1 + h2)/2.

These values are used for h in Equation (9}, Reference 7. Interest centers in obtaining I% at the

first position, z' = -(h2 - hI)IZ, and Ig at the seecond position, z'" = -¢& - (h2 - hI)/2 (Figure 5a of
the present paper). It follows that z'' + h = hl and 2" - h = -h2 for the first position. Also, for the
second position, 2"+ h = -4 + h1 and z" - h=-§ - hz. Evidently z — 2" in Equation (3} of

Reference 7.

The following remarks apply exclusively to Reference 8, Replace i by -j and multiply

Equation (8) by V1 or V2 as appropriate. Also in Equation (8) replace z by 12t and note that

-7 < Imfln f(z)] < n. Again observe that log means In. The asymmetrical dipole pictured in
Figure 5b of the present paper requires no modification in notation, and may be applied directly

. v
to obtain Zdl and Ic.

To obtain Zd2 and I;, note that -h1 ~— =(h, - ) and h2 — h_, + £. Refer to Figure 5d of the

1 2

present paper. Hence Equation (11} in Reference 8 becomes
v £
If(z') = Im(z') + Cdla (h1 - L+ 2+ CuIa(hz + £ -z} . (51)

Cd and Cu are obtained from Equations (14} and (15) of Reference 8 hy replacing hl by (h1 - 1)

and h2 by (hz + 2). Obviously, z — 2z’ in Equation (6), and the driving point is at z/ = 0. The

current I‘f’ is calculated af z’= £, This theory yields excellent results when a generator is not

closer than 0. 15) to either end of the dipole,

18




2
(2) 1 (1) -h
N\
(2) \ o (1)
% Bb .
2'6)6 i —-2- sSin ¢
I~
| inc
E
|§(7_)A Alf(z) X Z
Ao | y
=1=2a
inc
Ez
¢~
et b e
z=-h

Figure 1,

Diagram Used in Determining the

Short-Circuit Current in a Two-Wire
Antenna Transmission Line
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@ 1@
V v
Iz(z)*\ A Il(z)
+ +
—V2— v \ z=0 y

28—t

z=-h

Figure 2.

Antenna Transmission Line Driven
at the Center of Each Conductor by
Impedanceless Generators




(2)

23—t

|2<0)§ %II(O)
457 ANF1270—=y

Lz‘/\‘

z=-h

Figure 3. Center-Loaded Two-Conductor
Antenna Transmission Line

21



inl
‘W
I£(0) Zin1
Eo 7 (v 7, W0~z 7,
10 Z %\ Ve in L
—
1,00

Figure 4. The Equivalent Circuit
of an Impedance-Il.oaded
Folded Dipole
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@_w, !<"1 A @ @ 0w, o, @0
2/ z=h, z-h, ' ehy,+ 4 zZ'=h, + z=h,
28—~ ~1=2a
b v v v
£ Y ly i
a (h,-hy) S d+
- 2 - 7= - = _ vi v _ L -
[ f2t - l @? r@z 20 v@@ Wzt py h £ T g0
4
—t—-]-2'"= 0 + + . + ’ + —
Z >\'E
L
1Y VY
thy- hy) v v v 2 @B
IZEa A 1 7= -4 5 vu L Ic Ie‘ - le @9—-@9—1’ =0 —z7'=0
Ic
h1 + h2
"= - 2 Z:-hl Z:-—h1 4 =‘(h1"l) Zx'hl
a, Short-Circuit b. Asymmetrical c. Transmission d. Asymmetrical e. Transmission f. Impedance-Loadeq )
Current for Dipole Line Dipole Line A.ntenna Transmission
Incident Field Line

Figure 5. The Use of Superposition to Determine the Load Currents
When the Impedances Are in Echelon



Z =ch tan Bgh

g 2
My

VS@ z, =iz, tan Bh,

Figure 6, Circuit for Determining the

Current IZ in Figure 5S¢
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