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This treatise‘is divided into three distinct parts;

(1) A numerical basis transf&rmation technique is described which
may be appiied, in conjunction with point-matching methods (e;g., piece-
wise uniform or piecewise Tinear methods), to obtain least square solu-
tions of electromagnetic scattering by thin wires. It is shown that
-reductions in both computer solution time and computer storage require-
ments result. The technique is demonstrated by its application, along
with piecewise uniform methods, to the solution of scattering by circu-
lar and elliptical loops, straight wires and open circular arcs.

(2) A computational technique is developed for determining certain
modes (termed characteristic modes in the literature) which are useful
for the solution of scattering and radiation prob]gms.

(3)’ The basis transformation, least square, and mode-finding
techniques are combined to compute characteristié mode current distri-
butions of circular and elliptical loops, straight wires, circular arcs,

and helices. .- . : L

In addition to the above topics, expressions are derived, in
of the characteristic mode pattern functions, for the back-scat
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tumble average backscattering cross sections of an object for arbitrary
transmitter and receiver polarizations. Data are given in graphical form
for the aforementioned objects for the backscattering cross section
averaged over all possible tumble aspects as well as for various fixed
orientations. Also given are characteristic mode solutions for the input

admittance of circular loops.
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CHAPTER I
INTRODUCTION

Computer solutions to scattering by straight or continuously
curved, perfectly conducting wires (without generators or Tumped loads)
often are obtained by point-matching techniques whereby the‘boundary
condition of zero total tangential electric field everyﬁhere along the
wire surface is approximated by enforcing this condition at, say, N
points along the wire, where N is finite. The point-matching prob]emJ
ié represented by a set of N linear equations expressed in matrix

notation as
(1) [z} (1) + (€) = (0),

where the N-dimensional column vector (E) is the tangential component
of the incident electric field and the components In of the current
vector (I) are coefficients of an expansion of the current induced on

the wire in terms of a set of orthonormal basis functions i
th

l’ 12, no-,
element of the N x N impedance matrix [Z] gives the
th

TN' The mn |
tangential componeht-bf théqzﬁééﬁrié.field at the m” point on the
wire due to the nth basis function of current distributed over the
wire length. | B

Selection of the basis functions is an important part of the

point-matching methods. For the familiar piecewise uniform methods,[1-8]
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the basis functions are unit pulses of width L/N, so that a step ap-
proximation is obtained for the induced current. Other segmental
techniques include the piecewise linear[5,6] and the piecewise
sinusoidal[8-11] methods.

A somewhat different class of point-matching methods, which will
be called "modal methods", assumes a set of continuously differenti-
able, "modal" basis functions.[12-14] Unlike the segmental basis
functions which are nonzero over only a small portion of the wire,
the modal basis functions general]} extend over the wire length. The
cosine and sine functions cos (2nwg)/L and sin (2nme)/L, for example,
where 2, -L/2 < 2 < L/2, is measured along the wire center-line, form

“a set of continuous basis functions well sujted to certain shapes,
such as closed wire loops.

These th classes of point-matching methods, i.e., the segmental
and tﬁe modal methods, areAfurther distinguished by certain character-
istics encountered upon application. The segmental approaches usually
afford efficient derivation of the set of linear equations for wires
of arbitrary shape. The number of equations needed for good solution
accuracy can become great, however, and sfnce the time required to
solve a set of N Tinear équations is proportional to N3, computer
time can become restrictive. Likewise, computer storage soon limits
the size of the scatterer to which these methods can be applied.

On the other hand, sufficient solution accuracy often can be
achieved with a relatively small number of linear equations when

modal functions form the basis. The derivation of the linear

12
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equations, is, except in the case of straight wires,[14] generally
not efficient, however, usually requiring considerable numerical
integration resulting in substantial computer time. [15]

Having derived a set of linear equations relative to a certain
basis, it is possible to make a linear transformation to a new
basis. This basis transformatioh is discus;ed in Chapter II. It
is shown that a least square solution may be extracted from the new
set of equationé. Specific application of the basis transformation
and least square techniques is made to a set of equationslderived
assuming the piecewise uniform basis where the transformation matrix
has a very simple form. It is also shown that as a result of this
transformation the number of linear equations required for good
solution accuracy can be reduced considerably with consequent re-
ductions in computer time and storage requirements. As examples of
the basis transformation method, backscatte%ing cross sections are
computed for circular and elliptical loops, straight wires and open
circular arcs.

To the author's knowledge, the basis transformation, aithough a
famitiar mathematical tool, has not previously been applied to the
numerical solution of scattéring.problems in the manner discussed
here. The least square method, however, has been applied to various
problems including the fo]]bﬁiné,, Kennaugh[16] obtained a least
square solution by a field-matching technique in which multipole
expansions were used to represent electromagnetic fiers. Suc-

cessful calculations were carried out for prolate and oblate
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spheroids illuminated by a plane wave incident along the axis of
symmetry. Fenlon[17] obtained least square solutions for the
acoustic radiation field at the surface of a finite cylinder.
Hildebrand and Crout{18] have treated the least square solution
of integral equations and Crout[19] has described a least squa.e
procedure for solving nomogeneous integral equations.

The determination of "characteristic mode" currents,{20,21] par-
ticular modal currents which are characteristic of a given scatterer
and which satisfy certain requirements, is another application of
point-matching methods which is greatly facilitated by the basis
transformation and least square techniques. The concept of charac-
teristic modes was formulated by Garbacz,[20] who gave examples of
such modes associated with several geometries inciuding the infinite
circular cylinder, the sphere, infinitely long, thin parallel wires
arrayed arbitrarily in space, two coaxial circular 1oops_of thin wire,
and a single circular loop scatterer. Consideration of thin finite
wires of arbitrary shape awaited the development of a mode-determining
technique such as the one described in Chapter III of the present
work. Included is the derivation, in terms of the characteristic
mode pattern functions, of expressions for the tumble average back-
scattering cross section of a scatterer for arbitrary transmitter
and receiver polarizations. Results are given in graphical form for
the backscattering and tumble average cross sections of cich{éf and

elliptical Toops, straight wires, circular arcs, and helices.
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Considerabie scalttering data have been calculated for objects
such as straight wires, circular loops and open circular arcs.
Relatively Tittle effort, however, has been directed toward the
cetermination of the tumble average cross section as discussed in
Chapter III. Curtis[22] has computed average cross section data for
straight wires and circular wire arcs, and dipoles have been treated
by Borison,[23] Palerno and Bauer,[24] Hessemer,[25] and Morrow.[26]
This tumble average would be the "best estimate" or the expected value
of the cross section of an object placed with arbitrary orientation in
the radar beam or, from another viewpoint, the average cross section
of a large number of the particular object, assuming sufficient
separation that the elements may be considered decoupled. The mode
approach discussed in Chapter III provides an efficient method for
obtaining tumble average cross section data as well as other sub-
sidiary information, such as the input impedance of an arbitrarily
placed gap on the scattering element, and bistatic and monostatic
cross sections. |
An e'®Y time convention is assumed throughout this work and is

suppressed for convenience. Matrices and column vectors are denoted

by [ 1 and ( ), respectively.
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CHAPTER II

BASIS TRANSFORMATION AND LEAST SQUARE TECHNIQUES
WITH APPLICATION TO SCATTERING BY THIN WIRES

A. A Numerical Basis Transformation

In the following discussion a method of transforming the basis of
a set of Tinear equations is described. The resulting transformation
technique may be applied, in conjunction with existing methods, to the
solution of scattering by thin wires. In succeeding discussions some
uses and advantages of the technique are demonstrated by means of
specific applications.

Assume that the set of Tinear equations,
(2). [Z] (1) + (€) = (0)

has as a basis the set of orthonormal functions i We

1’ 12, ey 1N°
can, if we choose, refer Eq. (2) to a new basis 11,'1é, ey Ty by

means of a linear transformation[27]
(3) (1) = [T] (1),

where [T] is the transformation matrix and (I') is a column vector

representing the current I on the wire relative to the new basis

functions, i.e.,

16
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where the I!', n=1,2,.-.,N, are the components of the vector (I1').

Substituting Eq. (3) into Eq. (2),

(5) [Z] [T] (1) + (E) = (0).
Letting

(6) [Z'1 = (2] [T] ,

we write

(75 | (2'1 (1') + (g) = (0).

Equation (7) is eqﬁiva1ent to Eq. (2), referred to the new basis.
Consider, for example, the transformation from the basis of the
piecewise uniform method to a basis of modal orthonormal functions,
such as the cosine and sine functions. In this application we find
that the matrix [T] of Eq. (3) is very simply defined. In fact,
inspection of Eq. (3) reveals that each membgr of the new set of
basis functions forms a column of the matrix [T]. (Note: Moving from
top to bottom in a column of [T] in this case corresponds to moving
segment-by-segment from one end of the wire to the other.) If, for
example, the cosine functions cos{(nmg)/L, n=1,2,...,N, form the new

h th

basis, then the nt column of [T] represents an n~ order cosine

function distributed over the wire, i.e., the mnth

th

element of [T] is
cos(nnxm)/L, where Lo is the Tocation of the m™" match point on the

center-line of the wire. Equation (3) would be,

17



i nll Zﬂll Nﬂﬂ,l ]
/Il\ cos N COoS T «es COS T | I1
TF,QZ 27&2 . ~ Nmg ‘
12 cos T cos T «ee COS ) 1
(8)! =
ﬂlN ZTULN Nrg |
IN/ cos SR cos O «es COS i J IN
’.— .

The simple definition of the transformationrmatrix afforded by this
example i1s a consequence of the fact that each component In of the:Cur-
rent vector (I) in the piecewise uniform basis system equals the cur-
rent at ¢, (-L/2 <2, < L/2), on the wire., This is true since only

the nth

basis function is nonzero at L It is not true in general,
however. For example, it is not true of the new current vector (I').

Having determined the desired basis and having thus specified the
transformation matrix [T}, the impedance matrix [Z] is transformed as
in Eq. (6), and the new set of equations, Eg. (7), is obtained with
reference to the new basis.

B. Least Square Solutions of Scattering
by Thin Wires

Often one finds that the components I! of the current solution
vector (I'} of Eq. (7) are negligible for m > M (M<N), i.e., the

solution

18
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(9) L= 1§ i1+ 1 4

is quite well approximated by retaining only the first M terms (assuming

proper ordering of the Iﬁ). In fact, it is not unusual to obtain suf-

ficient accuracy with M < N/10. Recalling that the computer solution
time for N linear equations is proportional to N3, one of the advan-
tages afforded by such a basis transformation is evident.

When this approximation can be made we need only to solve Eq. (7)
for M of the N unknowns. Thé N x N impedance matrix [Z'] may be re-
placed by an N x M rectangular matrix [Zé] formed by taking the first
M columns of [Z'], and the column vector (I') is replaced by an M-
dimensional column vector (Ié) whose components are the first M com-
ponents of (I'). The field vector (E) remains unchanged. The result

is the overdetermined set of N equations in M unknowns,

— .

7! 7! cer 71 E 0
411 %12 M !
7 7 oo 7! I E 0
31 Ay 2o 3 f 2
(10) I! + =
4
IéM
7! Z° el 71 E 0 ,
AN e | "
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for which several solutions exist, depending upon which subset of

M equations is chosen.

To avoid this non-uniqueness in an un-

ambiguous fashion, we multiply (10) by the complex conjugate transpose

of [Zé] to get

_
z&c zgc
11 91
7:¢ 1€
SV IRY)
zgc zgc
o
e gic
a1 91
7:¢ 7€
810 Ay
z:¢ ¢
am o

Z,I
! a1
ZI
N1 z!
21
1 C
Za
N2
C
Zl
aNM
Zl
aN1
L
Ey
z;c 'T
N1 c
2
7'¢
a2
|C
Znm
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where the superscript c denotes the complex conjugate. The product
[Zé]* [Zé], where * denotes the matrix complex conjugate transpose,
yields an M x M complex symmetric matrix. The solution[28-31] of
Eq. (11) provides a least mean square "match" by M modes of the
boundary conditions at N points on the wire.* Only M simultaneous
equations need be solved, where M, the number of modes, may be less
than 10, while the number of match points, N, may be greater than
100, for example. There can be substantial savings in computer tihe
and storage requirements when this technique is used, as is demon-
strated by examples given in later discussions (Sec. C-iii).

The above mentioned 1eas§ square solution of problems associated
with wires of closed configuration, such as circular and elliptical
1o0ps, causes no problems, but the application of least square methods
to wires of open configuration, such as straight wires and open cir-
cuiar arcs, requires special consideration.

The field in the vicinity of the ends of wires of open configu-
ration exhibits certain discontinuities depending on the geometry of
the wire termination. In the case where flat ends are assumed, an
edge-type singularity results. The approximations inherent in
numerical calculations cause this singularity to introduce erroneous
values for the scattered field on the wire in the vicinity of the
ends. Any solution method which satisfieslthe boundary conditions on

the wire in a least square sense must account for this approximation

effect.

*See Appendix A.
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A simple example will serve to clarify the effect which the field
near the wire ends will have on a least square solution., Consider a
straight wire scatterer with a plane wave incident from the bfoadside
azspect. The incident electric field is assumed to have unit magnitude
and zero phase on the wire axis. Ideally the induced current would
produce the scattered field shown in Fig. 1-a, so that the total tan-
gential field (Ei + ES) on the wire is zero. Numerical solutions,
rowever, provide only an approximation (Fig. 1-b) to that field. 1In
deriving a least square solution it is seen that, roughly speakiﬁg,
the scaling coefficient A in Fig. 1-b will be adjusted to produce a
least mean squared error in the total field. The large error in the
approximate fields near the wire ends forces A to be Tess than unity.
The associated induced current is thus reduced in magnitude and is in
error. If, however, in obtaining a least square solution, the match
points within a certain distance, d (Fig. 1-b), from the wire ends are
ignored (i.e., the equations corresponding to these points are
deleted from the set of equations) a better solution results. This
procedure may be viewed in the context of least square solutions as
the inclusion of a weighting function in the integral to be minimized
which is unity for all values of the differential (arc length, in
this case) except for incremental regions near the limits of in-

tegration (wire ends), where it is zero.
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Fig. l.--Incident and scattered fields on axis for a plane
wave incident on a straight wire.

The need for these special considerations is not unusual. Other
numerical solution methods[32-34] have shown a critical dependence on
the choice of match points.

There is a need, then, fqr some measure of the error in the field
'matching achieved by a given solution both for the purpose of optimizing
the solution conditions just discussed and to serve as an estimate of
the accuracy of the final solution. A useful figure of merit{32,33,35]

is
(12) P=—%Re J’JC-Esz ,

where J° {s the complex conjugate of the induced current density and

T

E' is the total electric field (i.e., the error field) on the wire.

P is the average power radiated, in the absence of the scatterer, by
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an equivalent source current J which generates an electric field in-
Lensity ET; A negative value for P corresponds to the absorption of
power while a positive value corresponds to radiation. Because the
wire is a perfectly conducting scatterer it can neither absorb nor
radiate bower. In this case the condition P = 0 corresponds to”
satisfying the condition of conservation of power., It is desirable,
then, to minimize the magnitude of P.

It must berpointed out, however, that to obtain| P| =0 in a
nunerical solution such as that being discussed here does not
necessarily imply that the solution is exact, for the figure of
merit is itself computed by approximate methods. Equation (12} is,

in this work, approximated by

. J N j
(13) P%-%Re‘g IrC]-E;EJ,
in—l

wriere In and EE are the current and the total electric field intensity
at the N match points.

In Table 1 are given figures of merit for a straight wire of Tength
L = 0.4651 with radius a = 0.005x as a function of the distance from the
wire ends within which corresponding equations were ignored. The number
of equations ignored at each end is also given for each case. A very
significant improvement is often obtained by simply deleting the point
nearest each end, though this is not the optimum in this case. The
optimum distance depends on the wire radius and on the accuracy of

the numerical impedance matrix. The impedance matrix [Zé] used to

obtain these solutions was derived by a transformation from a piecewise
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uniform basis [1-3] of dimension N = 100 to a cosine basis. Only the ten

most significant cosine terms were retained, i.e., M = 10.

TACLE 1
FIGURES OF-MERIT FOR LEAST SQUARE SOLUTIONS OF SCATTERING
FROM A STRAIGHT WIRE OF LENGTH 0.4651 AND RADIUS 0.005x

’é%“ﬁi?fogg DISTANCE FROM
= WIRE ENDS IN FIGURE OF MERIT
DELETED a
0 0.00 - 0.75 X 102
I 0.93 0.33%X107°%
2 | .86 0.27X |05
3 2.79 0.37%X |0~S
4 3.72 0.60% 1075
5 4.65 0.11xX 10™%

Two curves of least square solutions for fhe total tangential

electric field for the same straight wire are given in Fig. 2. One

(the upper, dashed line) was derived using all N equations. The other
(the Tower, solid line), which shows a significant improvement in field
matching, was derived from the same N equations minus the six equations
corresponding to the three points nearest each end. The figures of
merit for these two cases are the first and fourth values given in
Tatbie 1. The'va]ueé for the broadside echo area are, respectively,

2

0.712x2 and 0.813x%, the latter value corresponding to the minimum
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figure of merit. (Reference 12 gives a value of approximately 0.82x2

for the sawme wire by means of a linear equation method.)

C. Application to Scattering by Thin Wires

Application of the basis transformation and least square tech-
niques just discussed follows the general procedure outlined below.
In each case the wire is considered perfectly conducting and its radius
is assumed to be much smaller than its length L and the wavelength i.
The assumption is made that the surface current density on the thin
wire has only an axial component and is distributed uniformly around the
circumference of the wire,.

A segmental approximation to the wire is computed, giving the x,
y, and z coordinates of the center of each linear wire segment along
with orientation angles 8, the angie of rotation from the positive
x-axis, and «, the angle out of the xy plane (o is considered positive
it the segment is tilted toward the negative zfaxis). The matrix [T]
of Eq. (3) is then derived with each column equal to one of the set of
new basis functions. Having computed and stored [T], the transformation
of Eq. (6) is performed. The piecewise uniform impedance matrix coeffi-
cients* are computed[1-3] one at a time while forming the.new impedance
matrix [Zé] of Eq. (10) by means of running sums. The tangential com-
ponent of the incident electric field (plane wave excitation is as-

sumed) 1s then computed for each of the N match points, completing the

*See Appendix B.
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formation of £q. (10). Follewing pre-multiplication of the matrix
eguation by ﬁhe compiex conjugate tranSpose*of [Zé], the resultant
compiex symietric matrix equation (Eq. (11)) is solved.[31]
Substituting the solution (Ié) into Ed. (3), a piecewiseruﬁ{form
representation of the current is obtained from which the far field is

computed. Solution for the cross section follows by application of

the definition

S,2
(14) s = Tim zwg 1E7]!

2
"o™ B

here E° is the scattered electric field intensity at a far distance o
from the origin in the scatterer and EO is the electric field intensity

incident on the scatterer,

(i) Closed Loops

The backscattering cross section of circular loops (Fig. 3) was
computed by transforming %rom the piecewise uniform basis to a basis
of cosine functions, cos(2{m-1)w2)/L, m = 1,2,.-+,M, where L is the
wire length (the loop circumference) and % is measured along the wire
center-line. The loop was approximated by N = 120 straight-wire seg-
ments and M = 5,

In Fig. 4 the broadside echo area is compared with measured
values[36] and with values derived[36] by a variational method. A
similar comparison is made in Fig. 5 of the ratio of the echo area at
broadside aspect to that at edge aspect. In both cases the loop radius

varies from 0.06x to 0.40x. Figure 6 gives the backscattering cross

28

it




J

&

section ac a function of incidence angle for both theta- and phi-
polarization for & 0.2x radius loop. The wire radius for these examples
is 0.0035x.

A suitable basis for ellistical Toops is the set of cosine and sine
furctions, cos(2{m-1)u2)/L and sin(2mie)/L, m = 1,2,-++,M, where L is
the circumference of the ellipse. Just as for the circular loops,

No= 120 streignt wire segments approximate the elliptical configuration.
Six cosine functions and five sine functions were retained in the solu-
tions. Backscattering cross sections are shown in Fig. 7 for both
theta- and phi-polarizations at broadside- and edge-aspects as a
function of the axial ratio of the ellipse. The wire radius is a =

0.00175x.

Fig. 3.--Geometry for the circular loop.
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Fig. 4.--Echo area of circular loops at the broadside aspect.

(i1) Wires of Open Configuration
It has been shown{[37] that the asymptotic form of the current
distribution along any portion of a perfectly conducting wire, whether

the wire is straight or curved, is
(15) I(¢) = A cos 2—“+Bs1‘n—21&

A A

as the wire radius approaches zero. This sinusoidal approximation was
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Tirst discovered by Pocklington.[38] For wires of finite radius, how-
evér,‘the current distribution ceviates from this sinusoidal behavior,
especiatly near the wire ends. Knowing thfs, it might be expected that
an accurate solution may be obtained for smaller M if some functions
other than the sine and cosine functions are chosen as basis functions,
i particular if the basis functions selected more closely approximate
the true current distribution or perhaps better approximate the behavior
of the current near the wire ends, A comparison is given in Fig. 8

g
|

cf the broadside echo area of a wire of first resonant length as a
function of M, the number of basis functions retained, for cosine
functions* cos (nw2)/L and Chebyshev polynomials of the second kind.[39]
The Chebyshev polynomials, which better approximate the current near
the wire ends, are .seen to give a slight improvement in this case.

The broadside echo area was computed for straight wires of lengths
from 0.31 to 0.6x and of 0.005x radius (Fig. 9), with N = 80 match
points and M = 6 even Chebyshev polynomials as basis functions. Also
shown are data derived{12]} by & linear equation method based on the ex-
pansion of the current distribution in a series of 15 cosine modes.

Figure 10 gives the backscattering cross section at the broadside aspect

of straight wires with a length-to-diameter ratio L/2a = 100. Six even

*It was found that for least scuare solutions a complete, though
truncated, set of basis functions is needed. In other words, when
using the sine and cosine functions as basis functions, for example,
it 1s necessary to retain all orders including the constant term

and those which are non-zero at the wire ends. This differs from
the usuel practice of retaining only those functions which vanish

at the wire ends, where the current must be zero.
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Chebyshev modes were used with from N = 100 to 160 match points evenly
spaced along the wires. Comparison is made with similar results[40]

ob'tained by an 1independant method.

48 = i —— — ‘
I } ‘
40 oo CALCULATED
{ KOUYOUMUJUIAN }
© O O MEASURED
(KOUYOUMUJIAN]
6 b6 &6 CALCULATED
32 [ { TURPIN }
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LooP RADIUS , R/,

Fig. 5.--The ratio of the echo area at broadside aspect to the
echo area at edge aspect for circular loops.
(The ratio in dB = Tog, 4 (ratio).)

The broadside backscattering cross section of an open circular

arc is shown in Fig. 11 as a function of arc radius. The wire length
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GG radius are 0,454 and 0.003834, respectively, and the arc was ap-
cooxinated by N o= 150 straignt-wire segments. The currents were
cevived with M = 10 even Chebyshev polynomials as basis functions.

Inciuded in the figure are piecewise uniform vresults using N = 80

match points.[41.,42]

.6 :
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!
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0.4 IR Sl ¢ E
0.2 . - o
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o} 10 20 30 40 50 60 70 80 © 90

"INCIDENCE ANGLE, 8 (DEGREES)

Fig. 6.--Backscattering cross section as a function
of incidence angle o for a circular loop
of radius 0.2x.

33



|

| ll‘fll}

BROADSIDE ASPECT
(8=¢=0%), 6-POLARIZATION

BROADSIDE ASPECT
—— = (8=¢=0"), ¢~ POLARZATION

EDGE ASPECT {§:=90"
——e— ¢ =0%}, ¢ ~ POLARIZATION

EDGE ASPECT (8:90]
— e — $=90"), ¢~ POLARIZATION

0.0l

T TTTT

0.00I‘ \ l

0.3 0.4 0.5 0.6 0.7 0.8 0.9
AXIAL RATIO, B/,

Fig. 7.--Broadside- and edge-aspect backscattering cross sections
for an ellipse as a function of the axial ratio.
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Fig. 8.--Broadside echo area for a straight wire of length 0.45x
and radius 0.005x. A comparison of convergence as a
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functions and even Chebyshev polynomials
of the second kind.
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Fig. 1l.--Broadside backscattering cross section of an open circular
A arc of fixed wire length (0.46x) as a function of
i arc radius, with a wire of radius 0.00388a.

(ii1) Computer Time and Storage

A comparison was made between the computer time required to de-
rive and solve a set of N linear equations for the unknown current using
a piecewise uniform method and the time required if the same N equations
were transformed to a new, continuous basis and reduced to a set of M
equations from which a least square solution for the current was ex-
tﬁgcted. The wires for this comparison were two straight wires of

lengths 0.45) and 1.5x with 0,005\ radii, The computer times and the
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corresponding values for the backscattering cross sections (broadside
aspect) are given in Table 2. A graphical time comparison is given
in Fig. 12.

The piecewise uniform solution time is séen to have approximately
a cubic dependence on N, being determined primarily by the time needed
to invert an N-dimensional system of equations. By applying the basis
transformation the time was reduced to a square law dependence on N,
depending dominantly on the time required to compute the impedance
matrix and to perform the transformation. The time consumed inverting
the resultant M-dimensional system is almost negligible. Figure 13
shows the nearly linear dependence of computer time on M. Further-
more, the storage capacity of the computer (IBM 7094) limits the piece-
wise uniform program to N < 100, while application of a basis trans-

formation allows an increase to N < 500 with M < 20.
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" TABLE 2
A COMPARISON OF COMPUTATION TIMES

PIECEWISE UNIFORM WITH
PIECEWISE UNIFORM BASIS TRANSFORMATION
NUMBER OF METHOD
MATCH POINTS M=6 M= 10
o o, o
. %% T 4% T %%
N (SECY | —o.asn|L =151 | (SEC) [ -0ash|L=15N| {SECY | -0.a5\| L=1.5)
20 0.65 0.7918 | 0.7323 0.97 0.7918 | 0.7323 1.58 0.7918 | 0.7323
40 3.33 0.7686 | 1.097 2.73 0.780I 1,097 4,45 0.7685 1,097
60 9.72 0.8331 | 1.080 5.32 0.8427 | 1.074 8.68 0.8377 | 1.080
80 21.50 10.8453 [ 0.9354 §.78 0.8463 [ 0.9911 14.35 0.8437 [ 0.9639
100 40.35 0.8460]0.9202 | 12.12 0.8454]10.9652 21.45 0.8438] 0.9430
120 —_ — _— 18.35 — 1.027 306.05 — 1.016
150 —_— _— — 27.88 — 1.115 45.46 —_ 1.124
200 —_ — — 47.76 —_ 1.136 78.24 — 1.145
250 —_ —_ — 73.17 — |.124 119.88 — 1.139
H i H { ] { Jl. { 4 £ H { H f ‘l.
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CHAPTER III
THE DETERMINATION OF CHARACTERISTIC MCuL._S-AND THEIR USE

IN THE SOLUTION OF SCATTERING BY THIN WIRES

Basis transformation and Teast square techniques have been dis-
cussed in the preceding chapter. Their use in conjunction with a
piecewise uniform method has been demonstrated by appiication to the
direct solution of scattering by thin wires., In the following dis-
cussion these same techniques are applied to the determination of
characteristic modes of thin wires, which are in turn used to describe
the scattering by these wires. The usefulness of this Tless direct
approach to scgttering problems will become evident Tlater.

It has been shown[20,21] that every perfectly conducting obstacle
has associated with it a particuiar set of surface currents and cor-
responding radiated fields which are characteristic of the obstacle
shape and independent of any specific excitation. This set of so
called "characteristic modes" forms a useful basis set in which to
expand fields radiated or scattered at a great distance from the
obstacle. Once these modes are known for a given obstacle, the
scattering of plane waves incident from arbitrary source directions
into arbitrary receiver directions may be evaluated coﬁcise]y. In
general, however, the determination of these characteristic modes is

not a simple task.
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Fallowing a brief discussion of characteristic modes, a method
for determining characteristic mode current distributions on wires
of general shape is given. As examples of the method, the character-
1stic modes associated with a variety of perfectly conducting wires

are derived and are then used to compute their backscattering prop-

erties.

A. Summary of Characteristic Mode Properties

The brief discussion of characteristic modes given in this
section does not reflect the generality of the theory. For a more
comprehensive treatment the reader is directed to References 20 and 21.

Consider a loss-free obstacle with a surface S. Assume a specified
angular frequency w. It has been shown[20] that a special set of char-
acteristic vector fields, which are determined uniquely by the scatterer
shape and composition and by the frequency, may be associated with this
scatterer. Once they are found, these fields may be used in the solu-
tion of a vériety of problems involving the obstacle; of particular
interest here is their use in evaluating the field scattered in arbi-
trary directions for a plane wave incident on the obstacle from any
directian.

If the obstacle is perfectly conducting there corresponds ta this
set of characteristic vector fields a set of characteristic current
density distributions, gm, on S which satisfies the following con-

ditions:
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(i) Each member, gm, of the set js real on S.
(i1) Each J..» radiating in free space, generates an electric
field intensity whose tangential component on S is equiphase and

lags J, by an angle a , where w/2 < o < 3n/2. (The ordering of the

9

-

2. 1s chosen such that the magnitudes |cos am\ form a non-increasing

sequence of numbers with increasing integers m.)

(iii) For each mode of finite order m, gm is normalized so that
it radiates unit power,

(iv) On the sphere | at row, J_radiates the electric field

. ~ikr
Twy @

xt oy
(r=e,Q) - = dn r Em(0,¢),

‘s e
(26) E

t

wnere Em(e,¢) is the m n characteristic mode pattern function.

The normalization to unit radiated power ((iii) above) implies

1 f 2 . 2
(17) <EpE> = J[F% sin o do do = (4ﬂ/kzo) ,

F
=m’=m o

T

where <,> denotes a scalar product. (RMS values are assumed here

to agree with the notation of Reference 20.) Furthermore

——
e
o

S—

<F
—{n

(g C > =

L JF - Fposin 6 de do = 0, n#m,

where the superscript ¢ denotes the complex conjugate. Equations (17)
and (18) imply that the characteristic pattern functions, Em(e,¢), form
an orthonormal set (with respect to radiated power) on the sphere :

at infinity.
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Knowledge of the Em(e,¢) and the associated characteristic values
Ta
a_ = |cos amie T permits a compact bilinear expansion for the far

m
field scattered in any direction (r,es,¢s) due to a unit plane wave
i1luminating the obstacle from any direction (ei,¢1). If both the

source and the observer are at extreme distances from the scatterer,

-ikr M

s s, .01 iwp € s .S i 1

(19 E(r,87,0758 ,0) = 72 = mzl an Fo(67507) File se') - h
. -ikyr .. =
= - g S F (6%,0%50050") -

where h' is the polarization state vector of the plane wave and

(20)  F(6%,4%50",¢") = -

i t~1=
[o)
I
—
<D
(52
-
o
[72]
—

is the dyadic pattern function fepresented as a bilinear expansion
in thé characteristic pattern functions, fm(e,¢). The bilinear ex-
pansion has been truncated after M terms, all terms beyond these being
negligible contributors to the scattered fTield. The bistatic cross
section is then given by
(21) c(es,¢s;ei,¢i) - iﬁﬁlg_ lff95’¢5501s¢i) ) ﬁi|2.

Those characteristic modes for which the phase angle an is near
= -are the most effective conmtributors to radiated power. For this
reason, if G = T fhe mode is said to be in scattering resonance.
Modes fo} which o, = w/2 or 3n/2 do not contribute at all to radiated

power and are said to be in scattering nuil.
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The determination of these characteristic fields and their
characteristic values, @ 1s rnot a simple task. In the following
section a computational technique is described and used to derive
charactaristic mode current distributions and the associated angles,

a_, for perfectly conducting thin wire scatterers of general con-

n’
figuration. Use is made of the defining conditions (i) and (ii),
given in the above discussion, in developing the digital computer

method.

B. A Technique for Determining Characteristic
Modes of Wires

A modal impedance matrix, [Z], can be derived for a wire such

that
(22) (z1 (1) = (g),

where (E) is a vector representing the tangential component of the
electric field intensity at N points on the wire due to a current I
existing on the wire surface. (I) is a vector whose components are

the coefficients of a Fourier expansion of the current I in terms of

th

M orthonormal basis functions (M < N). The ij*" element of the im-

pedance matrix, then, gives the tangential electric field at the 1th

h basis function of current distributed

point on the wire due to the jt
over the wire length. Thus, [Z] is an N x M matrix and (I) and (E)
are column vectors of dimensions M and N, respectively. |

In a common application of Eq. (22) to scattering problems, the E

M dimensional current vector (I) is sought which generates a scattered
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7ield equal to the negative of the incident field (i.e., (E) = - (Ei))
at M points along tne wire, thereby approximating the exact boundary
condition of zero total tangential electric field everywhere along

the wire in a "point-matching" sense. A less common application[16],
(Chapter II) of Eq. (22) is the approximation of the exact boundary
condition in a ”1éast mean square" sense. In this method, an M di-
ensional current vector (I) is sought which generates a scattered fieid
that differs from the negative of the incident field such that the
norm, |(E) + (Ei)|2, of the difference vector, when averaged

over N > M points on the wire, is a minimum. Application of Eq. (22)
to the determination of characteristic modes will make rather novel use
of the least mean square criterion by minimizing the phase variation
along the wire rather than the field differences. This is accomplished
by imposing,ras constraints on Eq. (22), conditions (i) and (ii) of the

preceding section, which specify that the mth

characteristic current Im,
represented by the vector (Im) in the chosen basis system, be real and
that the associated characteristic field Em’ represented by the

vector (Em) in the chosen basis system, be equiphase over the wire
surface and lag Im in phase by an angle ey The problem is to de-
termine the phase angies o and the associated characteristic cur-

rent distributions Im for the significant modes. The characteristic
pattern functions Em(e,¢) derived from the I, together with the
characteristic véiues a derfved from the G s then provide a'concise

evaluation of the scattered electric field according to Eq. (19).
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To this end, Lq. (22; is rewritien as
w3y [Z) (1) = {Lne ',

wnere a constant phase term, o, 15 removed from the field vector

and 1s shown explicitly. This phase factor is then transferred to

the Teft side of Eq. (23) and finally is absorbed into the impedance

matrix, i.e.,
24) &' [z1 (1) = [Zt(e)] (1) = (8'),

where [Z'(a)] = &'°[2].

If « and (I) of Egs. (23) and {24) were the phase and corresponding
real current vector associated with a characteristic mode, i.e,, if
« = o and (1) = (Im), (E') would be a real vector. At this point in

the problem, hoWéver, both % and (ZW) are unknown. Thus it is expected

that, initially, (E') has some residual phase factor which is a function

of the distance 2 along the wire center~Tine. To reflect this fact,

Eq. (24) is rewritten as
(25) (Z'(a)] (1) = (RE{E'}) + i(Im{E"}).

Letting (8) = (Im{E'}), and assuming that (I} is a real vector,
(26) [Im{Z'(a)}] (1) = (8),

where [Im{Z'(«)}] is a real matrix. The real vector (§) is thereby

related to the deviation of the phase of (E') from an equiphase
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condition.  Ideally, (&) would equal the null vector when (I) = (Im).

“e shall approximate this null vector with one which is minimum in a

least mean square sense, i.e., one whose norm,
T
(27) e = (8)° (8),

is minimized. (The superscript T denotes the transpose operation.)
Following the suggestion of Eq. (27), Eq. (26) is multiplied by
its transpose, with the result,

(28) (1) Imiz' ()1 Imiz' (&)3] (1) = (8)7(8) = e(a),

wnere the mean squared error, e(a},.is recognized explicitly as a

function of a. Let
(29) (B(a)] = [Im{Z'(a)}]" [IMZ'(e)}]

where [B(a)] is a real symmetric matrix of dimensions M x M. Assume
for convenience that the novmalization (I)T(Z) = 1 applies. Then

£q. (28) becomes

(30) [38(a)] (1) = ela) (1)

or

(31) Bla) - e(a)I] (1) = (0}, ' : -

where [I] is the identity matrix and (0) is the null vector. The

equation

e




.32) det LB(&) - i:(u)I} = 0

1s recognized as the cnaracteristic equation of the matrix [B(«)].
Tae 1 roots c{a, = em(a), m=1,2,--+,M, of this_equation are the
eigenvalues of [B(w)] and the associated M vectors (1) = (T _(u))
are 1ts eigenvectors. Because [B(a)] is real and symmetric the
5m(a) must be reai;[@Bqurthermore, because of the mean square conditioh
enforced by Eq. (13) they must be non-negative. To assist in the
Toilowing discussion, the eigenvalues em(a) have been plotted in
Fig. 14 as a function of the phase angle o for a specific example to
be developed Tater.,

Equation (32) determines the functional dependence of the eigen-
values e, on a. At this point it may be well to remember that cm(g)
is a measure of the deviation of the phase of (E) from an equiphase

condition. The smaller the em(a) the closer this ideal condition is
approached. In this Tight it is clear that we are interested in those
(a)

denotes the smallest of the M eigenvalues em(a for a specified a.

vaives of « which cause relative minima in e;. (a), where ¢

min min

(o), will occur for a = «

7 lative minim noted by e_.
hese relative nima, denoted by €min\Om =

m=1,2,--+,M, corresponding to each of the eigenvectors (Zmin(“m)

ot 2g. (31). The angle o, Ts the phase of the meh equiphase surface

“ield (Em) and the associated eigenvector (Imin(am))’ hereafter de-

h

rioted simply by (Im)’ describes the m"" characteristic current dis-

tributicn. For each pair, o and (Im), the equiphase constraint on

m
the tangential electric field is satisfied in a least mean square

h

serse at the N selected points along the wire. The mt" characteristic
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mode current distribution may now be expressed explicitily as a Fourier
expansion in terms of the aforementioned set of orthonormal basis
fanctions {e.g., cosine and sine functions), the coefficients of which -
are the components of the real vector (Im).”

it applying this procedure it is convenient to break up the
mezrix B (a)) of Eq. (29), separating out those parts which are
i.dependent of a. Recalling that [Z'(«)] = ei“[z], where [Z] is a

complex matrix, let

(33)  [A] = [Im(Z'{(a))] = [Im{e'®(Z]}]

[Im{Z} + tan o Re{Z}] cos «.

Tren, according to Eq. (29),

[}

(34) [B(a)] LA]T [A]

‘Im{Z} Im{z} + tan a{Re(z} Im(z)
2

+ Im{Z}T Re{Z}} + tan“a Re{Z}T Re{Z}] -« cos

Letting

(35) (P = [Im(Z}! ImiZ3]

f Az e - .,T T

{36) (Q] = [Re{Zy Im{Z} + Im{Z} Re{Zi] ,
and

o L T \

(37] [R] = [Re{Z} Re{l}l ,

£q. {24) may be written as

[B(a)]= [P] + tan «[Q] + tanza[R}
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It is efficient to derive the matrices [P}, [Q], and [R] from which the
matrix [B {(a)} can be formed for each a as « is varied in seeking rela-

tive minima of e_. (a). The term 1/cosa is jgnored from this point

min
on sinée it has no effect on the location of these minima.

When both even and odd basis functions are used for the current
expansion and these functions are ordered so that the first Me com-
ponents of the current vector (I) correspond to the even and the last
Mo components correspond to the odd basis functions (where M = Me+MO

is the total number of basis funciions), the matrix [B(a)] has a block

diagonal form, i.e.,
B ()] 0 ]
(39) [B(a)] =f J

where the matrices [Be(a)] and [Bo(a)] are associated with the even
and the odd basis functions, respectively. The even and odd character-
istic mode current disiributions can then be derived separately from

the respective even and odd characteristic equations

(40) det [Be(a) - ee(a)l] =0
and
(41) det[BO(a) - co(a)l] = 0.

Soltution of the two above equations of dimensions Me and Mo’ re-
spectively, consumes less computer time than the soiution of one

characteristic equation of dimension M = Me + MO. As an added
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benefit, the separation into even and odd problems aids the Tocation

of minima in ¢ (a) when an even and an odd characteristic mode

min
both have equal or very nearly equal phase angles.

An example of the behavior of the eigenvalues, am(a), as
Tunctions of o has been given in Fig. 14. The scatterer in this
example is a circuiar Toop of radius 0.25x, W1th a wire radius of
C.0025.. The loop is approximated by 120 straight-wire segments
and five cosine functions form the basis of the Fourier expansion
of the current distributions. Due to fhe rotational symmetry of
the loop and the resulting second order degeneracy of the modes,
the eigenvalues associated with the sine functions are the same
as those associated with the cosine functions., The characteristic
chase angles ,* o m=O,l;2,3,4, corresponding to the relative
minima gmin(um), are given in Table 3 where they are compared with
those angles calculated[20] analytically by independent methods.

The circular Toop is a very special example in that the char-
acteristic mode current distributions and the basis functions used for
their expansion are one and the same, i.e., cosine and'siné functions.
For this reason each eigenvalue em(a) of [ B(a)] assumes a minimum
Qmin(am) for its respective angle @, as seen in Fig. 14. For more

general scatterers the eigenvalue behavior is not this simple but

*gecause the characteristic currents turn out to be the familiar cos m¢
functions in this example, we have chosen to order the modes on m in
the conventional manner, beginning with m = 0. In more general prob-
lems one would order the modes so as to make |cos um[ a non-increasing
sequence With increasing m.
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no extra complications arise. In any case, the smallest eigenvalue,

Cmin(a)’ is the only eigenvalue of interest and regardless of which

cw<a) happens to be the smallest eigenvalue for the choice of «

under study, it is the relative minima of this €min

To emphasize this point € (¢) is shown for the preceding exampie

in
as a heavy line in Fig. 14,

TABLE 3
PHASE ANGLES o FOR A CIRCULAR LOOP OF RADIUS
0.25x WITH WIRE RADIUS 0.0025x

MODE @ ( DEGREES)
m ANALYTICAL METHOD NUMERICAL METHOD
o 103.4 : 103.33
P 107.5 108.13
2 263.1 , 263.83
3 269.7 269.75
4 ~270.0 269.99

C. Scattering Solutions Using

Characteristic Modes

(i) Backscattering Cross Section
Assuming a unit plane wave incident fielid, the scattered electric
field intensity for an object is given by Eq. (19). The equation is

repeated here for convenience.
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-ikr
e

m
w
i

1
—.
IE

(42) .y g((15,¢s;01,¢1) “ h

The matrix equivalent of F is

( M .. M .. N
: i i S s
boaF (0,6 )F (6%,6%) T a_ F_ (6,4 )F (07,4

m=1 MMy 8 m=1 " Mg m¢
(43) [F]=-
M i i s .S i i s s
Yoa F (8,0 )F  (87,¢7) boaF (8,9 )F_ (07,07)
= B Mg m=1 " My Ty A
- } Foe Fo¢
F
[ ¢6 F¢¢
where Fm and Fm are the o- and ¢-components of the vector fm. The
0 ¢ , , o .
quantities Fum’ Fo¢’ F¢e and F¢¢‘are functions (complex in general)

of the incidence direction (81,¢]) and the scattering direction
(ws,¢s) although the dependence is not explicitly shown for simplicity

in later discussions.
Both bistatic and monostatic scattering solutions may be derived

from these expressions. Only the backscattering (monostatic) case,

for which o' = @° =9, ¢1 = ¢S = ¢ and Fe = F¢e’ is considered here,.

¢
The matrix representation of Eq. (42) is

. -ikr
(a4) (%) = - g E [F] (%),

r

where (h%) is the transmitting antenna vector height[44] expressed

in the 8-¢ basis system.
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The radar cross section is proportional[44] to | VIZ, with
(45)  V(e,e) = (/)T (E%),

where (h") is the vector height of the receiving antenna and the
superscript T denotes the vector transpose., Substituting Eq. (44)
into Eq. (45),

e-1kr

(46)  V(o,g) = - 32— (1" (A (hY)

The backscattering cross section is then

2
(67) ey le,0) = Tim 4wl lvle,e) |2 = L ()T () ()2

Y00 4“—

It may be helpful at this point to note the similarity between
the matrix [F] and the familiar scattering or polarization matrix[44]

which will be denoted by [S]. In fact, [S] = [F], so that

M

(48} S,.=- ) afF (ei,¢i) F(8°,6%), etc.
i1 w1 M My mg

Thus, the métrix [F] is simply an explicit expression of the polari-
zation matrix in terms of the characteristic mode pattern functions
Folosa).

Equation (47) compactly expresses the plane wave backscattering
cross section of an obstacle in terms of its characteristic pattern
functions and the transmitter and receiver vector antenna heights.

Since it will be useful later on to have explicit expressions for
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certain vector antenn. .ueight combinations, we now devote some effort
to their derivation. O0f general interest are the transmitter-receiver
polarization combinations of (1) vertical-to-vertical, (2) horizontal-
to-horizontal, (3) vertical-to-horizontal (equal to horizontal-to-
vertical in the monostatic case), (4) right circular-to-right circular,
(5) left circular-to-left circular, and (6) right circular-to-left cir-
cular (equal to left circular-to-right circular in the monostatic case).

Letting the theta- and phi-components of the transmitter and re-

ceiver vector antenna heights be expressed explicitly, i.e.;

hé , hg
ty = v
(h™) : and (h') = ,
h h"
6 o

and substituting into Eq. (47),

2
(19 opy = Ll ir 2inE 212+ JEy 2 nE 20T

2 t 2,.r?2 t, 2, .r?2
e [Fg, | 20nE 12 NG 12 + 12 h]]

c C c C
t t.r r t t.r r
+ h¢ h6 he 2¢ + he h¢ h¢ he) .

C t t r.2 t, 2 .r r
+ 2 Re{F: F (he h¢ \he\ + \he\ he h' )

66 6¢ ¢
C C
C t t.r r
+ F06F¢¢ he h¢ he h¢
+ FC F (‘ht|2 hr‘c hr + htc ht]hrlz)}
B8 ¢ 0 0 $ 8 ¢ ¢

The backscattering cross section for specific transmitter and re-

ceiver polarizations are obtained from Eq. (49) by assigning the
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proper values to the vector antenna height components.

for the polarizations mentioned earlier are given here:

(50)

(53)

o

(4) right circular-to-right circular (h =h"=

o

(5) left circular-to-left circular (he

and {6) right circular-to-left circular (ht

(55)

ORL ~

Expressions

6 8 [0} )
- lwn)? F 12
AY dn 66
to_or to_ v
(hg = hg =0, hy = h, = 1),
HH = a7 )
ro_ t_r.
o = hy = lh =hg 0),
- (wp)? 7 ‘2
VH 4n 8¢
t -
hy h = )
eJ'z 2
2
_ {wp) 1 2 2 2
R ar L7 ([Fegl” + |F¢¢[ )+ ’Fe¢|
1 C
- 5 Re {Fy, ¢¢} I {(Fog = Fuo) Foyl
t,.r_ 1 t,r_J
h' = ==, h=n' = i)
8 J2 v 2
R S N NG RN
I L3 Y T 46 66
1 C o
-5 Re {Fgq Frob - In{(Fyq - Fog) Fooll
L, ht--h - .
) o™ .f" ¢ JT?
- Lwn) 1 2
ML [ UFgel® # 1F,, 15 + 5 Re (Fyg
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The 0- and 4¢-dependence of the elements of the matrix [F] and of the
cross section o is assumed and is suppressed for ease in notation.
The 6 and ¢ subscripts signify the'particu1ar elements of the matrix

[F] (see Eq. (43)).

(ii) Tumble Average Backscattering
Cross Section

Having determined a suitable number of‘characteristic values and
characteristic pattern functions for a given obstacle, it is a simple
matter to apply the bilinear expansion of Eq. (42) and obtain plane
wave scattering data, bistqtic or monostatic, in an economical fashion.
The ensuing compact expression (Eq. (47)) for backscattering cross
section 1s particularly useful when one must consider an obstacle
which is tumbling in space, and the quantity of interest is not back-
scattering cross section for some fixed Qrientation, but backscattering
cross section averaged over all tumble aspects of the obstacle. Thus,
if we denote the backscattering cross section with transmitter and
receiver'1ocated in a direction (8,4) by abs(a,¢), and if we assunme
a spherical probability density function for aspect likelihood, then
the tumbie average cross section can be defined by

C 2n o )
(56) <op.> = ;—J J J (6,9) sin o6 do d¢ do .
0]

o}
The angle o is a measure of the rotation of the obstacle about the
Tine-of-sight. Since obs(e,¢) is expressible so concisely in terms
of characteristic pattern functions via Eq. (21) or Eq. (47), the

calculation of <Opg” is greatly expedited,
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In the following discussion the average over o will be performed
analytically for arbitrary transmitter and receiver polarizations.
The average over & and ¢, however, must be done numericaily in general.
In the far field, the most general polarization, elliptical polari-
zation, may be represented[45-47] by a combination of right circular

and Teft circular polarization vectors, i.e.,
- Jj2a
(57)  (h,) = (n) + (np)e

where the subscripts L and R denote left and right circular polari-
zation, respectively. The angle « (not to be confused with the char-
acteristic phase angles am) is the angle of rotation, measured in a
C.C.W. direction (looking in the direction of propagation), of the

major axis of the polarization ellipse from the vertical axis. From

the general expression of Eq. (57) can be derived left circular ((hR)
0), right circular ((hL) = 0), vertical ((hL) = (hR), a =0), and
horizontal ((hL) = (hp), o = n/2) polarization vectors.

The norm of (he) will be set equal to unity, i.e.,

? ?
(58)  Ingl =In, 12+ Ihgi? = 1.
The axial ratio, r, of the ellipse is

[hpl + [h |
(59) po= R AL
[ho| - Ih |
It is desired to obtain an expression for the average backscat-
tering cross section for general transmitter and receiver polarization

states. To this end assume a transmitter polarization
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® (60) (%) = (") + (hD) e °

and a receiver polarization
_ J2a
(61)  (n") = (h[) + (hpe .

Substituting Eqs. (60) and (61) into Eq. (46) (suppressing the constant

terms for convenience),

' j2a Jjeo
) (62)  V(o,e)e (0 +hpe T [F (hf +nge )
Then
j2a 7j2u
(63) V(e,¢) % = [(n] +hte” T [F] (hF+nfe B

~j2(a -a.)
c 2 RefD)” 171 (D) ()T () (e T

".jZCI
1T 1R (DITRT TR ()% e T T

-j2a
1O [F1 (O1TDT 7 (hECe T F

B ~j2(a *a )
1T (R (OTLDT (F () Ce T
- -jla
L))" [F] (W10 [F] (hE)1Ce T F

‘ -j2a
- DT BT 7 r1c e T
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where ¢ denotes the complex conjugate. Let G = Oy + §. The last
-j2at -J4ont

five terms of Eq. (63), then, contain terms e and e In-

tegrating over a,_ corresponds to an averaging of the backscattering

t
cross section as the object rotates on an axis parallel to the direction
of propagation. Since
i . m .

__I_J e—32a da = _Trl—j e-J4°‘ do = 0,

"o 0
these five terms will not contribute to the average.

The first five terms of Eq. (63) are seen to be independent of Gy
The fifth term is dependent on &, the angle of separation between the
transmitter and the receiver major axes of polarization.

Denoting the average over a, by ~, Eq. (63) reduces to

t
(68)  opg(ee) = (0T (F1 (0D [% + [(h)T [F1 (hD) [

+ [(OT [F1 (D) 12+ ()T [F1 (hE)17

s 2 Re{ ()T (71 (hDT LT [F) (g1 %0

The vector antenna heights expressed in the 9~¢ basis system are

now specified as noted by their subscripts, i.e.,

(65)

_—
=
-
—
—
=
1|

a)

L= L s left circular receive;

R right circular receive;

R
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1
" J2

(65) c) (hL) L, , left circular transmit; and
(cont.) i
J2
1
¢ J2

d) (hR) = Rt . right circular transmit;

-l

2
where R and L represent the right circular and left circular magni-
tudes, respectively. Substituting into Eq. (64), normalizing ac-
cording to Eq. (58), averaging over 6 and ¢ to obtain the average

over all tumble angles (denoted by < > ), and expressing the

proportionality constant explicitly, we get

{[(RrRt)2+(LrLt)2]

(66) <g, > = o
bs 2 2y rp? 2
4(Rr + Lr)(Rt + Lt)

E - 2<Re(F. F° }>

2 2
> +<[F¢¢[ > + 4<[Fe¢| > 66 40 ]

(g

2oL L8 <Imi(F, - FLOFS)S

+ 4[(RrRt) "

F[RLZ + (LR)Z + 2(R L)(L,R,)cos 25]

2 2 o
L<lFg Bt <|Fy 1B ¢ aRerF,, me}

From Eq. (66) we obtain tumble average expressions for the fol-

lowing specific transmitter-receiver polarizations:

(1) right circular-to-right circular (Rr=R{=1, Lolys 0)

t

2
1 2 2 2
(67) <OpR> = L%%l—- T (<|F68| > + <|F¢¢| > + 4<fFe¢| >

C C
-2<Re{Fo Fo }> + GeIm{ (F o - F¢¢)Fe¢}3)
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(11) left circular-to-left circular (Rr Rt =0, L= L= 1)
2
1 2 2 2
(68) <GLL>=£%%L 71-—(<“:99| >+<!F¢¢l >+4<|F6¢| >
~2Re{Fyy FC, 1> - A<Im{(Foo = F, )F )
88  ¢¢ ¢d° 8¢ -
(ii1) right circular-to-left circular (Rr L,=0, R.=L,. =1)
2
_ {wu) 2 C
(69) <opL> = i (<lFee[ > + <|F | > + 2<Re{F ¢¢}) -
(iv) left circular-to-right circular (R =L =1, R,=L_=0) -
r -t tr
(70) <g >=£_@“__2_ ([F |>+<|F ]>+2<Re{F }) -
LR 4n 66 66 e¢
(v} Tinear-to-linear <Rr=Lr=Rt=Lt=1, § = 0)
) -
3 2 2 1 2
(71) <Oy > = (zlr) (§ (<[Feel >+<iF¢¢>‘ >)+-2—<|F9¢l g
and + x <Re{F > ) -
t3 ¢¢
{vi} Yinear-to-cross linear (Rr=Lr=Rt=Lt=1’ § = w/2) -
) -
1 2 2 1 2
(72) o> = (2;1) (§ (<IF96‘ >+<[F¢¢[ >) +-§-<[Fe¢l >
1 C wan
- E‘ <RE{F ¢)¢} ) .
Having expressions (67) through (72), Eq. (66) can be written as v—
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1
(73) <oy > = WD ((R R.) P LL

» HRLDE + (LR)Z + 2(RL)(L R )cos 26] <op >)

oY as
1 2 2
(78)  <o.> = , ([(RR)-(LL)] o>
bs (RZ " LZ)(RZ + l[2) rt r-t RR
r r t t
2 2 2
AL L)% - RLOZ - (L ROP-2(R L) (LR )cos 26] <o, >
# RLIZ+ (LR)Z * 2R L)(LR,)cos 26] <oy >,

where Eq. (73) is in terms of circular polarization averages and

Eq. (74) is in terms of circular and Tinear polarization averages.

(i11) Input Admittance

The design of Toaded scatterers requires a knowledge of the
driving point impedance (or admittance) of the element when it is
excited as an antenna. The scatterer is usually resonated by placing
a passive load at the set of terminals such that the reactive com-
ponent is cancelled. The characteristic mode theory offers a new
approach toward determining the desired antenna impedance for wire-
type scatterers.

An expression for the input admittance can be derived[48] in terms
of the characteristic currents and the characteristic values of a given
wire. The current evaluated at point 2 on the wire due to a unit plane

wave incident from a direction (81,¢1) is[20,48]
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(75) I(2) = ) A 1 (2),

th

where Im(i) is real and represents the m~ normalized characteristic

current distribution evaluated at &, and Am’ the weight[20] of the

mth term in the expansion, is complex and is given by the reaction[49-51]
of the mth radiated field, E;Xt(r,e,¢), with the source current, i.e.,

(6) Ay = [[] B2 (i) - alriene) v,

where the integration is over the volume of the source. If the source
is an electric dipole located at (r],e1,¢1) which causes an essentially
plane wave in the vicinity of the wire, Eq. (76) becomes

- (77) An = 2 fm(ei,cpi) i,

where h' is the polarization state vector of the plane wave, 3 is

th

the characteristic value associated with the m~ mode, and Em(91,¢1)

is the mth characteristic mode pattern function evaluated at (61,¢1).
Substituting Eq. (77) into Eq. (75), —
' ! P4y ci
(78) I(2) = Z a fm(e 56 ) + h Im(z). -
m=1 .
From reciprocity, -
(79) I(ﬂ) = "}’:11 . Er(e-i ,¢1)s -

Where F'(6',4) is the radiation pattern in the (8',4') direction
due to unit voltage, V = 1, across the gap at point 2 along the wire.

Then
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(80)  EsT.eh) = - e (6heh) 1 ()

m=1 ‘
Recalling the orthonormality of the characteristic pattern functions,

the comp]ex power radiated is seen to be[20, 48]
e 2 .
(81) P = WZl la |7 T () (1 = 4a.),

where am'=-l/(l+ixm) and - is the ratio of net reactive to net

radiated power. The admittance is, then,

M
(82)  Y(x) T T ] a 1(2) %

D. Examples of Characteristic Modes and
ocattering Solutions

In this section the technique described in Section B above is used
to determine characferistic mode current distributions and chafacteris—
tic values of circular and elliptical Toops, straight wires, circular
arcs, and helices. The modes are used to compute backscattering and
tumble average cross sections and input admittance data as outlined in
Section C. Where possible, the resUTts are compared with solutions
derived by independent methods.

In each case, in deriving the impedance matrix [Z] of Eq. (22),
the wire is considered perfectly conducting and its radius is assumed
to be much smaller than its Tength L and the wavelength A. The as-
sumption is made that the surfﬁce current density on the thin wire
has only an axial component and is distributed uniformly around the

circumference of the wire.
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The modal impedance matrix ([Z] of Eq. (22)) for each wire con-
figuration is computed by means of the numerical basis transformation
method used in conjunction with a piecewise uniform method.{1-3] The
P, Q, and R matrices (Egs. (35), (36), and (37)) are formed from [Z]
and from them the matrix [B(a)] is derived explicitly in terms of «.
The characteristic equation (Eq. (32)) is then solved for the smallest

min

eigenvalue ¢ . (a). By stepping through a range of a's, we can locate

Emin(um)’ thereby specifying the phase

the relative minima of Emin(a) =
angles a and allowing the determination of the corresponding eigen-
vectors (Im) of Eq. (31). The components of these eigenvectors are
the Fourier expansion coefficients of the characteristic mode current
distributions in terms of the chosen set of basis functions.

More than one characteristic mode generally is needed to describe
a scatterer. O0ften, however, one mode is sufficient, as is the case,
for example, with short wires, i.e., wires of first resonant length or
less. This single mode character holds true for quite general wire
configurations. For short wires which are effective scatterers, the
dominant mode has associated with it a phase angle o within about
tn/4 of the o = w resonant angle; other modes characteristic of such
a scatterer are found to have phase angles very near n/2 or 3n/2,
implying that their contributions to scattering are relatively small
and usually negiigible. As wires increase in length more modes are
required to describe their scattering properties accurately. The
number of modes needed is also dependent, though to a lesser degree,

on the wire geometry.
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Certain wire geometries support multiply degenerate modes. As
mentioned previously, the circular loop is doubly degenerate since
each phase angie @ (i.e., each characteristic value, am) has as-
sociated with it two mode current distributions, one of the form
cos m+4, the other of the form sin m¢. This fact is due, of course,

to thé rotational symmetry of the loop.

(i) Circular Loops
Characteristic modes were determined for circular Toops with
a loop radius-to-wire radius ratio R/a = 100. The first four phase

angles o, are shown in Fig., 15 for a range of frequencies. The curves

270 —
\ G,
240 \
. a,
7
Lt
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W a,
e
€
]
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R
-
I}
F4
<
(V5]
2150
120 AN
a, 4_—_______1>(
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(o} L -0.2 0.3 0.4

LOOP RADIUS, A/

Fig. 15.--Phase angles oy, m = 0,1,2,3, for circular ioops
. as a function of loop radius.
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compare favorably with independently derived resuits presented in
Reference 20. The backscattering cross section data derived using
these modes are shown in Figs. 16 and 17. The edge aspect results are
compared with solutions obtained by Harrington.[52] The ratio of
broadside-to-edge aspect cross section given in Fig. 17 is compared
with similar data,{36] both measured and analytical, for loops with a
wire radius a = 0.005x.

The real and imaginary parts of the input admittance of circular
loops with a Toop radius-to-wire radius ratio R/a = 100 are plotted
in Fig. 18 and are compared with Harrington's solutions.[52] The
admittance, especially its imaginary part, is more difficult to
compute accurately than the far zone scattering parameters. This
example is given, together with part (iii) of Section C, above, to
show the manner in which the admittance can be obtained from the
characteristic modes. More demanding application to admittance
calculations would require more accurate solutions for the charac-
teristic modes, which would in turn require more sophisticated
(than piecewise uniform)} methods for computing the impedance .
matrix [Z] of Eq. (22).

(i1} Elliptical Loops

Having noted in the preceding discussion that the characteristic
modes of a circular loop are doubly degenerate, it is of interest
to observe the effect which distortions of the circular geometry have
on the modes., For example, one may study the modes of a planar el-

Tiptical loop whose axial ratio diverges from unity. Figure 19 shows
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Fig. 16.--Backscattering and tumble average cross sections for
circular Toops with a Toop radius-to-wire
radius ratio R/a = 100.
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Fig. 19.--Phase angles oqy, m=0,1,2, for elliptical Toops with
circumference C = 1.1x and wire radius a = 0.00175x.

-

several phase angles associated with the modes of an ellipse as a

-~

function of the axial ratio. The circumference is held constant at

1.1x. The wire radius is a = 0.00175x and the circumference-to-wire -

radius ratio is 200w, i.e., the wire is of the same dimensions as
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that uscd in the preceding circular loop example for a loop radius
R = (.1753%. For an axial ratio of unity the angles . are, of course,
1i0ose shown in Fig. 15 for the corresponding circular Toop. As the
axiai ratio is varied from unity the rotational symmetry of the Yooﬁ
is Tost and the modes are no longer doubly degenerate. The back-
scattering cross section data for these examples are shown in Fig. 20.
In the loop exampies just given 120 match points were used in
solving for the modes, with six cosine and five sine terms in the
Fourier expansions of the characteristic currents. The loops are

in the xy-plane and the origin 2 = 0 is on the positive x-axis.

(i11) Straight Wires

The characteristic phase angles for straight wires with a length-
to-diameter ratio L/2a = 100 are shown in Fig. 21 as a function of
frequency. The characteristic current distributions gm for a wire
of length L = 1.5x are shown in Fig. 22, where each current has becn
normalized to radiate unit power. Figures 23 and 24 give backscatter-
ing and tumble average cross section data obtained using the character-
istic modes associated with the phase angles of Fig. 21. The broadside
data given in Fig. 23 are compared with results obtained by Harrington
snd Mautz.[40] The backscattering cross section as a function of in-
cidence angle 6 is shown in Fig. 24 for a wire length L = 1.5x.

Similar phase angle and scattering data are shown in Figs. 25
and 26 for straight wires of radius a = 0.005x. The results in Fig.

26 for the broadside backscattering cross section of wires of Tengths

near the first resonance are compared with those obtained by Richmond.[12]
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Fig. 21.--Phase angles oy, m=1,2,3,4, for straight wires
with a length-to-diameter ratio L/2a&a = 100.

A comparison of the phase angle curves with the scattering be-
navior as a function of wire length for the straight wire examples
just given demonstrates the dependence of the scattering or radiat. g
¢ificiency of a mode upon its characteristic value orphase. In cach
case considered (where one mode is the dominant contributor) a peak
in the average cross séction corresponds to a wire length for wh'ch,

the phase associated with the dominant mode is equal to or approxi-

mately equal to .
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Fig. 23.~--Broadside and tumble average backscattering cross
sections of straight wires with L/2a = 100.
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150°

180°

Fig. 24.--Backscattering cross section as a function of incidence
angle & for a straight wire of length L = 1.5x with
L/2a = 100.

In determining the characteristic modes for the straight wires
considered above, up to 160 match points were used with six even and
five odd Chebyshev polynomials of the second kind in the Fourier

expansions of the characteristic currents.
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Fig. 25.--Phase angles oy, m = 1,2,3,4, for straight wires
of constant radius a = 0.0056x.

(iv) Circular Arcs

Thne examples given so far have been scatterers for which more

tnan one mode were needed to describe the scattering properties ac-

curately. In particular instances, e.g., the case of straight wires

with L < 0.6x, only one mode was needed to obtain reasonably accurate

plane wave scattering data. In this section we show that such short
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wires, even when formed'into circular arcs, retain this "single-mode"
nature,

The phase angle associated with the dominant characteristic mode
for a lossless gpen circular arc of wire of length L = 0.475,1 and
radius a = 0.0008467x is shown in Fig. 27 as a function of the arc
radius, R. Using only this dominant mode, the backscattering data
f Fig. 28 were derived. The broadside- and edge-aspect cross
section resuilts are compared with solutions obtained[53} by a piece-
wise uniform, point-matching method for tungsten wires.

It fs interesting to note the dependence of the dominant mode
current distribution on the arc radius. The distribution appears to
be nearly independent of the arc radius to a radius of approximately
0.085:. This can be seen by noting the nearly constant values ob-
tained for the Fourier coefficients of the series approximations to
be current. Figure 29 shows the first five coefficients as a function

of arc radius. FEach coefficient has been normalized to its value for

[al)

radius R = 0.15x for convenience in plotting. This suggests that

tre mode current distribution for a short wire of a given length may
e, to a degree, independent of the wire configuration. The character-
ictic value, or phase angle, associated with the current, however,

may show considerable variaticn and can give evidence of sighificant
variations in scattering cross section. For example, Fig. 28 shows

& variation of more than 3 dB in backscattering cross sections for

circular arcs ranging in arc radii from 0.085x to 0.15x, in spite of
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the constancy of current distribution implied by Fig. 29. Only a

substantial change in phase angle can be the explanation, and

Fig.
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Fig. 28.--Backscattering and tumbie average cross section data
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(v) Helices

Helices were formed with a wire of length L = 0.475) and radius
a = 0.0008467x». The helix pitch, p, the distance between turns, is
equal to thirty times the wire radius. Just as for the circular arcs
formed by wires of the same dimensions, a single mode describes the
scattering with sufficient accuracy.

The phase angle associated with the dominant mode as a function
of the helix radius, R, is shown in Fig. 30. Backscattering and
tumble average cross section data for linear polarization are given
in Fig. 31 and that for circular polarization in Fig. 32. The broad-
side aspect results in Fig. 31 are compared with Thiele's[54] piecewise
uniform, point-matching solutions for tungsten wires.

A helix formed of a wire whose length, L, is slightly greater
than the straight-wire resonant length, viz., L = 0.6A, is considered
next. In this case it is necessary to include the contributions of
up to three modes, all of which are relatively small. The phase
angles are given in Fig. 33 for the first two even modes and the first
odd mode. With these modes the linear and circular polarization back-
scattering and tumble average cross section curves of Figs. 34 and 35
were calculated.

Finally, a one-turn helix with a wire length-to-diameter ratio
L/2a = 100 and a pitch p = 10a is investigated as a function of fre-
quency. The phase angles corresponding to the first four character-
istic modes are shown in Fig. 36. Figures 37 and 38 give the back-

scattering cross sections at various fixed aspects, as well as the
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Fig. 30.--Phase angle o1 for a helix with wire length L = 0.475x,
wire radius a = 0.0008467x, and pitch p = 30a.

tumble average backscattering cross sections, for Tinear and circular
polarizations, respectively. It is interesting to compare these
results with those (Figs. 21 and 23) obtained for a straight wire of
the same dimensions. A comparison is made in Fig. 39 of the tumble
average cross sections of these configurations for linear-to-linear

transmitter-receiver polarizations. Of particular interest, for
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exemple, is the relation of the bandwidth of the first resonance

to the slope of the corresponding phase angle curve for oy in the
vicinity of 180°.  The slope of the a;-curve for the helix (Fig. 36)
is noticeably greater than that for the straight wire (Fig. 21). The
reduced bandwid‘th of the first resonance for the helix is evident in

Fig. 39.
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= 100
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CHAPTER IV
SUMMARY AND CONCLUSIONS

A numerical basis transformation is described which transforms

the set of point-matching Tinear equations from one basis to another.

It is shown that it is possible to reduce the number of linear
equations needed for good accuracy and, as a result, to reduce
computer solution time and storage requirements. For example, a
transformation from the piecewise uniform basis to a basis of modal
“unctions, such as cosines and sines, can reduce the number of
equations, N, by a factor of 10 or more with a consequent reduction
from a cubic to a square law dependence of solution time on N and
at least a fﬁve-fon reductionrin storage requirements. It is also
chown that, following the basis transformation and the subsequent
~ecuction from N to M equations, a least square solution is ob-
tained. The transformation and least square techniques are applied
to the solution of scattering by several thin wire objects. 1In
carticular, perfectly conducting elements in the shape of circular
ana eliiptical Toops, straight wires, and circular arcs are con-
sldered,

in the examples given here the basis transformation technique

‘s applied only in transforming from the piecewise uniform basis to

. modal basis. The technique can be employed equally well in con-
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junction with other point-matching methods. It may also find
appiication with numerical methods otner than those based on point-
matching. For example; the multi-segment induced emf technique,[1l1]
a technique based on the reciprocity theorem and reaction concepts,
could be combined with the basis transformation technique in the
same manner as is discussed here. It should also be noted that the
transformation and least square techniques are not restricted to
rerfectly conducting objects, although only loss-free scatterers
are considered here.

Having shown the advantages afforded by a transformation of
basis as applied to the solution of scattering by wires, other
applications can be suggested. The point-matching technique has
been applied[2,3] to bodies of revolution and to planar scatterers
such as circular and rectangular plates. A basis transformation
could significantly reduce the number of equations in such prob-
iems, a factor Qf“particular importance for three-dimensional
bodies. Also of interest are the application of the basis trans-
formation and Teast square techniques to point-matching solutions
of Joaded wire scatterers and antennas and to multiple-wire
scatterers such as coaxial loops.

Further application is made of the basis transformation and
least square techniques to the determination of characteristic
modes of loss-free, thin wires of general configuration. A
method of determining characteristic mode current distribut%ons

and associated phase angles of thin wires is developed and is
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app?ied to circular and elliptical loops, straight wires, cir-
cutér arcs, and helijces.

| Explicit expressions are derived, in terms of the characteristic
mode pattern functions, for backscattering and tumble average back-
scattering cross sections for arbitrary transmitter and receiver
poiarizations. The characteristic modes derived for the afore-
mentioned objects are then used to compute backscattering and
tumble average cross section data for the respective shapes. Also
computea for heuristic purposes are input admittance data for cir-
cular loops. Where possible, the results are compared with solutions
derived by independentrmethods. |

The examples given in the preceding discussion serve to demon-

strate the determination and the applicétion of characteristic
modes Tor the solution of scattering by wire objects. Of particu-
lar interest is the usefulness of the characteristic mode approach
in caiculating the tumble average cross section. Application of
the method to other single-wire configurations would be of in-
terest, The method cou]d‘also be extended to multiple-wire
scatterers, such as coaxial wire Toops, and to wires with sharp
oznds and/or lumped loads. At the present time, however, the
characteristic mode method is 1imited in a practical sense to
objects for which a small number of modes, say, less than four

or Tive, accurately describe the scattering properties.
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APPENDIX A

THE LEAST SQUARE SOLUTION OF A SET OF N LINEAR COMPLEX
EQUATIONS IN M UNKNOWNS, WITH M < N

The least square solution of a set of N equations,

N
(84) S= 1 (& - Ziy L1 [E; -

]
He~1=
=
Ne—=
=
~
—
—_
(o)
-

wiere ¢ denotes the complex conjugate. To find a minimum in S con-

sider its first derivative with respect to each Ik’ K= 1,2,++4,M,

w
t o~

M
: : c c
. 1 {Z_ik[E_i - J,Z_ Z- . I.:l + Z.

—
[e9]
[Gx]
—
Qzfa>
—
=~
i
1
-

Setting aS/aIk = 0 for a minimum in S, Eq. (85) yields

N

c - —
(86) Re 1{21 L5 [Es - I.]y =0, k=1,2, «-+, M,

N1
~N

The matrix equivalent to Eq. (86) is

(e7) Re{[Z]1*[Z]1(1)} = Re{[Z]*(E)} ,
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84
where the superscript * denotes the compliex conjugate transpose and -
tne brackets [] and parenthesis ( ) denote matrices and column
vectors, respectively. -

Returning to Eq. (85), we may also satisfy the condition aS/aIk =

0 by setting each of the right hand terms equal to zero, i.e.,
N M c -

88 Z.. [E. - Z..1.177 =0, k=1,2,+-+,M,
(88) 1_E=1 ik L E; J_Z_l 35 441 =0
and

. N C M -’

Z;, [E. - Z..1.1=0, k=1,2,...,M

(89) 121 ik [ i jzl 13 3]

Equation (88) is merely the complex conjugate of Eq. (89). The matrix

equivalent to these equations is seen to be

(90) ZI*(z] (1) = [z1* (E).

The solution of either Eq. (87) or Eq. (90) is a least square solution

of the set of equations given in Eq. (83). -
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APPENDIX B
PIECEWISE UNIFORM IMPEDANCE MATRIX ELEMENTS[1-3]

The thin-wire scatterers considered in this treatise are ap-
nroximated in each case by a number (N) of short, straight-wire
segments. The elementary scatterer to be considered under the
piecewise uniform approximation is then a short siender wire with
a uniform current density on its surface.

Consider a perfectly conducting wire segment of length s and
radius a to have a harmonic electric current induced uniformly over
its surface. Let the axis of the wire coincide with the z axis and
let the center of the wire be the coordinate origin. If the cur-
rent density is J = 2 J, where J is a constant and 2 denotes a unit

vector parallel with the z-axis, the currentin amperes is given by

(81) I = 2wad.
In general, the free-space field of this source is expressed as a
surface integral over the surface of the wire. In our application,

however, the general expressions simplify as follows

. r
-Jjkr 2
- olv u/e . e
(92) Ep(p,¢,2) 411'Jk (1 + Jkl") )
"1
(93) E¢(p,¢,2) =0,
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and E
—~— S/2
(94) EZ<O a¢52) = I—q_n—gég' [2Y‘2(1+Jkr) - (p2 + 32)
e 2 2y, ¢ 3K
(3 4 3jkr = k°r°)] B dt,
r

where p, ¢, and z are the cylindrical coordinates of the observation

point,

(95) k = w Vue .

(96) r=»/oz+a2+(z-t)2,
(37) ry = }/pz v a2+ (2 +s/2)%,
and

{98) ry = /éz PN (z - s/2)2.

These expressions for the field are accurate if p = 0 or if r% and

rg are large in comparison with the quantity ap. Equations (92)

through (98) may be used to calculate the impedance matrix elements

el
{99) 7., =4l

I

J

wnere Egj is the component of the field at the center of and tan-

gential to wire segment 1 due to a unit current Ij = 1 on segment j.
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APPENDIX C
COMPUTER PROGRAMS

The data given in the body of this treatise and in Appendix D
were computed by means of the main programs and subprog?éms Tisted
in Table 4. Statement listings are given in Figs. 43 through 58.
A1l programming was done in the Fortran IV language, Version 13,
for the Ohio State University IBM 7094 IBSYS Operating System. A

brief discussion of each program and subprogram is given here,

A. Main Programs

(1) MAINL

The main program MAIN1 derives the backscattering cross
section by application of the basis transformation technique,.
The program receives the transformed impedance matrix [Zé} from
the subroutine SUB2(b) and performs the multiplication [Z,1% [Z,]
of Eq. (11). The Crout reduction procedure which follows is inter-
rupted following statement 118 in order to specify the desired
angles of incidence and the polarization state of the incident
plane wave. The tangential components of the incident electric
field are calculated and are multiplied by [Zé]*. The Crout
routine is then completed yielding a least square solution for
the current on the scatterer in the form of coefficients of a

series expansion in terms of the new basis functions. Finally,
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Program

or
Subprogram
MAIN1
MAIN2
MAIN3

MAING

SUBL

SuB2

SuB3

SUB4
SUB5
SuB6

SuB7

TABLE 4
COMPUTER PROGRAMS AND SUBPROGRAMS

Description

Backscattering cross section by the
basis transformation technique

Backscattering cross section by the
piecewise uniform method

Determination of characteristic modes
of wires

Backscattering and tumble average cross
sections of wires using characteristic
modes

Wire geometry subroutines
(a) circular and elliptical loops
(b) straight wires, circular arcs
and helices

Impedance matrix subroutines

(a) piecewise uniform; circular loops,
circular arcs, straight wires,
and helices

(b) piecewise uniform with basis trans-
formations; circular loops, circular
arcs, straight wires, and helices

{c) piecewise uniform with basis trans-
formation; elliptical loops

Basis function subroutines
(a) sine and cosine functions for
closed loops :
(b) sine and cosine functions for wires
of open configuration
{c) Chebyshev polynomials of the second
kind
)

Subroutine for locating emin(“m

Subroutine for computing [B{a)]

Subroutine for computing eigenvalues and
eigenvectors of [B(a)]

Subroutine for averaging o(8,¢) over o
and ¢
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tne theta- and phi-polarized and total backscattering cross sections,

EAT, EAP, and EA, respectively, are computed.

(2) MAINZ

The second main program, MAINZ, is similar to MAINL with the
exception that a piecewise uniform impedance matrix is returned by
suB2(a), multiplication by the complex transpose of the impedance
matrix is deleted, and the Crout reduction yields a piecewise
uniform approximation to the induced current.

(3) MAIN3

The main program, MAIN3, for determining the characteristic
modes of wires follows the steps outlined here, The number of
separate cases is specified by the parameter NRUNS. The wire
geometry for each case is caiculated by the appropriate subroutine
SUBl1(a) or (b). Having established the wire geometry, the im-
pedance matrix [Z] of Eg. (22) is obtained by a call to SUB2(b)
or (c). The main programn next proceeds to determine the phase
angles a and the associated characteristic current distributions,
Tinding first the even and then the odd modes. The P, Q, and R
matrices of Egqs. (35)-(37) are derived from [Z]. Data cards
then specify the number (NMODES) of modes to be found, the maxi-
mum number (NTRY) of “tries® to be made in seeking «_, an estimate
(ALP) of o (ALP = o - 180°), the initial step size (ASTEP) to be
used in searching for o and a lower Timit (ERROR) in the step
size. The parameters ALP, ASTEP, and ERROR are in degrees. A

new estimate for o  1s computed by the subroutines SUB4 (ANULL),
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Fig. 40.--Computer method for locating - corresponding
to the relative minimum

emin(a €min %m’ "

SUB5 (EGNVLU), and SUB6 (MATEIG). To do this the minimum eigenvalue

Emin(a) is computed for each of three values of «, i.e., for Al=A2-

ASTEP, A2, and A3=A2+ASTEP. SUB4 calculates the angle « cor-

min
responding to the minimum of the quadratic curve defined by the

three points (see Fig. 40). If no minimum is found for Al < o < A3,
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i.e., if the first derivative is non-zero or if the second derivative
is negative in this region, either Al or A3, whichever corresponds

to the smaller minimum eigenvalue e_. (o) (denoted by EV1 and EV3,

min
respectively), becomes the new estimate of o and is assigned to

"A2%. If a minimum in Cmin(a) is found within the limits Al < o < A3,
the step size ASTEP is reduced and the process is repeated (up to

NTRY times or until ASTEP < ERROR), taking as the new "AZ' the

In this manner the relative minima ¢ . (o ) are located,

,
angie Gpin- min'“m

thereby specifying the phase angles - and allowing the determination
of the corresponding eigenvalues (Im).

When either NTRY attempts have been made to locate G OF the
specified error 1imit (ERROR) has been achieved, the ejgenvector
{Zm) associated with the last estimate of o, is obtained by a |
final call to SUB5 and thence to SUB6. The current distribution
CUR (Im), represented by the eigenvector coefficients EF ((Im)), is
then normalized to radiate unit power and the resultant normalized

th{characteristic

vector (Imx along with the angle am,specify the m
mode for the given obstacle,

An example set of input data is shown in Fig. 41 for a straight
wire of length 1.0x and radius 0.005x.

(4) MAIN4

The main program MAIN4,which calculates the backscattering
cross sections of an object using its characteristic modes, assumes

that a significant number of characteristic mode current distributions

are known for the given obstacle; that each mode is specified by the
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coefficients of a Fourier series expansion in terms of predetermined

basis functions and has been normalized to radiate unit power; and

jo

that the characteristic value a = [cos o |e m

corresponding to
each current distribution is known and is specified by the phase

angle a_, ©/2 < a, < 3n/2.

m

SDATA
i
150
1eC 140 OeC
O« 005
& 5
1
340
Q 1
2
10
=550 20 Ce01
10 .
890 Ces2 Qs01
1
10
~30e0 Se0 0«01

Fig. 41.~--Example data for determining characteristic
modes (two even and one odd) of a straight
wire with length SL = 1.0x and radius
AL = 0.005x.

After establishing the wire geometry by a call to SUBl(a) or
(b) and the appropriate basis functions by a call to SUB3(a), (b),
or (¢}, the main program reads the parameters PH and TH, which de-
termine the limits on the integrations over phi and theta, and
IPH and ITH, which specify the number of points in phi and theta

in the integrations as well as the angles of incidence for which
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backscattering cross section data are calculated. For wires

such as straight wires and circular loops, whose scattering is in-
dependent of phi and is symmetric in theta, PH=0° and TH=90° are
sufficient., Ellipses require +=90% and TH=90°, circular arcs,
PH=180° and TH=90°, and helices PH=180°*and TH=180° or PH=360°

and TH=90°,

The matrix [F], corresponding to the dyadic pattern function
E;Of Eq. (20), is derived in the steps through statement 500. The
backscattering cross sections for the various linear and circular
polarizations are then computed. In calculating the average
backscattering cfoss section, the expressions |Fee|2, |F¢¢|2,

2, Re{F, FS },and In{(F, -

‘ c
|Fe¢| 86 ¢6 ee'F¢¢)Fe
The tumble average cross sections are then formed by taking

¢} are averaged separately.

weighted combinations of these terms. The averaging over theta and
phi is accomplished through a call to SUB7 (DBLINT).

An example set of input data is shown in Fig. 42 for a
straight wire of length 1.0x and radius 0.005x.
B. Subprograms o |

(1) susl

The geometries of the various wire configurations were computed
by one of two subroutines (WGRID) given in Figs. 47 and 48. The
wires were represented by N straight-wire segments. The sub-
routines derive the x, y, and z coordinates of the center of each
wire segment along with orientation angles g, the angie of rotation

from the positive x-axis, and a, the angle out of the xy plane (a is
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SOATA
1
STe WIRE WLA/2R=*1C0s LwleQ¢ Nu2lB50s MCE6s MSaS .
150
1e¢0 10 Qe
[5] 5
[sI'}s] GQe0C
1 19
2 EVEN i [s]ele]

" sa7249991E=0i=~0419334167E=01 029270693E=02=0424203868E~02
~L e TCR22786E=06=0488628724E=05
=-113e71
5486228860E=03 0413700993E CO0=0481425030E~01 0469739121E=02
-~ eB1651C63Em03~0+431331514E=-03
~N14957
Ge631R2100E-01~00345B6068E~01 0440849968E=02~0036569813E=03
=0eT767321271E=04
147470

Fig. 42.--Example data set for computing backscattering and
tumble average cross section data for a straight
wire with length SL = 1.0x and radius AL = 0.005)
using two even and one odd characteristic modes.
considered positive if the segment is tiited toward the negative
z-axis).
The subroutine of Fig. 47 generates circular and elliptical

loops according to the expression

2

2
(100) R(¢) = .
A% sin2 ¢+ A% cos2 é

2
Al - A

In the subroutine, o« = CAB and g8 = SAB.

HeTices? straight wires, and circular arcs are generated by
the subroutines of Fig. 48. The wire length is SL, the helix pitch
(distance between turns) is S, and R is the helix radius. The
helix is symmetric in ¢ about the positive x-axis and symmetric

in z about z = 0. For a straight wire SL = S and R = 0. For
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circular arcs S = 0 and R is the arc radius with SL being the
arc Jength,

(3) suB2 ’

Each of the impedance matrix subroutines (ZMAT), Figs. 49, 50,
and 51, are based on the piecewise uniform method formulated and
programmed by Richmond.[1-3]

The program given in Fig. 49 computes the elements C(I,J) of
an N x N piecewise uniform impedance matrix. Due to the symmetric
geometry of the wires considered it was necessary to calculate only
the first row of the matrix.. The portion of the matrix on and
above the main diagonal is comp]eted'by noting that C1+1,j+1 = Cij’
i.e., all elements on a given diagonal are equal. Finally, the
elements below the main diagonal are set equal to their transpose
since the matrix is symmetric.

The program shown in Fig. 50 is identical to that of Fig. 49
except that the impedance matrix is transformed from the piecewise
uniform basis to the basis derived by a subroutine call to SUB3 (a)
or (b). The piecewise uniform impedance matrix elements C are com-
puted one at a time while forming the new impedance matrix elements
CC(I,J). The resulting matrix is N x M in dimension (M<N), where
N is the number of match points and M is the number of modes re-
tained in the new basis.

For the elliptical geometries the symmetries assumed in SUB2 (a)
and (b) are not valid. The impedance matrix subroutine SUB2 (c)

written for elliptical wires takes into account the more 1imited
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sym%etries of the ellipse. In all other respects SUB2 (c) is
identical to SUB2 (b).

- (3) SuB3

ié The programs given in Figs. 52, 53, and 54 generate basis
functions and form the transformation matrix [T] of Eq. (3) when
called by SUB2 (b) or (c). The first, Fig. 52, computes sine and
cosine functions suitable as a basis for the Fourier expansion of

the current induced on closed wire loops., The modes are defined by

(101) AJ(J,K) = cos gﬂi%ELELQ_ L K= 1,2,000,MC

J

1,2,--+,N.

(102) AJ(J MC+K) = sin gﬂéfﬂil.’ K= 1,2,°¢%,MS

where AJ(J,K) is an element of the transformation matrix, SL is the
wire length in wavelengths, MC is the number of cosine modes, MS is

th match

the numbef of sine modes, and SLJ is the location of the J

point along the center-Tine of the wire. |
The subroutine shown in Fig. 53 derives a transformation matrix

similar to that Jjust described but for wires of open configuration.

The matrix elements are, in this case,

(103) AJ(3,K) = cos TKISLD ey oo e

(104) AJ(J,MC+K) = sin “KS'ELJ L K=1,2,e e MS
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The Chebyshev polynomial basis functions are computed by the
subroutine given in Fig. 54. The elements of the transformation
matrix are

. -1
(105) AJ(3,k) =sin(lek-l)cos (2SLY/SL))
sin(cos™ “(2SLJ/SL))

y K=1,2,+++,MC
J=l,2,."’No

| "
(106)  AJ(,Me+k) =Sintl2K cos T(BSLI/SLY) oy 5 . ks
sin(cos” “(2SLJ/SL))

(4) sus4

The subroutine SUB4 (ANULL) receives three values for o (Al,
A2, and A3) from MAIN3, obtains the corresponding minimum eigenvalues
emine) (EV1, EV2, and EV3) from SUBS, then fits a quadratic equation
to these three points (see Fig. 40) to estimate a.» the phase angle
associated with a relative minimum Emin(“) = g . (am).

(5) SUB 5

Given an angle o (ALP) and the matrices [P], [Q], and [R], the
subroutine SUBS5 derives the matrix [B(a)] according to Eq. (38).

(6) SUB6

The subroutine SUB6 computes the eigenvalues and eigenVectors of
[8(a)].

(7) SuB7
The subroutine SUB7 uses Simpson's rule integration in performing
a double integration of the function S over theta and phi. The Timits
of integration are O to PH on phi and 0 to TH on theta using NP points
in phi and NT points in theta, If PH = 0, a single integration on

theta is performed.
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LEXECUTE 1BJOB 108
$18J08 GO
SIBFTC MAINI NODECK
COMMON X (2503 +Y(250)+Z(2501CAB(250)+SAB (250 }/SIZE/SI (250)
COMMON /COEF/CC (25020} ¢SALP(250)1/CURR/ZAJ(2%50«20})
COMPLEX QU«PNNEINC
COMPLEX EXPA(250)+E1(250):A(203+CCoPNsEPSETF
DIMENSION P(2501+8(250)
DOUBLE PRECISION AR(204211:A1(20+211+R1R2+R3¢Al1sAI2.,A13 o
1 FORMAT (IH +12X+4HREAL 16X ¢SHIMAGes 13X« 4HMAG e « 1 3X s SHPHASE /4X s -
2 1PAE1Be7) :
2 FORMAT (10QHOECHO AREA//+SH«1OHTHETA POLe¢E165¢8¢S3XeBHPH]I POlLe
2 E1668.8X+5HTOTAL1E1668//)
3 FORMAT (21HICURRENT COEFFICIENTS«/(1P2E15+7))
4 FORMAT (BHOCURRENT «/8H ELEMENT»8X4HREAL +16XsSHIMAGe « 15X s
2 GHMAGo « 1 3X o SHPHASE « /)
FORMAT (10HOFAR FIELD//+ SX+10HTHETA POLe)
FORMAT (1S5+3E208:¢F1365)
FORMAT (7F 1045} -
FORMAT (1415}
FORMAT (1HMO. 5X+8HPHI POLs)
FORMAT (//+36HOERROR IN E~F1ELD AT MATCHING POINTS //«12Xs
2 1OHINCe FIELD28X+11HSCATe FIELDs31Xs11HTOTAL FIELD) -
11 FORMAT (1HO+3E158)
12 FORMAT (1H +8E15.6)
13 FORMAT (16HIFIRST AND LAST «12e3H OF+14+¢79H EQUATIONS [GNORED TO RE
2DUCE EFFECT OF WIRE ENDS ON LEAST SQUARES SOLUTION FOR +12410H UNK

OV~ W0

1

2NOWNS e //34H WIRE SEGMENT LENGTH (WIRE RADI1I®«F7e4//) gl
70 FORMAYT (30HIANGLE OF INCIDENCE THETA=«FT7e3¢7H PHI®«FTe3e

2 10X+ 12HPOLARIZATIONsSX4AHETHEFS5e24 SX e AHEPHE«F5e2/)

ZZ=376.72727 .

TO=57429578 o

TA= 01745329

Pl1=32.1415926
TP=26.2831853

- CNSNT =4 #P ]

- READ (S5+8) NRUNS
DO 1000 NRUN=x1 ¢NRUNS
CALL WGRID (N}
CALL ZMAT(BsMCeMSalN}

M=MC+MS st
sSIwL=sli(1i/8
MM=M+1

c FORM SQUARE. COMPLEX SYMMETRIC MATRIX 8Y MULTIPLYING

c ((nC)ICOMPLEX TRANSPOSE y¥*(CC)»

READ (5+8) NTEST
DO 1000 NT=1«NTEST
READ (5.7) RADI!
MNIGNOR=RADII/SIWL+e5
WRITE (64133 NIGNOR«NeM+SIWL -
N1=NIGNOR+1
N23aN=-NIGNOR
DO 50 I=].M
DO S0 JaleM id
R3=0e.
Al3=0e.
DO 40 K=N1 N2
R1=REAL(CC(Ke1))
ATT=AIMAG(CC(K1))
RZEREAL (CC(KsJ) )
AT2xAIMAG(CC(Ked))
R3I=RI+RINR2+ATI*ALZ -
40 AI3=Al3+R1I¥AI2-A11%R2 hand
AR(1¢J)=R3

Fig. 43.--Main program for the basis transformation method.
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ey

e e

e Yy

Al(led)=ATD
ARCJs 1 3=R3
50 Al(JsI1)==Al3
START CROUT REDUCTION
CROUT METHOD FOR COMPLEX SYMMETRIC MATRIX
DO 118 L=1eM
tLL=L~1
DO 118 I=LM
IF(LLLeEQ.D) GO TO 1171
DO 117 K=1sLLL
RITAR(L «K)})
R2=AR(K 1)
AT1=Al(LK)
Al2=Al (K4 1)
AR(L« I I1=AR(L I 1~RI*R2+AI1*%AT12
117 Al(Lsl)=Al (L1 )=RI*A12~A11%R2
1171 CONTINUE
tMIst~=1
IF(LMI) 10541184105
105 ARC(I+L)I=AR(L 1)
AT (lTell)=z=ATl (o1
R2=ARI(L L)
AR(Le1)1ZAR(L s 1) /R2
Al(Ls1)=AI (L ! )/R2
118 CONTINUE
COMPUTE INCIDENT E~FIELD AND MULTIPLY BY ((CC)ICOMPLEX TRANSPOSE)
TO O8TAIN EQUALS COLUMN.
READ (S547) THETI+THETF+DTHETAPHI[ PHIF+OPH] «ETHEPH
I TH= (THETF~THETI)/DTHETA+1 41
IPH=(PHIF=PHII)/DPHI+1e}
PHI=PHII
DO 300 IP=1,1PH
PH=TA%*PHI
CPHI=COS (PH)
SPHI=SIN(PH)
THETA=THETI
DO 250 IT=141TH
TTA=TA¥XTHETA
CTHET=COS(TTA)
STHET=SIN(TTA)
STCP=STHET*CPHI
STSP=STHET#SPHI
CTCPR=CTHET*CPHI
CTSP=CTHET*SPHI
DO 850 [=1N
ARG=X(1)%¥STCR+Y(I)I)*STSP+Z (1) *CTHET
EXPA(I)=CEXP (CMPLX(0s s TP*#ARG))
P (1 )1=CPHI*SAB(])=SPHI*CAB(I)
Q(L)=CT~P*CAB(1)1+CTSP*#SAB(1 )+STHET*SALP(])
850 EI1(1)= (ETH*Q(I)I+EPH*P(]) )} *EXPALL)
DO 220 K=z1+M
AR(K+MM)=0
220 Al (K+MM)=De
DO 1001 I=N1eN2
R2==REAL(EI(]I )
Al2==AIMAG(ELI (1))
DO 1601 K=i+M
R1=REAL(CC(I4K))
AT1=AIMAG(CC(1+K))
AR(KyMM)IZAR(K MM +R1*¥R2+AT 1 #A 2
1001 AL(KsMM)I=Al (KsMM)+R1*¥AT2-R2#A ]}
RESUME ~ROUT REDUCTION
DO 120 t=1+M
LLt=sL=1

Fig. 43.
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O0O0O0

119
1191

120

122

231

230

150
240

160

400

IF(LLLEQ.0) GO TO 1191

DO 119 K=1LLL

RI=AR(LK)

AT1=AT (LK)

R2=AR (K ¢MM)

AT2=Al (K¢MM)
AR(LeMMIZAR (L +MMI-RI*¥R2+A11 %A1 2
AL« MM)I=AT (L oMM)=RI*AI2-R2%*#AT}
CONT INUE

R2=AR(L L)

AR(L «MM)=AR (L «MM) /R2

AT (LoMMIZAT (L +MM) /R2

DO 122 L=2+M

[ =MM=~L

II=1+1

00 122 K=11uM

Ri=zAR(I1 K

R2=AR (K +MM)

All=At (1K)

Al2=A1 (K+MM)

AR(T+MM)I=AR(]I «MM)I~RI¥R2+AT1#A12
AT (T eMMIZAT (] e MM)=RI*AIZ2-R2%#A]]
END CROUT REDUCTION

SOLUTION IS IN MM COLUMN

CHECK "ON FIELD MATCHING
WRITE (6410) :

00 231 J=1M

CR=AR (J s MM)

CI=AT (JeMMM)

A (JY=CMPLX(CR«CI
PNN=(0es0e)

PN=(0s¢Q4)

DO 240 1=1eN

EP =(0s40s)

DO 230 J=1M
ER=ER+C (I« J)®A ()

ET=EI (I1)Y+ER

ETM=CABS(ET)

WRITE (6+12) EI(II+EPETETM
EF(11=(0es0as

DO 150 J=1«M
EIC(IISEI{(II+AJ(]I « I RA(Y)
PN=PN+CONJGI(ET (1)) *ET
PNMAG=CABS (PN)

WRITE (6411) PN+PNMAG

WRITE (643F (A(l)el=leM)y
WRITE (6.4)

DO 160 I=s1eN
CMAG=CABS(EI (I )
CR=REAL(EI(I))
CI=AIMAG(EI (1))
PH=TD*ATAN2(C1,.CR)

WRITE (646 ) 1.CRsCI+CMAG«PH
COMPUTE FAR FIELD AND ECHO AREA
ET=(0s¢0s)

EP=(02e006}

DO 400 I=1sN

R=SI (I )1%2Z/2,

F= EI(I)IXEXPA(T)I®CMPLX (0o v=S5)
ET=F*Q(1)+ET

EP=EP+F*P (1)

ETM=CABS(ET)

EPMz=CABS(EP)

Fig.

43.
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250
300
1000

TS=ETM#*2

TC=EPMERD

EAT=CNSNT*TH

CAP=zCNSNTH*TC

EA=FAT+EAP

WRITE (6+70) THETAWPHIETHEPH
WRITE (6«2 )Y EATEAPEA
ETR=REAL(ET)Y

ETI=AIMAG(ET)

EPRzREAL (EP)

EPI=AIMAG(EP)
PHT=TO#ATANZ2(ETIETR)
PHP=TO*ATANZ2(EP ] +EPR)

WRITE (6+5)

WRITE (641 ) ETRETIETMPHT
WRITE (649)

WRITE (641 ) EPREPIEPMPHP
THETA=THETA+DTHETA
PHRI=PHI+DPHI

CONTINUE

.STOP

END

Fig. 43.
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SUXECUTE iBJyoB
+18B08 GO
SIBFTC MAINZ NODECK
COMMON X1100)+¥(1003+Z(100)sCAB(100)+SAB(100)/SIZE/ST1(100)
COMMON /COEF/C¢100+101)¢SALP (100}
COMPLEX EXPA(I00)+ETEP«C+CUR(10Q)F
DIMENSION P(100)«Q(100)
] FORMAT (1H 112X e4HREAL 414X sSHIMAGe s 13X e4HMAGe ¢ 13X SHPHASE /74X «

2 1PAE1B.7)
2 FORMAT (1O0HOECHO AREA//+5Xe10HTHETA POLe+E16e8+5Xs8HPHI POL e —
2 E1648:8XsSHTOTALE1648//) ,
4 FORMAT (8HOCURRENT :/8H ELEMENT+8X+4HREAL+16XsS5HIMAGe + 15X
. 2 4HMAG e + 13X 4 SHPHASE « /)
S FORMAT (10KOFAR FIELD//+ SXalOHTHETA POLe) . -
6 FORMAT (I5+3E20e8:F 1345}
7 FORMAT(7F10.5)
8 FORMAT(1415)
9 FORMAT (1HO, 5X.8HPHI POLe)
70 FORMAT (30H1ANGLE OF INCIDENCE THETA=sF7e347H  PHI=4sF 7430 -
2 10X+ 1 2HPOLARIZATION'SX s 4HETHR s FS 424 5X s GHEPHEFSe 2/}
27237672727
TO=57.29578
TA= 01745329 ' -
P1=3+1415926
TP=642831853
CNSNT=4 ¢ #P]
READ (S5+8) NRUNS
DO 1000 NRUN=1 ,MRUNS s
CALL WGRID (M)
CALL ZMAT(BWN)
NN=N+ 1 .
¢ START CROUT REDUCTION | : : -
c CROUT METHOD FOR SYMMETRIC MATRIX
0O 118 L=1eN
ttl=l=1

DO 118 1=LsN

IF(LLLEQ.C)Y GO TO 1171

DO 117 K=lslLLl
117 ClLeI¥= (e D) =C L IKINC(Ke])
1171 CONTINUE

t M=l -] -

IF(LMI) 10541184108
105 C{lL¥=T(sl}

CeLel a1 /7C{LILY
118 CONTINUE

READ (547) THETI~THETF+ODTHETAPHI T +PHIF«DPHI +ETHEPH -
ITH= (THETF=THETI)/DTHETA+l 1!

1PH=(PHIF=PHI I ))/DPHI+101

PHI=PHII

DO 300 IP=z=1.1PH -~

PHzTA¥PHI

CPHI=COS (PH)

SPHI=*SINI{PH)

THETA=STHETI Ll
DO 250 IT=1.1TH4

TTA=TA¥THETA

CTHET=COSK(TTA)

STHRET=SIN(TTA}

STCP=STRET*CPHI had
STSP=STHET#SPHI
CTCPECTHETRCPHT
CTSP=CTHE T%SPH]
DO 850 [wl N w.

ARG=X (11 #STCR+Y (1) *STSP+Z (] ) #CTHET

Fig. 44.--Main program for the piecewise uniform method. .
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850

-
119
- 1191
120
_
122
4

1160

‘I' 400
ke

-
250
300
1000
oy

EXPA(I)=CEXP(CMPLX(0++TP*¥ARG))
P(I)=CPHI#SAB(1)~SPHI*CAB(1)

Q(1)1=CT PXCAB(1)+CTSP*#SAB (] )+STHET*SALP(])

CUILWNNY=~(ETHRQ (I I+EPH*P (1 ) ) *EXPA(])

00 120 L=1+N

LLl=L-!

IF(LLL«EQ«Q) GO TO 1191

DO 119 K=l.LLL
CLLoNNI=C(L«NNI=C{LKI¥C(KIsNN}
CONTINUE
ClLeNNYI=CL«NMNI/C(L L)

DO 122 L=2.N

T =NN~L

I1=1+1

DO 122 K=11sN
CULANNI=C UL «eNN)I=C (] oKIHC(KINNY
WRITE (6+4) '

DO 160 I=x1N

CUR(II=C T +NN)
CMAG=CABS(CUR(I1Y))
CR=REAL(CUR(T1))
CI=AIMAG(CURI(I )
PH=TO®ATAN2(CI+CR)

WRITE (6+6 ) 1+CReClI1CMAGPH
COMPUTE FAR FIELD AND ECHO AREA
ET=(0e¢0e)

EP=(Qe00e

DO 400 I=1.N

S=SI(1)Y#22/2.

FECUR(I ) #EXPA(I I FCMPLX(0e¢=S)
ET=F#*Q (1 Y+ET

ERP=ER+F*P (]

ETM=CABS(ET)

EPM=CABS(EP)

TB=ETM**2

TC=EPM*#2

EAT=CNSNT*TB

EAP=CNSNT*TC

EA=EAT+CAP

WRITE (6+¢70) THETAWPHIJETHEPH
WRITE (6+2 ) EATEAREA
ETR=zREAL(ET)

ET!=AIMAG(ET)

EPRz=REAL (ER)

ERPI=AIMAG (EP)
PHT=TO¥ATAN2(ETIETR)
PHP=TO*ATANZ(ERI] +EPR)

WRITE (6¢95)

CWRITE (641 ) ETRWETIETMPHT

WRITE (6+9)
WRITE (611 ) EPRJEPIEPMIPHP
THETAx THETA+DTHETA
PHI=PHI+DPHI

CONTINUE

sTop

END

Fig. 44.
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SIBFTC MAING DECK
2 FORMAT (1M +F15.81)
3 FORMAT (7H1IALPHA=«F13:8.8H DEGREES +SX+11HTANCALPHA)=,F1348 //) e
4 FORMAT (23HOE IGENVECTCRs EVEN MOGE //UIH «E15.,8311)
5 FORMAT (104HICURRENT DISTRIBUTION (NORMALIZED TO MAXe AND TO RAD.
2UNIT POUWER. RESFPa) AND TANGENT OF E~FIEWLD PHASE )
FORMAT (1H +15«2E17¢8+10X:F15e6) :
FORMAT (7F10.5)
FQRMAT {1415
FORMAT (1HO///7)
10 FORMAT (BHOAAA=Faal)
11 FORMAT (17HOFIGURE OF MERIT=+E16.8 o
12 FORMAT (22HOEIGENVECTOR. ODD MODE /7 01H «E15.81)
{3 FORMAT (1S6HIFIRST AND LAST +12:s3H OF«14+79H EQUATIONS IGNORED TO R
2EDUCE EFFECT OF WIRE ENDPS ON LEAST SQUARES SOLUTION FOR +12+10H UN
2KNOWNSe //3aH WIRE SEGMENT LENGTH (WIRE RADIIIneFTe4 /) -
14 FORMAT (4E15,.8)
15 FORMAT (1HI} )
120 FORMAT (9HOP MATRIX /)
130 FORMAT (9H0G MATRIX /)
140 FORMAT (GHOR MATRIX /) ad
1950 FORIMAT (1 +6D20.121}
160 FORMAT (3024.15)
DIMENSION TANPH(250}+CUR(Z2S0IEF (20)
COMMON X{(250):Y(2501+12(230)+CAB(250})«SAB(2S031/SIZE/S]I (250 o
COMMON /COEF/CC{250:20)+SALP(250)1/CURR/AJ(250+20)
DOUBLE PRECISION PlJsQlJaRIJ:PoQeR
COMPLEX CCVEALPGETD «PT
COMMON /POR/P(20.20)+Q(204203+R (2020}
EQUIVALENCE (TANPH(I)}+SALP{1 31+ (CUR(L}s X{1})
KTIME=14/60
TD=57.25578 . .
T62401745329 '
READ (5.8) NRUNS
DO SO0 WNRUN=1 « NRUNS
YTIME=2CI_OCKI{XTIME}
WRITE (&+7) YTIME
CALL WGRIDI(N)
CALL ZMAT (BaMC.MSiN)
YTIME=CLOCK(XTIME)
WRITE (6.7) YTIME
M=MC+MS
SIWL=S1(11/B : —
READ (5.81 NTEST
DO SO0 NTT=1.NTEST
READ (S+7) RADII
NIGNOR=zRADII/SIWLYeS
WRITE (6+13) NIGNORNM«SIWL
N1=NIGNOR+1
N23N=NIGNOR
READ (583 NPUNCH +MPUNCH
€ . COMPUTE Ps Q AND R MATRICES
MORDER=®0
MN=O
. MD=MC W
1F(MCY 280.28+430 ) - . o
28 MD=MS

0@

Fig. 45.--Main program for the determination of characteristic
modes of wires.
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30

40

50

60

70

80

90

92
94
96

98

100

MN=MC

MORDER =}

00 50 l=1 MG

1C=1+MN

0O 50 Jsl+D

JC=J+MN

P1J=0,

OIJ=O.

R1J=0.

DO 40 K=N1 N2
RKI=REAL(CC(KLICY)
RKJ=REAL (CC (K JC))
AIKI=AIMAGICCIK«ICYH)
AITKJUSATMAGICC (KeJC) }
PlU=RIJ+AIKIRAIKY
Q1J=QIU+RKI#AIKJ+RKIKATIK ]
RIJ=RIJ+RKI*¥RKY

P(le«J)=PIY

GQ(lsur=Qtly

R(led)=R1V

P(Jel)=PIY

QcJs11=QlY

R{JeI)=RIV

WRITE (64120

DO 60 [=1.MD

WRITE (64150) (P(lsJleJd=1eMD)
WRITE (6+130)

DO 70 I=1.MD.

WRITE (64150) (Q(leJ)edz]eMD)
WRITE (6+140)

DO 80 I=1,.MD

WRITE (6+150) (R{14J)eJd=z1eMD)
WRITE (649}

IF(NPUNTH.EQ.C) GO TO 90
PUNCH 1604 ((P(IsJ)eJ=14MDYI=1eMD)
PUNCH 160s ((Q(led)ed=1eMDIel=]eMD)
PUNCH 160y ((R(TeJ)eJaleMD)el=14MD)
READ (5+8) NMODES

DO 425 NM=1NMODES

WRITE (64+15) .
FIND ALPHA CORRESPONDING TO MINIMUM EIGENVALUE
AAA=O.

READ (548) NTRY

READ (S5+7) ALP+ASTEPWERROR

A2=TA#*ALP

ERROR=TA*ERROR

LSTERP=TA*ASTER

DO 100 NT=1+NTRY

Al =A2-ASTEPRP

A3=AZ+ASTEP

IF(Al1+]1e5707963) 96+96+94
IF(A3=145707963) 98496196

ASTEP=ASTEP/2

GO TO 92

CALL ANULL (MDAl +A2+A3¢ASTERP ERROR)
IF(AAA.EQsle) GO TO 200

ALPHA=TD#*A2

WRITE (6+2) ALPHA

ASTERP=ASTER/5.0

IF(ASTEPLT<ERRCR) ASTER=ERROR
IF(ASTEREQ.ERROR) AAA=1,

CONTINUE

Fig. 45.
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200

250

300

350

37S
380

390
395

400

a25.

500

-
ALPHA=TD*A2
WRITE (6+10) AAA
TANALP=SIN(AZ2)Y/COS(A2)
WRITE (6.3) ALPHAJWTANALP —~—
YTIME=CLOCK(XTIME)
WRITE {(6+7) YTIME
COMPUTE EIGENVECTOR CORRESPONDING TO ALRPHA
MM=Qe
CALL EGRNVIUMOJAZ2.EVEF ¢MM) -
COMPUTE CURRENT DISTRIBUTION AND E-FIELD PHASE
CMAX=0. .
ERROR=0.
PTx(0aas0¢) —
EALP=CEXP (CMPLX(0eeA2)}
DO 300 I=1sN
ElI=(Cee0e)
CUR(IY=0.
DO 250 Jzl«MD hioad
JC=I+MN
EI=EI4+Cr{]«JCI¥EF (U]
CURCII=FURIINI+AJ (L o JCIHEF (J)
PT=RTH+EINCUR(IHI*STI () [
IF(ABS(FUR(I)1)eGT«CMAX) CMAX=ABS(CUR(I1})
EI=EALP*E]

ER=-REAL (E1)

EAT=AIMAG(ET)

PH=ATANZ2 (EAl <ER) e
TANPH(1)=SIN(PH)/COS(PH}
STOTAL=—-REAL(PT)
PNORM=SQRT(PTOTAL)

DO 350 I=1+MD
EF(1)=EF (1) /PNORM
IF(MPUN"HEQ.0) GO TO 375
PUNCH 14+ (EF{I)esl=1.MD)
IF (MORDER) 390.380.+390
WRITE (6+14) (EF(I)elx]eMD) ™
GO TC 395

WRITE (6412) (EF(IyelzleMD}

WRITE (645)

DO 400 l=1«N~ ‘ —
CUSCUR( ! ) /PNORM

CUR(T)I=AUR(T ) /CHAX

ERROR=ERROR+ABS{TANPH (1} *CUR(1))

WRITE (6+6) 1+CURCII+CUITANPH(T) —
FN=N -

ERROR=ERROR/FN

WRITE (6+11) ERROR

YTIME=CLOCK (XT [ME )

WRITE (647) YTIME -
CONT INUE

IF(MS5«EQsQ) GO TO 500

IF (MORDER) 28,28+500

CONTINUE —
STOR

END

Fig. 45.
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SIBFTC MAIN4 DTCK
1 FORMAT (1R1)
2 FORMAT (GHOMODT +11+2XeA6//5X6HALPHA= +FBe2//5X 0
2 22HEXPANS [ON COEFFICIENTS /(10X15E2048))
3 FORMAT (03H0OMODLE CURRENT DISTRIBUTIONS (EACH NORMALIZED TO RADIATE
2 UNIT POWLI?) )
FORMAT ([5«8E14e4)
FORMAT (2(13,A%))
FORMAT (7F10.5)
FORMAT (1415
FORMAT (42H] AVERAGE BACKSCATTERING CROSS SECTION FOR +412A6 ///5Xs
2 1OHLINEAR TO LINEARISXE20.8 // 5Xo 15HLINEAR TO CROSS¢16Xs
3 E20e8 //5Xs26HRIGHT CIRCs TO RIGHT CIRCe +15X¢E20e8 //5Xs
-3
5

- Q2o

26HLEFT CIRCe TO LEFT CIRCes7X+E20e8 //5Xs
25HRIGHT CIRCe TO LEFT CIRCes6XsE20e8 7/

12 FORMAT(22H0TOTAL RADIATED POWER= F10e7¢19H (SHOULD BE UNITY.) /)

13 FORMAT (12A6)

14 FORMAT (4E£15¢8)

15 FORMAT (25HIBACKSCATTERING ECHO AREA///74X+66H(VEVERTICALs H=HORIZe
2e RU=RIGHT CIRCees LC=LEFT CIRCe POLARIZATION) /77 AX+3HPHI »
34X+ SHTHETA«OX « 3HV=V s 1 2X ¢ 3HH=H s 12X e 3HV=Hs 1 1 X4 SHRC~RC+ 1 OX+SHLC=L.C»
4 10X eSHRC-LC /)

16 FORMAT (2FEe241E176¢545E155)

COMMON /CURRY/ AJ(250+20)

COMMON X(250)+Y(2503+2(250)+CAB(250)+SAB(250)/SIZE/SI (250)
COMPLEX FF«FTT(20+40)+FPP(20+80)+FTP(20+40)4ALPXFTFT+FPFPLFTFP
COMPLEX ET(20+40)+EP(20¢40) +EXPAETTPIWEPTPCEXALP
DIMENSION SALP(250)+A(20)+C(8e250)sF (20+40)¢G(20640)eH(20440)
2 R(20+40)+SPECS(12)
ZZ=376.72727

TAx 01745329

Pl1=3.1415926

TP=2.%P]

FP=4 %P

P2=Pl /2

2Z22=22%%2

CCST=P1#ZZ2

TD=*57.29578

READ (548) NRUNS

0O 1000 NRUN=E1 «NRUNS

READ (Se«13) (SPECS(I1)eImiei2)
CALL WGRID(N) .
CALL CBASIS(MC+MSeN)
MEMC+MS

DO 60 K=14N

ALP=TA*¥CAB{(K)

BET=TA*#SAB(K)

CALP=COS (ALP)
SALP(K)=SIN(ALP)
CAB(K)=rALP®#COS(BET)

40 SAB(K)=CALP¥SIN(BET)

READ (S547) PHeTR

PH=TA*PH

TH=TA*TH

READ (S5+8) IPHsITH
1PH=]1PH/2

IPH=2%PH+1

ITH=ITH/2

I TH=2%] TH+1!

FNxITH=-1

DTH=TH/FN

FN=1PH-1

DPH=PH/FN

DO 100 IT=1.1TH

Fig. 46.--Main program for computing backscattering and tumble

average cross sections of wires using
characteristic modes.
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100

0O 100 IP=1.IPH
FTT{IT«IP)Y=(0es00)
FPRP(IIT«IPY®(0ed0a
FTP(IT+IP1=(0s404)
WRITE (641

, READ (545) MEEVEN«MO.ODD [

119

NMODES=ME+MO
MCHMS=MC

FMODE=EVEN

DO S00 NM=1..NMODES

"IF(MMJLESMEY GO TO 110

MCMS=MS
FMODE=0DD
READ(S«14) (A(I)eI3] «eMCMS)

"READ (S+«7) ALPHA ol

SWRITE (692) NMFMODE«ALPHAS (Al )« Ix] «MCMS)

150
160,

ARG=TA®ALPHA

AMAG=ABS (COS(ARG) )
CEXALP=rEXP(CMPLX(0e ARG ) }
ALPXTAMAG*CEXALP

DO 160 I=1N

Ci=Ce

"DO 150 Jai «MCMS

GuEd -
IF(NMaGTaME) VuaI+MC

CI=CI+A{OI*AJ(l I

C{(NMe«I)=CI

. PHI=0,.

DO 4S50 IP=x1+1PH
CPHI=COS (PHI)
SPHI=SIN(PHI )
THETA=Qe

DO 400 IT=1+ITH -
ETTP=(0e104)
EPTP=(0¢+04}

THET =~0S(THETA)
STHET =SIN(THETA)
STCRsSTHET*CPHL
STSPaSTHET*SPHIL
CTCP=CTHET*CPHI
CTSP=CTHET#SPHI
DO 1001 I=i.N

ARG=X (1) #STCP+Y (1) *¥STSP+Z (] Yy *¥CTHET

EXPA=CEXP (CMPLX (0s + TP¥ARG))
PaCPHI*SAB(1)~SPHI¥CAB(IL}
Q=CTCP#rAB( I )Y+CTSP*SAB(II+STHET®*SALP (1} el

CFFECINM T ) ¥EXPARST (1)

1001

00
450

500

ETTP=ETTRP+FF #Q
ERPTP=EPTR+FF #P . .
ET(ITWIP)Y=ETTP

S
EP(IT«IP)=EPTP
FUITWIP)I=CABS(ETTRI#H2+CABS (EPTP ) #%2
THETA=THETA+DTH
PHI=PHI+DPH
PTOTAL=ZZ*DBLINT(FePHeTHeIPHITH) /40 -
WRITE (6+12) PTOTAL
DO SO0 1T=141TH
DO 500 IP=i,.IPH
FTIT(ITIPIFTT(IT«IPI+ET(IT«IP)I®#2HALPX o
CFPPUITIP)IaFPR(IT«IPI+ER(ITe IP) ##2#ALPX
FYPCITWIPI=FTR(ITe IPY+ET(ITIPIRER(ITIP)I*ALPX
WRITEY (6430 -
DO S0t Is]WN

—

501

WRITE (644} [4(C(NMsI)eNM=]NMODES)

Fig. 46.
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1000

WRITE (6+15)

PHI=0.

DO 610 IP=14I1PH

PR=TO#PHI

THETA=0,

DO 600 (T=i1+ITH
TY=TO*TKETA
FTEFT=2FTT(IT+1P)
FRFP=FPR([T.[P)
FIFP=FTR(ITs 1P}
FTET2=CABSI(FYFTI#32
FRFR2=CABS (FPFP )+ %2
FTFP2zCABSIFTEP ) ##2

REF =REAL (CONJG(FTFT ) RFPFP)
AIFFBAIMAG( (FTAT-FPFPIHCONJG (FTFP))
EAVVECCSTRFTRT2
EAVH=CCST#FTFP2
EAHH=CCST*FPF P2

EARLSCCSTH(FTFT2+FPFPRP2+2+#¥RFF /40

EARRZCCST* ((FTFT24FPFP2)/6 ¢ ~RFF/2¢+FTFP24AIFF)
EALLL=EARR-2: #CCSTH*AIFF

WRITE (64163 PPy TTIEAVVIEAHH+EAVHIEARRVEALL +EARL
FlITeIP)Y=FTFT2+FPFP2

G(IT+1RP)=FTFP2

H(IT+1P)=RFF

R{IT+IPY=ALFF

THETA=TRETA+DTH

Pl =PHI+DEH

AVCF=DBLINT(F «PHoTH IPH ITH Y /FP
AVGG=DEBLINT(G«PH«TH IPH ITH) /FP
AVGH=OSULINT (HePH THe IPH  ITH) /FP
AVCR=DBLINT(R+PHTHa I1PHy ITH) /FP
AZAII=CrSTR (3 oHAVOF /8e+AVGG/2¢+AVGH/ G0 )
AEAIX=CrSTH#( AVGF /B e +AVGG/2e~AVGH/ G )
AEARL=COASTH*(AVGF/4e +AVGH/24 )
AEARR=CrASTX(AVGF /3 ¢ +AVGG~AYGH/2 e +AVGR )
AEALL=AEARR~2+ #CCSTH#AVGR

WRITE (66411) (SPECS(I)eImls12)¢AEAITAEAIX+AEARRAEALL ¢+ AEARL

CONTINUE
STOR
END

Fig. 46.
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£ IBFTC SUB! DECK

O MmO
)

10

100

SUBROUTINE WGRID(N)

COMMON X(25C)s¥(250)-Z(250}):CAB(250)«SAB(2501/SIZE/S1(250)

FORMAT (1C0HOWIRE GRID //)
FORMAT (7F1065)
FORMAT (1415)

GHBETA/(15:6F15+8))
FORMAT (1M +3Xe3HA1ZsF1005¢5Xe3HAZT1F10e6 /)
TP=6.2831853
T0=5729578
WRITE (646}
READ (5,83 N
FN=N
READ (S5+4T) AleA2
WRITE (60101 A1.482
A1 RALX#2
AZ=A#AZ
A3=A12A2
DPHIBTR/FN
PHI =0«
X1=2SART (A3/A2)
Yi=Oe

DO 100 I=1eN

PHIxPHI +DPHI

SP=SIN(PHI)

CPRxCOS(PHI )

R2=SART (A3/ (AL #SPESP+A2#CPRCP))
X2=R2#CP

Y2aR2+5P

X(IIB(XI+X2)/ 20
YLYR(YI+Y2)/26

Z(ly=20oe N
X21aX2~-X1 :

Yai=y2-v1

XY=X21 #424Y21 #22
S1(11aSQRT(XY)

CAB(Ll)=0,
SAB(])nTDHATANZ (Y21 oX21 )

X1=xX2

Yisvyz ‘

WRITE (&6:9) (XeX(Xg'YtlﬁeZ(l)-Sl(i)eCAB(I)oSAB(!)'I‘l'N)

RETURN
END

Fig. 47.--Wire geometry subprogram for circular and

elliptical loops.

130

W
R SRSPI P8

FORMAT (1HO412Xs 1HXs14Xe1HY s 14X ¢1HZ+ 13X s2HST ¢ 12X« SHALPHAWL 10X

L3

-




$IBFTC SUB! DECK
SUBROUT INE -WGRID(N)

COMMON X(250)+Y(250)¢Z(250)1CAB(2S0)SAB(250)/SIZE/S] (250)

6 FORMAT (1CHIWIRE GRID /)
7 FORMAT (7F1045)
8 FORMAT (1415) '
9 FORMAT (}HO.IEX.]HX.I4X.1HY.14X-!HZ-13X-2HSIolZXoSHALPHAolOXo
2 GHBETA /(1S«6F15.8))
10 FORNMAT (1H +S5X 12HWIRE LENGTHaF1066¢5X+12HHELIX PITCHEBF10:¢645X
2 I3HHELIX RADIUSReF 106615 X4SHPHII24F1065¢SXSHPHIFs4F10e5/)
TP=642831853
TOu57.29578

WRITE (646)

RZAD (S5+8) N

FN=N

READ (S+7) SLeSeR
HLZSQRT (SH¥2+ (TPER ) *#2)
FENTaSL/HL

A=FNT#S

ZOn=A/2
PHITEFNT®#360,.
PHII==PHIT/2
PHIF=PHII+PHIT

WRITE (6410) SL+SeRWPHITPHIF -
H12Z20=~S*PHI /360
PHII=PHILI/TD
PHIF=PHIF/TD
DPHIa(PHIF=-PHII)/FN
PHI=PHIT

DO 200 I=]eN
IF(1eGTal) GO 7O 100
Zi=uSAPHI/TP+H1
X1=R#CO0S(PHI)Y
Y1=R&#SIN(PHT)

100 Z2xSF(PHI+DPHI y/TP+H]
X2uR¥COS(PHI+DPHI)
Y2aR#SIN(PHI+DPHI )

L XTIy aUXI+X2I /2
Y(Iy=m(Y1+Y2)/ 2.
Z(1)s(Z1+Z22) /2
K21=mX2=X1

Y21aY2=Y1

Z21«22-21

AY®X21 #22+Y21%%2
SI(1)=SARTIXY+Z21%#2)
XY=SQRT (XY)
CAB(])==TDHATANZ(Z2] o XY)
IF{Y2]1+EQeOes ANDeX21+EGQeQs) GO TO 21
SAB(I)YaTO#ATAN2(Y2] ¢+ X21)
GO TO 22

21 SAB(I)=0.

22 X1=X2
Yleyvy2
Z1=2Z22

200 PHIzPHI+DPHI
WRITE (6¢9) (IoeXCI)aYC1)eZ(I1)eSI(I)eCAB(1)¢SAB(I)elxm]N)
RETURN
END

Fig. 48.--Wire geometry subprogram for helical and straight
wires and circular arcs.
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SIBFT

40

101

42

4S

¢ susz DECK

SUBROUTINE ZMAT (AL WN)

COMMON X(100)+e¥(100)1+Z(100)+CAB(100)+SAB(1001)/SIZE/SI(100)
COMMON /COINF/C(1004101) «SALP (100}
COMRPILLEX CWCC

DIMENSION D(1 1)

FORMAT (7F1045)

FORMAT (13HIWIRE RADIUSEF7¢5+14H (WAVELENGTHS))
TA=.01745329

2Z2=37672727

P1=3.1415926

P2=P1/2.

TR=2.%P]

FPPxTP¥TH

PSQ=Pl¥P]

CRY®ZZ/8./PSQ

CCST=Z2271804/PSQ

READ (S+7) AL

WRITE (64+13) AL

B2=AL %2

BKaTR*AL

BK2=BK*#BK

8Ka4=BK2*¥BK2

D(1)Y=Te

D{2)y=32.

D(3)=12.

D{4)=32

D(S)=14e

D(6I=32

D(7)=120

D(8)r=32.

0(9)=7.

DO &40 K=1 4N

ALPaTA*CAB(K)

BET=TA¥SAB(K)

CALP=COS (ALP)

SALP(IK)I=SIN(ALP)

CBET=COS(BET)

SBET=SIN(BET)

CAB(K)="ALP¥CBET
SAB(K)Y®ECALP¥SBET

DO 300 I=141

S=SI(I)

IFtI=~1) 101+42¢10%

1I1=1=-1

CtlelN=(llaI])

IF(S=SI(Il1y 42+45442

ST=S/2.

RRzSQRT(B2+STH*ST)

SINB=ST/RR

COSB=AL/RR
TANB=(1e+SINB+COSB)/(1+=SINB+COSB)
RK=TP#*RR

RK2=RK*¥RK
ERz=P1/3¢%S*¥(2e=BK2/3¢+BKA/60.+RK2%# (BK2~843}/1204)
El=SINB¥(1e/RK2+eS+RK2% (1 0~7/60.%8BK2) /8¢ ~RK2#RK2/2404?
2~ (1e~BK2/Ge+7+/6B04*BK4)*ALOG (TANB)
C(1e1)=ZZHCMPLX(ERWEI)

CONTINUE

XI=X(TDY

Yi=yY(!)

Z1sZ(1l)

CABIxCAB(I)

SABI=SAB(])

Fig. 49.--Subprogram for the piecewise uniform impedance
matrix of symmetric wire geometries.
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103

104

a9

S50

280
300

400

00 280 J=aiWN

IF{1=J) 103+280+103

S=S51(J)

STaS/2.

S55RSH*S

CABU=CAB(J)

SABU=SAB(J)

X1daXT=X(J)

Yid=YI=Y(J}

Z2iJd=Zl=-2(J) !

ZPaX | JECABJ+Y [ URSABIU=ZIURSALP(J)

RESIXTJUXTI+Y I IRYII+ZIIRZTIY

RH2ZRS=-ZP*ZP

RB=RH2+82

RBK=FPP*RB

KKa38

EZR=0. .

EZ1=0,

ERR=0,

ERI=0,

W==1e
==ST

SSS=2S5«#SS
IF(RSeGTeS5SS)

KKK=KK+1

D{SYy=(7#KK)Y/4

FREKzKK

DEL =S/FKK

D0 50 K=1.1KKK

R2=RB+(ZP-T)* (ZP~T)

RR=SQRT(R2)

RKzTP#RR

CO0S8SB8=COS(RK)/RR/R2

SINB=SIN(RK)/RR/R2

RKCS=RK#COSB-SINSG

CRKS=COSB+RK#*SINS

TRBR=2+=3 ¢ *RB/R2

IF(D(KI=T7e¢) 1044104449

ERR=ERR+W*CRY*#RKCS

ER!=gR]~WH#CRY*CRKS

W=1se

EZR=EZR+D(K)# (TRBR*RKCS~RBK*SINB)

EZI=EZ]1~D(K)* (RBK*COSB+TRBR*CRKS)

T=7T+0EL

EZR=EZR*¥CCSTH#DEL

EZI=EZI*CCST*DEL

Q1 =CABI*CABJU+SABI*#SABJU+SALP (1 y*SALP(J)

Q2=X1JRFABI+Y [ UHSABI=ZIURSALP (]}

EIC=EZI~ZRP*ZR!

ERC=EZR-ZP*ERR

C(leJ1=Ql *¥CMPLX(ERC+EIC)I+Q2#CMPLX(ERRER!] )

CONT INUE

CONT INUE '

D0 400 [=2WN

Celal) =C(lsl)

DO 400 J=1eN

Ji=J=1+1

CC=C(1+J1)

C(lsJy=rC

C(Jsly=rC

RETURN

END

KKud

Fig. 49.
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SIRFTC Sunz DECK

SUNTROUTINE ZMAT (AL «MCIMS N}

COMMON X (250)«Y(250112(25031CAB (2501 1S5AB(2501/81ZE/S1 (230}
CUNMMON /LO0cF/CC (2904201 4SALP (2501 /CURR/AJIL250020)

COMPLEX CeClleCC
DIMENSION D11y
7 FORMAT (7F1045}

13 FORMAT (13HIWIRE RADIUS=sFT745014H

TA=401745329
ZZ=3T76472727
P1=3+1415926
P2=PI/2
TR=2s%P]
FPP=TP*TP
PSQ=RPI*P!
CRY=ZZ/84+/PSQ
CCST=2Z/180./PSQ
READ (5+7) AL
WRITE (6413) AL
B2=AL%*2
BK=TP*AL
BKRZ2=8BK*¥BK
BK4=BK2¥8K2
D(13)=Te
D(21=32s
D{(3)1=212
D(&}=32
D(Si=14s
D(6)=32
B(7)1=12e
D(B83I=32
Di91=7e

CALL CBASIS (MCeMSeN)

M=MC+MS
DO 12 J=1.M
DO 12 1=1aN
12 CC(leJ)=(0ee00)
DO 40 K=14«N
ALP=TA*(CAB(K)
BET=TA*SAB(K)
CALP=COS(ALP)
SALP(K)Y=SIN(ALP}
CBET=COS(BET)
SBET=SINI(BET)
CAB(K)=CALP*CRET
40 SAB(K)=CALP*SRET

Fig. 50.--Subprogram for the modal impedance matrix derived as
a transformation of a piecewise uniform
impedance matrix for symmetric

wire geometries.
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o0

a2

45

Cl. 7L ROINT=TO-POINT IMPEDANCE MATRIX COMPONENTS
AliD CONVERT TO MODE=TQ=~POINT IMPEDANCE MATRIX

S5=51¢1)

ST=85/2

RR=5QRT(B2+5T*ST)

SINB=ST/RR

COSB=AL/RR

TANDB= (e +SINB+COSB)/ (1e=SINB+CQOSB)

RK=TRXRR

RN 2zRK#¥RK

ER==P ] /5 ¢ %54 {24~BK2/3¢+BK4/60¢+RK2* (BK2=8e¢)/1200)
EI=SINB# (] ¢ /RK2+¢5+RK2¥% (| 0270 /60¢#BK2) /8 emRK2¥RK2/2404)
2=(1e=BK2/4e+T7e/4806¢*¥BKA JHALOG (TANB}

CIl =ZZ*¥CMPLX(ERWET)

X{=EX (1)
Yi=zvy (i)
Z1=2Z(1)

CABI=CAB(1)

SABI=SAB(1)
DO 280 JUN=1aN

JEN=UN+ 1

IF(JsEGel) GO TO 240
S=51(J)

ST=5/2

S5=5%S

CABJI=CAB(J)
SABJU=SAB(J)
X1JdsXl=X(J)
YIJ=YI=Y(J)
Z1J=2Z21=2(J)

ZP=X I J*CABJ+Y I UHSABI=Z I U*SALP (V)
RE=XTURXII+Y I IRV IIH+ZII*Z1J
RH2=RS=ZP*ZP
R3=RHM2+82

RBK=FRP*RB

KK=8

EZR=0e

£Z1=0

ERR=0,

ERI=Q,

W==1lse

T=a=ST

SS5=254 %55
IF(R54GTeSSS) KKag
KKK =KK+1
D(S)=(7*¥KK) /4

FRK=EKK

DEL=S/FKK

DO 50 K=1+KKK
R2z2RB+(ZP=T)* (ZP=T)
RR=SQRT(R2)

RK=TP*RR

COSB=COS (RK)/RR/R2
SINB=SIN(IRK)/RR/R2
RKCS=aRK*#COSB=-SINS
CRKS=COSB+RK*SINB
TRBRS2¢=3+*RB/R2
IF(D(K)=74) 1044104149

Fig. 50.
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1Ga

49

50

240

250

260
270
280

ERR=ERR+WH*CRY#RKCS
ERI=ER[=W#CRY*CRKS

W=1e
EZR=EZR+D(K) ¥ (TRBR*¥RKCS=RBK*SINB}
EZI=EZ]=D(K)* (RBK¥COSB+TRBR*¥CRKS )
T=T+DEL

EZRAaEZR*CCST*DEL
EZI=EZI*CCST*DEL
Ql=CABI*#CABJU+SABI*SABJI+SALP (1 )*¥SALP(J])
Q2=X1J*¥CABI+YIU*SABI=ZI U*SALP (1}
ElCaSZ]=ZP*ER]

ERC=EZR=ZP*ERR

c =Ql *CMPLX(ERCEICI+Q2¥CMPLX(ERRWERIT)
IF(JeEQeal) CallI/20

DO 250 (,=1M
CCllel}aCCllaLI+CRAU(JL)
CClIsL)=CCULILI+CHAU(T L)
IF({JeEQeN) GO TO 280

K=1

JPaJ+1

DO 270 I=xJPWN

K=K+1

DO 260 LL=sleM
CCIKeL)=CCUKaLI+CH*AJ (T o)
CCUIWlI=CCUllsLy+CHAJ(KL )
CONTINUE

CONTINUE

CONTINVE

RETURN

END

Fig. 50.
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$IBFTC suB2 DECK
SUBROUTINE ZMAT (AL +MCeMSeN)
COMMON X(250)+Y(250)+¢Z2(250)4CAB(250)+5AB(250)/SI1ZE/S51(25%0)
COMMON /COEF/CC(250+20) +SALP(250)/CURRZAJ(250¢20)
COMPLEX CesCCeCl
DIMENSION D(11)

7 FORMAT (7F 1045}

13 FORMAT (13HIWIRE RADIUS=ZaF7¢5¢14H (WAVELENGTHS)
TA=401765329
22=37672727
P1=3e1415926
P2=RP1 /2
TP=2e %P1
FRPP=TP*TP
PAQ=RP [ *xP]
CRY=2ZZ/84/PS5Q
CC8T=22/1804/PSQ
READ(5+7) AL
WRITE (6+13) AL
B2=AL*%x2
BK=TP*AL
BK2=BK#BK
BK4=BK2#¥BK2
D(1)=Te
D(21=32e
D(3)=12.

D(61=32,

Di5)=14.

D(6)=32e

D(7)=12,

D(B)=32,

D{(9)=7

CALL CBASIS(MCeMSaN}
M=MC+MS

0O 12 J=1M

DO 12 1=z=1N

12 CC(laJ)=(0e40y4)

00 40 K=1N
ALP=TA*CAB(K)
BET=TA¥SAB(K)
CALP=COS (ALP)
SALP(K)=SIN(ALP)
CBET=COS(BET)
SBETSSINI(BET)
CAB(K)=CALP*CBET
40 SAB(K)=CALP*SBET

Fig. 51,-~Subprogram for the modal impedance matrix derived as
a transformation of a piecewise uniform impedance
matrix for elliptical wire geometries.
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45

46

47

NTEN/2

Na=N/G

00 300 Im)enNg
S=51(1)

ST=5/2
RR=SQNRT(D2+ST*#ST)
SINB=ST/RR
COSB=AL/RR .
TANB=(1e+SINB+COSB)/(1+=SIN3+COSB)
RK=TP*RR
Rx2=RK¥RK

ERS=P[/3¢%S% (2e~BK2/3e¢+BKA/OC++RK2¥# (BK2=8¢)/1204¢}
ElaSINB*¥ (] 6 /RK2+e5+RK2# (]| 0T e /60 ¥8BK2) /8¢ =RKZHRK2/2404 )

2=(1e=BK2/4¢+Te/480e¢%*83K4 )} ¥ALOG (TANS}
ClxZ22#CMPLX(ERWETL}
CONTINUE

XI=X({1)

Y=Y (1}

Z1=Z{I
caBl=CAB(I}
SABIasAB(I)
l1eN2=1+]

12aNa+]

13sN~1+1

DO 280 JmiN
IF(I=J) 47146447
CaCt

GO TO 52

$=S1(J)

5T=S/2

SS=5#*3

CABJ=CAB(J)
SABJU=SAB W)
XiJzsXlaX{J) .
YIJsYImY (J)
Z1Jd=Z1l=2Z(J]

ZRraX [ U¥CABJ+Y 1 UXSABI~Z 1 U*SALP(J)
RS=X1IHXII+YIJRYIJ+Z1U*Z]
RH2=RSG=ZP*ZIP
RB=RHZ+B2
RBK=FPP#*R8

KK=8

EZR=0,

EZ1=0,

ERR=0,

ERI=0.

wW==1e

To~ST

S55=25¢%SS
IF({RS«GTeS5SS) KK=4
KKKaKK+ ]
D(5)1={7*KK )/ 4
FKK=eKK

DEL=S/FKK

Fig. 51
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104

49

50

52

60

280
300

o0 50 K=zl WwWKK

RezRB4+(7ZRP~THIX(ZP=~T)

RRESQRTI(R2)

RK=TP %2R

CcOSB=COS IR /RR/R2
SINB=SIN(RK)/RR/R2
RKCSeRK*¥CO3B~SING
CRKS=COSR+RK#* S| NB
TRBR22e~=3 e *RB/R2

IF(D(K)=T7e) 1044104049
ERR=ERR+W*CRY*RKCS
ERI=ER1~WH*CRY*CRKS

wW=1e
EZR=EZR+D (K ) * (TRBR*#¥RKCS~=RBK*SINB)
EZI=EZ]=~D(K)% (RBK*¥COSB+TRBR#CRKS)
T=T+DEL

EZR=EZR#*CCST*DEL

EZI=EZ#CCST*DEL

Q1 =CABI*CABJ+SABI*SABI+SALP (] ) *SALRP(J)
G2=X1UNCABI+YURSABI=ZIJRSALRP (1)
EIC=EZ [ ~ZP*ER]

ERC=EZR=ZP*ERR
CaQI*¥CMPLX(ERCIEIC)YFTQ2#CMPLX(ERRIERIT)
IF(JeGTeN2) GO TO 55

Ji=N2=J+]

J2=NZ2+J

J3=N~J+1

GO TO 60

JiasN=JsN2+1

J2=zJ=N2

JREN~=J+]

DO 280 (.=1M
CClIaL)eCClI e )+CxAJ(JeL)}
CC{IlaLI=CClIlaL)+CHAJ(YL L)
CCll2sL3aCClI2sL)I+CHAI(I20L)
CCUI3LImCC(IBLI+CH¥AJ(JIIL)

CONT INUE '

RETURN \
END

Fig. 51.
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SIBFTC SUB3 DECK

40

300

350

400
450
500

SUBROUTINE CBASIS(MC+MSeN) -
COMMON /CURR/ZAJ(250+20)/S51ZE/S51(250)

FORMAT (1415)

FORMAT (1SHIBASIS CURRENTS«//7(1H +12F1046))

PI=31415926

St.=0e

DO 40 I=1{ N

SL=SL+SI (1) hind
N21=N/2+1

READ (5+8) MC«MS

M=MC+MS ey
PS=2.%P1/SL

SLJUz=eS%5] (N21)

DO 3500 JU=N21+N

JJI=N=J+1

IF(MCeEQeO)Y GO TO 350

DO 300 K=1+MC

FR=K ) nd

- FKC=(FK=14)¥PS

AJ(JeK)=COS(FKCH*SLJ)
AJ(JJeKI=AJ(JWK) —
IF(MS+EQeO) GO TO 450

DO 400 K=1eMS
KK=K+MC
FK=K
- FKS=FK#*PS
AJ(JIKKI=SIN(FKS*SL.J)
AJ(JJKKY==AJ(JIKK) -
Ji=J+1 -
SLJI=SLJ+eS¥ (ST (JIY+S51(J1)Y)
WRITE (6+9) ((AJ(JsK)eJdm] oN) eKnl M) -
RETURN
END

Fig. 52.--Sine and cosine basis functions for wire Toops.
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$IBFTC sSUB3 DECK
SUBROUTINE CBASIS(MC«MSWN)
COMMON /CURR/AJ(2504+20)/S12Z2E/S51(250)
8 FORMAT (1415)
9 FORMAT (1SHIBASIS CURRENTS//(1H +12F10e6))
PI=3.1415626
- ) SL=04
DO 40 1=1N
40 QL=SL+ST1 (1)
N21=N/2+1 ,
READ (S+8) MCeMS
M=MC+MS
PS=PI/SL
- . BLJzeS*¥SI(N21)
DO S00 J=N21 N
JI=N=-J+1
- IE(MCeEQeC) GO TO 350
. NO 300 K=1+MC
FK=K
FKC=(FK=10¢)%PS
AJ(J«K)=COS{FKC*¥SL.J)
300 AJ(JIWKI=SAI(JK)

IF(MS.EQe0) GO TO 450
—‘ 350 DO 400 K=1+MS
KK=K+MC
FK=K
- FKS=FK*¥RS

AJ(JKKHI=SIN(FKS*¥SL V)
400 AJ(JIIWKK)I==AJ{JsKK)
450 Jl=J+1
S00 SLJ=SLJI+eSH¥ (ST (JIY+ST (J1))
WRITE (6¢9) ((AJ(JIsKIaJd=1 oNY e K=1 M)
RETURN
=~ END

Fig. 53.~-Sine and cosine basis functions for wires
- of open configuration.
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SIBFT

C suB3 DECK
SUBROUTINE CBASIS(MC+MSWN)
COMMON /CURR/AU(250420)/SIZE/SI (250)

2 FORMAT (15HIBASIS CURRENTS //)
8 FORMAT (1415)
9 FORMAT (I1H +12F10e6)

40

200

300

350

ARCCOS(X)1=SQRT (1 e~X)1*(1.5707288~¢2121144%¥X+e¢074261%X¥X
2 ~e 0187293 X¥X*X)
SL=0.

DO 40 I=1eN

SL=SL+SI (1)

N21=N/2+1

READ (S+8) MC«MS

M=MC+MS

sSL2=SL/2

SLJUz=«5%#S1 (N21)

DO 500 JU=N21,4N

JJI=N=J+1

EL=SL.J/SL2
ACOS=ARTCOS(EL)

IF(MC) 2004350,4,200

DO 300 K=1e+MC

FRK=2% (K~1)
AJ(J+KI=SIN((FK+1e)¥ACOS)/SIN(ACOS)
AJIJJ+KITAJ (I KD

IF(MS) 350+450,350

DO 400 K=z1eMS

- KK=K+MC

400
450
500

600

FK=2%¥K-=1

AJ(JeKKI=SIN((FK+1« )¥ACOSI/SIN(ACOS)
AJIJJI KK ) =—AJ(J I KK)

J1=J+1

SLJI=SLJI+«S* (ST (JUI+S1(J1))

WRITE (64+2)

DO 600 K=1+M

WRITE (6+49) (AJ(JeK)sJd=1eN)

- RETURN

END

Fig. 54.--Chebyshev polynomial basis functions.
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$IBFTC SUR4A DECK .

S

10

30

® "

SUBROUTINE ANULL(MsAl +A24A3+ASTEPJWERROR)
FORMAT (IH +3(F156+E18+8))

COMMON /PQR/P (204201 +Q(20+20)+R(2C+20)
DIMENSION EF (20) '
DOUBLE PRECISION PsQ«R

MM=1

CALL EGNVLU(MIALEV ] +FF oMM

CALL EGNVILU(MIAZIEV2+EF ¢+ MM)

CALL EGNVLU(MsAIEVIIEF sMM)

WRITE (645) A1+EV1IA2+EV24+A3EVI
Al2=A]%%2

A22=A2%%2

A32=zA3%%2
ND=A22%¥A3-AJ32#A2~A12#A3+AI2ZHA I +A12#A2=-A22#%A1
IF(D) B+6.48

§=0,

GO TO 10

Az EVIHAZ=EV2¥A]=EV ]I #AZ+EVIRAI+EVR2RAI-EVIRA2
S=A/D :
IF(SelLEeaQe) GO TO 10

Bz AlZ2#*EVZ2-AZ22#EVI=-A2#EVI+AI2HEV]I+A22#EVI~AJ2HEV2
AO==B/(2«%A}

WRITE (6+5) AO

IF(AQLTeAl eORsAOsGTeA3) GO TO 10

A2=A0

RETURN

IF(EV3-EV1) 20430430

AO0=A3

GO TO 40

AO=AL

ASTERP=S,0*ASTER

ARzAD

RETURN

END

Fig. 55.--Subroutine for locating e
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s[BFTC 5uBS DECK

20

30

SUBROUTINE EGNVLUIMALPEVEF s MM)
COMMON /PQR/P (20¢20)+Q(20¢20)1+R(20¢20
OIMENSION EF (20}

DOUBLE PRECISION P+QsR«BIDTALPTALP2
COMMON /BDAR/B(20420)4D(20420)
TALP=SIN(ALP Y /COS(ALP)

TALP2=TALP*#2

DO 20 JEl«M

DO 20 l=J«M

BUleIZP (1o JI+TALP*Q (I + JI+TALP2*R( [+ J}
B(Je11=B(1lsJ)

CALL MATEIG(MeMM)

EvVsB{1+1}

DO 30 I=1.M

EF(1)=D(Ie1)

RETURN

END !

Fig. 56.--Subroutine for computing [B(a)].

144

e




$IBFTC sSUBG DECK

10

20
25

30
35

a0

45

50

62
65

68

70
75

78

80
85

90

2

SUBROUTINE MATEIG(N«MV)
DOUBLE PRECISION AQR'ANORMvANRMXoTHRoX'YQZ

SINX+SINX2+COSXsCOSX2eSINCSAA
COMMON /BDAR/A(20+420)4R(20+20)
FN=N
[F(MV=1) 10425410

DO 20 J=1.N
DO 20 I=l N

R(IsJ) =04 N
R(lsl)ymla
ANORM=0 .

DO 35 1=1.N

DO 35 J=) «N

IF(Il=J) 30+35.30
ANORM=ANORM+ACT s JIRAC( o J)
CONT INUE

IF{ANORM) 165+1684+40
ANORM=14414%#DSQART (ANORM)
ANRMX=ANORM® | ¢ OE=6/FN
IND=0

THR = ANORM

THR=THR/FN

NM]=N=1{

DO 149 L=1+NMI

L1=L+]

DO 149 MalL 1N
AA=A(L M) *%2

AA=DSART (AA)

IF(AA=THR) 149¢65465
IND=1

X=aS5*( A(LL)=A(MeM))
Y=A(LoeM])

Z=DSART (Y *#Y +X#X)
Yz=A(LeM)/2Z

IF(X) 70475475

Y=~-Y
SINXSY/DSART(2¢% (1 e+ (DSQRT (§ e =YY ) ) ))
SINX2=SINX#*%2
COSX=DSQRT (1 ¢=SINX2)
COSX2=COSX*%*x2
SINCS=SINX*COSX

DO 90 I=1N

IF(I=L) 80+90.80

IF(I-M) B85+90,+8%
X=A(l+LINCOSX=A(]+M)%*SINX
ACToMISA(T o) RSINX+A(TeM)IRCOSX
A(l L)aX

CONT INVE

F1g 57.-~Subroutine for computing the eigenvalues
and eigenvectors of [B(a)].
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95

100
149
150
158

160
165

170

180
185

X=2s %A (L +M)I¥SINCS
Y=A(LL)HRCOSXZ2H+AIMIM )RS INX2=X
X=A(L+LI*¥SINX2+A(MeMIRCOSX2+X
AL eMIZ (AL L) =A(MiM)IKSINCS+A(L M)* (COSX2=S[NX2)
A(L L)=Y

A(MeMy=X

DO 100 1I=14N

Al D)=zACT L)

A(MIYI=A(T M)

IF(MV=11 954100495
X=R(T+L)¥COSX—-R(I +M)I¥SINX
R(IeM)IZROLILIRSINX+R (I eM)#COSX
R{I«L)=X

CONT INUE

CONTINVE )
IF(IND=1) 1604155160

IND=0O

GO, TO S0

IF{THR~ANRMX) 16%S4165445

DO 18% I=1s«N

DO 185 J=1«N
IFCA(TWI)=A(Jed)) 1704185185
X=A(1ls1)

ACTeaIN)=ACJe D)

A(Jded)=X

DO 180 K=1N

X=R(K«1)

R(K«1) =R(KsJ)

R(KeJ)2X

CONT INUE

RETURN

END -

Fig. 57.
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$IBFTC SUB7 DECK
FUNCTION DBLINT(S+PHsTHINP+NT)
DIMENSION S(20+40)¢G(40)+F(20)
P1=3.1415926
- TP=2.%P1
PHI =PH _
IF(PH) 50450460
- , S0 PHI=1.
‘NP=1
60 PTM=PI/TH*TP/PHI
FNP=NP
DPH=PH/ (FNP=14)
FNT=NT
DTH=TH/ (FNT=14)
- NT1=NT=1
NT2=NT=2
, NP1 =NP~1
- NP2=NP=-2
DO 200 I=1+NP
DO 100 U=1+NT
FJ=J
THETA= (FU=14)#DTH _
100 F(J)=S(Js1)IHSIN(THETA)

GG=0e
" DO 120 JUJU=2«NT1+2
120 GG=GG+F (JJ)
G(l1)=F(1)+4¢%*#GG
- GG=0e
DO 140 JJ=3«NT2+2
140 GG=GG+F (JJ)
200 GU(1)=(G(I)+2*¥GGH+F (NT))I*¥DTH/3e
IF(PH) 300+3004210
210 GG=0.
DO 220 JJU=2«NP1+2
= 220 GG=GG+G (I
DBLINT=G(1)+4¢#GG
6G=0e
o DO 240 JJU=3+NP2.2
240 GG=GG+G(JI)
DBLINT= (DBLINT+2¢*¥GG+G (NP ) ) ¥DPH/3 ¢ #PTM

_ RE TURN
300 DBLINT=G(1)*PTM
RETURN
END
-  Fig. 58.--Subroutine for averaging c(6,4) over & and ¢.
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~ APPENDIX D
CHARACTERISTIC MODE DATA

The coefficients of the series approximations to the charac-
teristic current distributions and the associated phase angles, o
are given in Tables 5 through 8 for the circular and elliptical
loops, straight wires, and one~turn helices. The modes of all
but the circular loops are ordered such that the magnitudes |cos am{
form a non-increasing sequence of numbers with increasing integer m.
The modes of thne circular loops are ordered on m in the conventional
manner, beginning with m = 0, In each case, the modes are normalized
to radiate unit power. The tables are as follows:

Table 5--Circular Loops

The left-most column of Tablie 5 is the Joop radius in wave-

lengths. Each row to the right of a given radius contains the

th th

coefficients of the m” order cosine or sine function for the m
even or odd characteristic current distribution, respectively, for
m=0,1,2,3. (Recall that in the case of the circular loop the
characteristic current distributions are simp1y7cosine and sine
functions.} The corresponding phase angles, ., are given in
parenthesis following each coefficient.

As an example, the (gégn characteristic current, Im’ of a loop

of radius R = 0.35x for, say, m = 2, is
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; " cos\ 4np
(107) 1,(2) ¥ 0.069158 (Sin> .

where L is the Toop diameter. The corresponding phase angle is
o, = 161.59°. |

Table 6--Elliptical Loops

The first column in Table 6 gives the axial ratios of the
elliptical loops in descending order, starting with a ratio of
unity (a circular loop). For a given axial ratio, the next column
to the right specifies the mode number m and the mode character,

)

i.e., even or odd, The associated phase angles, o are found in

the next column and to the right of that, the coefficients of the
cosine (for even modes) or sine (for odd modes) series approximations
to the characteristic currents. The basis functions are the cosine

ZTLrngl s n=031,23"', and S.in 2‘]LTn2’ s n=1’2,-¢.’

and sine functions cos
where L is the ellipse circumference (L=1,1r) and & is measured
from & = 0 on the positive x axis. @Eee the ellipse geometry in
Fig. 19, Section D of Chapter III.) ‘

For example, the charactéristic current for the dominant mode

(m = 1) of an ellipse with axial ratio 0.890 is approximated

by the series

(108) I(2) % (7.7450 x 1072) sin 21% - (7.3738 x 10" 1ysin 42
1 L n T
-(6.4297 x 107°) sin -E-’Lh (8.8768 X 10™7)sin -8—L—
+ (6.0340 x 107%) sin 1%1& .
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Table 7--Straight Wires

These data are similar to the data given in Table 6, except that
the basis functions are the even and odd Chebyshev polynomials of the
second kind, and the first column, as noted, gives the wire length.
The polynomials are denoted by Un’ even modes having even subscripts
and odd modes having odd subscripts. For example, the characteristic
current Im of a straight wire of length L = 1.5%, with m = 2 (an odd

mode, as noted in the second column), is approximated by

(109) I.(%) 3.7329 x 10°¢ U, - 2.6274 x 1072 U,

2(
-3 -4
+ 6.5850 x 10 U5 -8.5873 x 10 U7,

Table 8--One-Turn Helix

These data are similar to the data given in Table 7.
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\ { i { l (ii; t § { { i { 'l'(
TABLE 5
CHARACTERISTIC MODES OF CIRCULAR LOOPS WITH A LOOP
RADIUS-TO-WIRE RADIUS RATIO R/a = 100.
2T L 4mme ~67L
RADIUS Cos—r cos-—T cos
2wl 497 ¢ &g
SIN L SIN=T SIN-T

0.100 0.187720 ( S1.37) C.122641 (265.92)
0.125 0.122874 { $2.51) 0.1C2554 (256.70) 0.321939 (269.84)
0.150 0.CE7T14 [ S4.08) 0.79C180 (240.74) 0.239386 (269.£0)
0.162 0.€75924 ( S4.99) 0.785300 (210.090) 0.200C19 (269.41)
0.175 0.C€6591 ( S5.38) 0.082291 (170.81) 0.176003 (269.12)
n.187 0.05908% ( S7.05) 0.975485 (140.47) 0.158009 (268.80)
0.200 0.0%2965 ( 93.21) €C.077250 (126.05) 0.141005 (268.24)
0.210 0.048800 ( 99.20) 0.775800 (119.70) 0.130500 (263.00)
0.220 0.G04550C (1C0.00) 0.0747C0 (115.50) 0.121000 (266.80)
0.230 0.042226 (1C1.20) 0.0736C9 (112.30) 0.113541 (266.22)
0.240 0.029706 (1€2.1Q) 0.072800 (110.00) 0.106C00 {264.50)
0.250 €C.027191 (103.32) C.072083 (108.12) 0.100733 {263.82) 0.269318 (265.75)
0.275 C.022471 (1C6.07) C.07C61T {124.84} 0.088825 (258.46) 0.210891 (265.52)
0.300 €.028995 (1C8.84) C.069040 (132.78) 0.0801438 {246.94) C.170737 (266.12)
0.325 0.026415 (111.56) 0.066745 {101.56) 0.073795 (216.81) U.141830 (268.5))
0.340 0.025200 (113.00) 0.064800 (101.59) 0.071000 {178.40) 0.127500 (26€.09)
0.350 0.024505 (114.11) $.063361 (101.06) 0.069158 {161.59) 0.120527 (261.417)
0.360. C.C24000 {115.0C) 0,061600 (101.52) 0.067900 (146.20) 0.1128C0 (2€7.22)
0.275 0.023115 (116.49) 0.058929 (101.18) 0.065809 {121.48) ).1C4531 (26%.83)
0.400 N.0z2142 {1i18.32) 0.153869 1191.93) 0.063413 (119,36} 0.052350 {262.15)




L)

¢Sl

CIRCUMFERENCE AND WIRE RADIUS a

TABLE 6
CHARACTERISTIC MODES OF ELLIPTICAL LOOPS WITH 1.1

AS A FUNCTION OF AXIAL RATIO

0.00175x

! cos 2t cos2T£ cos&rg cocfrL | cpgloms
AxinL MODE ALPHA ainETL L L L L 8
L SINATE SIN-STE siN-87£ SINIOmL | gy t2rs
- - L L L

1.000

1 (EVEM]) 170.81 |-0. 8.2291€E~02 | ~0. -Q. -0. -0.

2 (0DD}) 170.81 |-0. 8.2291E-02 {-0. -0. ~-0.

3 {EVEN) 95.98 6.6591E-02 [-0. -0, ~0e -0. -0.

& {EVEN) 269.12 (-0, -0. 1.7600E-01 | -0. -0 -0

5 i0DD) 269.12 (-0, -0, «7600E-01 | -0, -0.
0.943 .

1 {000) 174.01 T.9804€-02 1.0295€~08 | -4.3569E-05 9.2380E~-09 1.5024€E~06

2 (EVEN) 167.24 5.52B1lE-14 8.49B8E~02 |~1.2531E~1% | ~9.6613E-05 3,2887€E~09 | ~9.3901E-06

3 {EVEN) 95%.98 6.6690E-02 0. -5.6382E-04 [¢]8 ~1.,9330E~05 0.

4 (080} 269.13 2.81T75€-C8 1.7585F~01 1.5627£-08 Q.TTI9E~D4 4.1388E£~08

5 {EVEN) 269.14 |-1,7178g-03 |-2,9820E-08 1.7624E~01 | ~1.8405E-08 9.4782E~04 1.4948E-08
0.890

1 {(GDD} 177.42 7.7450E-02 |-7.3738E-11 |~6.4297€E~05 8.83768€-09 65.0340€E~-06

2 (EVEN) 163.09 [~2.3465E-12 B8.8022E~-02 |-4.1651E-11 | ~1.9620E-0% 5.1995€-09 | —-6.442TE-06

3 (EVEN) 95.93 6.T031E-02 [V -1.094BE-03 0. -4 .0770E~05 O.

4 {0DD) 269.12 T.3742E-08 1,7546E-01 |~2.9342E-08 1.9735£-03 3.7929€-08

S {EVEN) 269.14 [-3,.5353£-03 1.1720E-08 1.7706E-01 | ~S5.£6453E6-08 1.9585E-03 1.6462E-08
0.838

1 (00D} 179.93 7.5264E-02 |-1.2011E-10 |-6.3918E-05 9.5299E-09 1.437CE~-05

2 (EVEN]) 157.88 |-2.5689E-09 9.12556-02 |[-2.2191€~08 | -3.2819€-04 4.3295E-09 | —2.5474E-06

3 (EVENM) 95.98 6. TATTE-02 [~5,2641E~17 |~-1.623LE~03 | =7.2948E~15 | ~7.6478E~05 1.6210E-15

4 {00D) 269.10 8.4482E-08 1.7451€~01 |~-2.9164E~08 2.49286E£-03 4.348B2€-08

5 {EVEN) 269.15 |-5.3523E-03 1.2671E-08 1.7811E~01 | —6.7459E~08 2.9518E-03 1.9696E~08
0.788

1 (coDy 182.35 T«3197E-02 (~2.3134E~10 |~4.2621£-05 1.34648-08 2.7359E-05

2 CEVEN) 152.38 |~3.7420E-09 9.4910€-02 |~2.5653E-08 | ~5.0202E-04 7.0754E~09 1.5872E~Q6

3 {EVEN) 95,79 6.8191E~-02 |~2.3148E-16 |-2.1701E-03 | -2.3594E-14 | ~1.2832E-04 1.07596~14

4 (0DD} 269.10 9.3301E-~08 1.7331E-01 |-2.4453E-08 3.8752E-03 5.5T34E-08

S (EVEN) 269,17 |-T7.2752E-03 |-9.5848E-09 1.7981E~Q] | ~6.7564€-08 3,.9711E-03 3.5118E-08
0.758

1 (0DD) 143.89 7.1993€~02 |-2.5986E~10 |~1.8506€£-05 1.2901E-08 3, 71935E~05

2 {EVEN) 149.00 |-3.336EE-11 9.73886-02 |-2.1323E-10 | -6.3132E~05 1.10156E-08 3.8268E~06

3 {EVEN) 95.69 6.83799€£-02 [-T7,.4687E~-13 |-2.50435-03 1.1672E~11 | -1.6959E-04 | -4.8391E~-10

4 (CDD) 269.09 1.0R5%E~-07 1.7253E-01 [-3.6827£-08 4,.4439E-03 5.754%E-0R8

S (EVEN) 269.18 |-8.5383E-03 1.1647E~-09 1.8128E-01 | -8.%333£-08 4.6074E-03 3.9900E-08
{ 1 ] { x. S ¢ £ {




€G1

0.739

0.720

0.693

0.646

0.602

0.515

0.306

VW N - WS W R e VS WN - VU W N e VB w N

B W N -

(00D}
({EVEN)

(000)
(EVEN)
(EVEN)

(oDD)
(EVEN)

(0DD)
(EVEN)
({EVEN)

(0D0)

{EVEN)

{ooD)
{EVEN)
(EVEN)

(0DD)
(EVEN)

(000)
{EVEN)
{EVEN)

(060D)
(EVEN)

(000}
(EVEN)
(00D}
(EVEN)

184.18
145.85

95.68
269.08
269.20

185.30
143.89

95.60
269.07
269.21

186.03
139.81

95.53
269.06
269.23

187.49
133.32

95.36
269.03
269.26

188.71
126.07

95.15
268.98
269.29

190.43
115.50

95.63
268.88
269.38

186.16 .

97.17
268.49
269.64

T.1254€-02
6.9071€E-02
~4.4656E~05

2.5340€-07
~9.2442E-03

7.0485E-02
-5.2731E-11
6.9631E-02
1.1856E-07
[-1.0155E~-02

6.9409E-02
-8.0013£-09
7.0313£-02
1.4198E-07
F1.1393E-02

6.T6T6E-02
-1.0001E-08
7.18216-02
1.6405E-07
~1.3729€-02

6.6036E-02
-1.2440€-08
7.3736E-02
L1.37665—07

1.63096~02

6.3022E-02
L

7.9107E-02
2.2293€E~07
~2.2532E-02

5.69256~02
- 4.8049E-08
L3.3013E—07

5.3150E~02

1.760BE-08

TABLE 6--Continued

~-8.5435£~08
5.9706E~05
9.888B8E-02
1.7168€E-01
-2.3868E-05

~4.1138E-10

-1.3008E-12
1.7112€e-01
-1.8860E-08

-4.3527€-10
1.0349€-01
-1.5600E-12
1.6988E-01
2.4967E-08

~641925€-10
1.0861E-01
~2.7903E-12
1.6776E~01
1.3908£-08

~-7.5016E-10
1.1452€-01
~4.1584E~12
1.6546E-01
1.3586E-08

-1l.4116€-D9
1.2943E~-01
~8.2923E-12
1.6048E-01
-4,2416E-08

-6.1282€-09
2.0291E-01
1.4484E-01

~7.7679E-07

1.0079€~01

~3.4808E-06
~2.6989E-03
3.9612€E-05
~3.5686E-07
1.8191E-01

2.1229£-05
~2.9103E-10
~2.9544E£-03
-3.1965€£~-08
1.8327€-01

5.694TE~05
~4.1869E-08
-3.3028E-03
~6.5095€£-08
1.8490£-01

1.3442E-04
-4.8375€E-08
~3.9027€-03
-7.1563E~-08
1.8854E~01

2.3120E-04
-5.7034E-08
-4.5390E-C3
~93.0562E~08
1.9321E-01

4.7713€~04
~T.6446E-08
~5.9777£-03
~1.0437£-07
2.0643E-01

1.1505€E~03
-2.1290€E-07
~1.2412E-07
2.8259E-01

-2.0587E-08
9.3172£~06
~7.0727€E-04
4.7589E-03
2.6481E-05

1.7071E-08
—8.3044E-04
2.8986E~11
5.1368E-03
-8.8652E-08

1.6048£-08
-1.0032E-03
3.3911€-11
5.6154E-03
-1.1277€-07

1.B994E~08
-1.3544€-03
5.9194£-11
6.3936£-03
-1.3993E-07

1.9480E-08
-1.7972E-03
8.9037E-11
7.1080£-03
~-1.5238E-07

2.7392E-08
~-3.,0685€E-03
2.0458E-10
8.2734£-03
-1,9833E-07

6.0404E-08
-1.1791€E-02
1.2542E-02
-5.4717e-07

4.5009E-05
-1.8975€~-04
8.3549E-06
-1 19756-017
4.98T4E-03

5.4461E-05
1.2636E-08
~2.3066E-0%
1.2726E-08
5.4213E-03

6.8759E-05
1.2999€E-08
-2.8078E-04
6.2449E-08
6.0124E-03

9.8232E-05
1.6674E-08
~-3.8331€E-04
7.2730€-08
7.0394E-03

1.3459E-04
2-1178E-08
~5.0613E-04
7.8136E-08
8.0815€E-03

2.3068E~-04
3.6170E-08
-8.1986E-04
1.0252E-07
1.0177E-02

B.4044E~04
1.4730£-07
2.16442€8-07
1.44192~02

3.6606E-06
1.0061£-05

9.T36BE~06

5.67U1E~-06
~6.6340E-10

4.7751E-08

5.8460E-06
-7.0088E~10

4.6212€-08

3.6526E-06
-1.03276~09

5.8338E-08

-3.1511€E-06
-1.3365E-09

6.9004E-08

-3.4943E-05
-2.3700E-09

1.0050E-07

1.5508£-08
—-1.4741E-04
5.6492E~03
2.8224E-07




el

TABLE 7

CHARACTERISTIC MODES OF STRAIGHT WIRES WITH A
LENGTH-TO-DIAMETER RATIO L/2a = 100

u U 13} u U u
LENGTH| MODE | ALPHA 0 2 4 6 8 10
U Us Us Uy Ug Uy

0.300

1 (EVEN) 265.26 1.3436€~01 | ~3.99986-02 | -3.1200E-04 | ~2,60436-04 | ~7.9192E~05 | ~6.7434E-05
0.400

1 (EVEN} 248,07 1.0244E~01 | ~3.15%5€-02 2.8345E-04 | -1.6810E-04 | -5.5523E~-05 | ~4.7831€-05
0.450

1 [EVEN) 211.29 9.1924E~02 | ~2.8876E-02 5,3394E-04 | ~1.6606E-04 | -4.7326E~0% | ~4.1133E~-05
0.475

1 {EVEN} 174.10 8.7526E~02 | ~2.7779E-02 6.5187E-04 [ ~1.5756£~04 | -4.3803£-0% [ —~3.8285E~05
0.500

1 (EVEN) 153,43 8,3584E-02 | -2.6B10E-02 T7.6624E~04 | =1.5049€-04 | -4.0588E-05 | -3.5696E-05

2 (0DD) 269.40 1.9332t-01 | -3.82C5E-02 4,.6230E-04 [ 6. L491E~04 | =4 .T59BE-04
0.550

1 [EVEN) 130,34 T.68196-02 | -2.5189E-02 9.86T8BE-04 [ ~1.4023E-04 | -3,49140-05 | -3.1139E-05

2 (och) 264.98 1.6921E-01 | -7.56T0E-02 1.1688E-03 | =5.1833E-C4 | ~3.7208E-04
0.600

1 (FVEN} 122.06 7.1227€-02 | ~2.3896F-02 1.1376E-03 | —1.345T7¢-04 | -3.,0022E-05 | ~2.7314E-05

2 (00D} 268,34 [ 1.4413F-01 | -6.5976€~02 1.6205E-03 | —4.4%3BE-06 | ~3.1046E-04
0.750

1 (EVEN) 115,14 5.9114E-02 | ~2.1314E-02 1.8003€-03 | -1.4141E-C4 | -1.2312t-0% | ~1.8590E~-05

2 (ann) 263,15 9.85836-02 | ~4.7912E-02 2.6789E-U3 [ ~3.3670E-04 | ~1.F459E-04
0.650

1 (EVEN) 113,77 5.3507E-02 | ~2.0319€-02 2.2567€6-03 | ~1.6663E-C4 | ~1,0870E-05 | -9.3731E-06

2 topo) 248.18 B.C602E-02 | ~4.0783E~-02 3,2982¢-03 | ~3,2452E-04 | ~9.1602£-05

3 {(EVEN) 269.54 |-1.1513E-07 2.1230E-31 | ~1,1%37E-01 6.4136c-03 | ~9.0463E-04 [ ~2.50235-04
0.900

1 {ccol 2271.26 T.38096-02 | -3.8223£-02 3,5423E~03 | -3.2825E-04 | ~7.7500t-0%

2 (EVEN) 113,69 5.1185£~02 | -1,9998E-02 2.4551E-03 | —1.44725-04 | ~7.6815E~06 | —E.5274E~06

3 (EVEN) 267.30 [~6.2879€-03 1.8166E-01 | ~1,0155E~01 6.5214E-03 | ~8.9055E~04 | ~31.1622E~04
0.950

1 (0% 1€6.52 6.8057€~02 | -3.6087E~02 3.7782E-03 | ~3.3B56E6~04 | ~6,5217£~05

2 LEVEN) 113.712 4.9113E-02 | ~1.9641E-02 2.6522E-03 | ~2.0640L-04 | ~4.38938-06 | -T7.4722E-00

3 (EVEN) 26B.94 |-2.33840~-03 1.5682E-01 | ~8.9842E-02 6.8035t~03 | ~B. Y101L-04 | 2. 126KE~-04
_ [
i i i i i i £ i i i
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1.000

1.050

1.150

1.250

1.300

1.400

1.450

1.500

1.600

1

w AN

WA

SN o Ny e BWN - WA WA

W N -

(000}
{EvEN)
(EVEN]

(ooD)
(EVEN]}
(EVEN)}

(ooD)
{EVEN)
(EVEN)

(000)
(EVEN)
(EVEN)

(0co)
[EVEN)
(EVEN)

{EVEN]
(ooc)
(EVEN)
toop}

(EVEN)
(00D)
(EVEN)
{apo}

{EVEN)
{0CD)
{EVEN}
teoc)

(EVEN)
{EVEN)
(CCDI
{000)

147.70
246,29
268.43

132.63
113.87
267.68

121.62
114.27
264.93

117.98
114.74
258.39

117.12
114.97
251.50

212.62
116.25
115.46
268.73

176.30
116.09
115.69
268,22

145,95
116.05
115.93

267.50

129.11
116.40
Ple.14
265.03

6.3192€-02
4.7250E~02
8.6229E-04

5.8945E-02
4.5559E-02
3.2406E-03

5.2025€E-02
4.2601E~02
6.5333€E-03

4.6650E-02
4.C081E-02
B.T461E-03

4.4392E-02
3.8944E-02
9.5461E-03

1.0884E-02
4.0527£-02
3.6€47€E-02
8.9135E-03

1.1448E-02
3.8857€E-02
3.5867E~02
1.0739€~-02

1.2002E-Q2
3.7329c-02
3.4913€6-02
1.2274€-02

1.3245€6-02
3.3009E-02
3.4621E5-02
~1.4311E-02

TABLE 7--Continued

-3.4586E-02
~1.9534£~-02
1.3701E-01

—3,3060£-02
~1.9332E-02
1.2045E£-01

~3.0660E-02
-1.9045£-02
9.5215€E-02

~2.8901€~02
-1.88%9€£-02
7.7250E-02

-2.8201€E~-02
~1.8885€-02
7.0162€E-02

5.86T0E-02
~-2.7122E-02
~1.9026E-02
1.3637E-01

5.3957€-02
~2.667T1E~02
-1.9161E-02
1.1995€E~-01

4,9766E~02
~2.6274E-02
-1.93556-02

1.0604E-~01

4.2528E-02
-2.0034E-02
~2.5645E-02
-8.4048E-02

4.0850€E-03
2.9271¢-03
~8.1425€-02

4.3218E-03
3.1403€-03
-1.3575E-02

4.7952€E-03
3.5806E-03
-6.1556E-02

5.2757E-03
4.0554E-03
-5.2963E-02

5.5215€E-03
4.3200E-03
—4.,9575€E-02

~4.4209E-02
6.0526E-03
4.9600E-03
-1.0007E-01

-4.1985£-02
6.3176E-02
5.3320£-03

-9.0887£-02

-4.0024E-02
6.5850E-03
5.7556E-03

-8.30656-02

-3.6699E-02
6.8865E-03
7.1555€E-03
7.0531E-02

~3.6570E-04
~2.4204E-04
6.9759E-03

~3.8861E~04
~2.7361E-04
7.1545£-03

~4.5169E-04
-3.5038E-04
T.46556E-03

~5.3708£-04
—4.4964E~04
7.7405E-03

-5.8832E-04
-5.1106E-04
7.8790E-03

8.2039¢-03
~7.1250E~04
-6, T238E-04
1.5205E-02

8.3590€E-03
—~7.8276E-D4
~T.7432€-04
1.4856E-02

8.5188E-03
~B.5>873E-C4
~8.9596E~-04
£.4597¢~-02

8.8495£-03
-1.2394¢-03
~1.0347¢-03
~1.4178E-02

~7.6321€-05
~7.0623£-07
~8.1651E-04

-6.3385€-05
3.3172E-00
~7.9027E-04

~4.0039E-05
1.2494E~05
-7.7992E-D4

-1.8519€-05
2.4243E-05
~8.1032E-04

~T.8376E-006
3.1680E-05
~-8.3851E-04

~9.2380E-04
1.1693E-05
5.2085E£-05
-2.0749E-03

-9.7440E-04
2.3814E-05
6.5689£-05

~2.0264%E-03

~1.0315€E-G3
3.6305€E~05
B8.25B8E-05
-1.9671€E-03

~-1.16446E-03
1.3325E-04
6.4596€£~05
1.9028E~03

-8.8829E-00
-3.1332E-04

-7.7714E-06
-2.6068E-04

-9.8790£-06
~1.7846E~04%

~4.570%E~-06
~1.2155E-04

~4.0956E-06
~%.7918£-05

~6.3619E-05

-3.8326E-06

-4.3573E-05

-3.8899E~06

~2.44T6E-05

~4,2478E~06

1.2782E-05
=6.3205E-00

SIN((n+l)cos~'(2%_))

U L) =

sin(cos (23 1)
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TABLE 8

CHARACTERISTIC MODES OF A ONE-TURN HELIX WITH A

WIRE LENGTH-TO~DIAMETER RATIO L/2a = 100
AND A PITCH p = 10a
u u u
LENGTR | mope | aLena o 2 4 Us Us tho Uiz
Uy Us Ug g Ug Uy Uiz
0.300 .
1 (EVEN) 269.31 3.3951¢€-01 -1.3988E-01 2.3234E-02 ~2.84400-03 | =B.3%42E-05 | ~T.5260E-05
2 1000) 269.52 1.4140F-01 ~-8.9017€-02 1.3108E~02 “T.SGSQE‘CQ, 5.2783E-06 I
0.400
1 {EVEN) 266 .41 2-1TTI8TE-01 -9.3308E~02 7.08376-03 ~1.4836E-C3 | -2.0490E~04 | -9.7157£-05
2 {00oD) 268.81% 1.15076-01 | =6, 7370E~02 9.,78076-03 | ~5.7379E~04 | -5.2004€6-08
0.450
1 {EVEN]) 250.86 | 2.5379E-01 | ~7.6440E-02 1.4992E~03 | ~1.0065E-03 | ~2.4680E-04 | -1.0352E-04
2 {0DD} 268.25 1.0321E~-01 | -6.0435£~02 8.7943E-03 | -5.1144E-04 3.8338E~06
0,460 R
1 {EVEN] 235.15% 2.46T7E-01 | =7.3995€6~02 Te9624E-04 | ~9.6841F-04 | -2.8789E~04 | -1.0548FE-04| =~3.5058E-05
2 1{00D) 268,12 1.011%E~01 | =5.9225E~02 8.6110E~03 | ~5.0112E-04 2.2165%E-06
0.470
1 {EVEN) 166.94 2.4279E-01 | -7.12246~02 | ~1.,17128~04 | -8.9B00E-04 | -2.96B6E~04 | -1.06645-04]| ~3.5093E~-0Q5
2 (00D} 267.96 S.F2TUE~02 | -5.8026E-02 8,4898E~-03 | ~4.B636E~04 2.4245E~05
0.415
1 {EVEN) 135.86 2.40326-01 | ~6.,9808E-02 | ~5.1828E~04 | ~8.5832E-04 | ~2.9865E-04 | -1.0676E~04| ~3.5238E-05
2 {(CCO} 267.90 3.8281£-02 | -5.7558E~02 8,4042€-03 | ~4.8417TE-04 9.48C0E-06
0.500
1 {EVEN) 102.84 2.2974E-01 | ~6.2513E-02 | —2.4712E-03 | -6.2809E-04 | ~2.6722E~-04 | -1,0538E~-0¢
2 {0OCD} 267.51 9,38226~02 | -5.4920€E-02 B.0022E-03 | —4.6]146E-04 7.7087E-06
04600
1 (EVEN]) 95.73 1.8349E-01 | ~4.2533E-02 | -6.3013€E~03 | -1.4283E-04 | -2.5261E-0% | =9.7776E~-0S
2 {000) 265.25 7.9373E-02 | -4.6T00E-02 6. T803E-03 | -3.8740E-04 1.2269E-05
0.750
1 (00D} 258.51 6.664565-02 | ~3.87T72E~02 5.5537E-03 | -3.1639E~04 T.0508E£-06
2 LEVEN) 95.74 1.301%E-0C1 | ~2.6910E~02 | ~6.7T703E-03 1.95011E-04 | -1.8992E-04 | -7.7214E-05
3 {EVEN) 267.00 4,.16008-02 6£,50536~02 | ~4.55%46E-02 4,.4018E-03 | -7,9711E-04 -1.0847E~04
0.9C0
1 (CCO) 239,75 5.83525-02 | -3.3953¢-02 4.T391E-03 | =2.7286E~04 | ~3,9212€-05
2 {EVEN] 96.99 9.62192E-02 | -1 .BTEBE-02 | ~53.7984E—-03 2.3351E-04 | ~1.2476E-04 | ~7.2625E-05
3 (EVEN] 263.57 1.9211E~C2 5.8344E-02 | ~3.9089E-02 4.41STE-Q3 | -7.421BE-04 | ~1.0193t~-04
{ £ ¢ L] [ § t f ¥ { { ¥

A



LG1

1.000

1.100

1.250

1.4C0

1.5C0

1.600

W SW N - DWW - E NSO N S W=

HwN

(000)
(EVEN)
(EVEN)

(oDD)

(oo
(EVEN)
{EVEN)

{acD)

toed)
(EVEN)
LEVEN)
(0D0)

LEVEN)
(000)
LEVEN)
{ocD)

(EVEN)
{0GD)
(EVEN)
tono)

{EVEN])
(ocD)
{EVEN)
{0tD)

211.12
260.73

98.26
269.19

170.53
256.12

99.69
268.67

135.53
244,20
102.13
267,40

215.97
121.83
104.79
265.03

182.79
116.95
106.63
262.47

153.19
113.50
108.47
258.77

5.4515E-02
1.1786E~02
8.0568E~-02
-3.8287€-02

5.1653C-02
T.1616E-03
6.87B0E-02
~3.2408E-02

4 ,8695E~02
3.2804€-03
5.5853€E~-02
-2.5815E-02

1.6141E~03
4.67T40E-02
4.6305E-02
2.1345E-02

1.3544E-03
4.58428-02
4.2404E-02
1.9059€E-02

1.8996E-03
4,5146E-02
3.8751E-02
1.7211€~02

TABLE 8--Continued

~3.17325-02

5.4844E-02
-1.5997£-02
~-8.7102£-02

-2.9980E-02

5.1991€-02
~1.4203£-02
~-7.4102€~02

-2.7981E-02

4.BT68E-02
-1.2763E~02
~-5.9835€E-02

4,62126-02
-2.6790E-02?
~1.2605€-02

5.0453E-02

4.47T10E-02
~2.6229E~02
-1.3199€-02
4.5799€E-02

4.3139€-02
~-2.5718£~02
-1.4627TE-02
4.2026E-02

4.4340€-03
-3.6377€-02
-4.8551€-03
1.0535€-01

4.1439€E-03
~3.4527€-02
~3.9678E-03
A.9281E-02

3.7808E-03
~3.2952€~-02
-2.6T74E-03
7.2501E~-02

~3.2441E-02

3.5470E-03
-1.3518E-03
-6,05935-02

~3.2081E-02

3.4432E-03
-2.1475E-04
=5.4643E-02

~3.1634E-02
3.3807E-03
1.3465€-03

-4.9880E-02

-2.6344E~-04
4.5551€-03
2.4T66E-04

-3.6204€-02

—2.4245E-04
4.TE91E-03
2.48G7€-04

-3.0681E-02

-2.0530t~04
5.2346£-03
2.3408£~04

~2.4512E-02

5.8085£-03
~1+.9550€-04
1.8514E~04
2.0391E-02

6.0871€E-03
~1.9733€-04
1.1425E-04
1.8303E-02

6.2270E-03
-2.0955E-04
-2.3614€E-05
1.6631E-02

2.8587€-06
~7.2194E5-04
-8.9670E-05
6.2290£-03

2.5158E-06
-7.3339E-04
-6.2466E~05
5.2599€-03

-5.9668E-06
~7.6512E-04
-3.0567TE-05

3.8323E-03

~8.4399E-04
-1.4491E-05
~1.5645€E-05
-3.1543€£-03

~-8.4856E-04%
~-1.7757£-05
-3.2319€-06
-2.8072E-03

-8.1647E-04
-1.4243£-0%

7.6881E-Co
-2.5439E-03

-1.0123€E~05
~8.3723E-05
-6.3058£-05
-5.9845£-04

-9.7838E-06
-6.71016-05
-5.3871E~-05
-5.0796E-04

-4.9119E~05
-4.0636E~-05

-2.3136E-05%

-2.9551E-05

~-?2.2492E-05

-2.3882E-05

—-2.5840E-05

-1.6076E-05

-5.8245E-06
1.0593E6-04
~5.7948E-06

T.4691E-05

- 2.6164E-05

-5.T493£-06

~-2.4332E-05

~4.0639E-06

-2.1913E-05

-2.0836E-06

sin(tn+icos(244))

up(£) =

sin{ cos™244))
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