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It is shown that a denumerably infinite set of functions is
associated with any loss-free obstacle and that these can be used to
expand the fields radiated or scattered by that obstacle under a
variety of excitation conditions. In the special case of a per-
fectly conducting obstacle, each such “characteristic" function is
associated with a real “"characteristic" current on its surface which
gives rise to equiphase fields throughout the volume occupied by the
obstacle. Several examples are treated briefly: the infinite circular
cylinder, the sphere, the array of infinite, parallel wires, coaxial
circular Toops, and short, thin filaments of wire. The treatise ends

with a discussion of topics for future investigation.
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CHAPTER I
INTRODUCTION

Problems in the theory of electromagnetic and acoustic fields

may be divided into two parts: (1) The mathematical representation

of fields as functions of space, frequency, polarization, etc., and
(2) The application of these representations for the solution of
radiated or scattered fields associated with particular boundaries and
excitations. Although these two aspects of field theory may be con-
sidered independently of each other, they in fact rarely are because,

very often, the proper choice of field representation greatly simpli-

fies the solution of a given problem. For example, when scattering
objects are very large in terms of wavelength, a ray optic repre-
sentation of the field is often postulated which involves reflection
and attenuation factors. The evaluation of these factors for a given
object leads to a solution which often is quite accurate and which can
be arrived at only with great difficulty (if at ail) if other field
representations are assumed. Another example, closer to the subject
of this study, is the solution for the scattering or radiation from

a spherically symmetric object. We know that in the spherical co-
ordinate system the vector (and scalar) time independent wave
equation is separable and has for solutions the spherical vector

(or scalar) wave functions, sometimes called spherical multipoles or.

spherical modes. Any radiated or scattered field can be represented



as an infinite (in general) weighted sum, i.e., modal expansibn, of
these functions. The presence of an object constrains the field to
satisfy boundary conditions on its surface, and it is the satisfaction
of these conditions that determines whether or not the field expansion
is a useful representation for the solution of the fields radiated or
scattered by the object. In the present instance, the spherical wave
functions are "proper" to the solution of scattering or radiation from
a spherically symmetric object because they possess orthogonality
properties over the surface of such an object and, in the case of
vector functions, they have components which are tangential to spheri-
cal surfaces.

For any other object shape, the spherical wave functions do not
form a field representation directly suited to solution of the
associated radiation or scattering problem. The question arises,
therefore, whether or not a field representation of the modal expansion
type exists which can be associated with a scatterer or radiator of
any given arbitrary shape. In this treatise, we show that, given a
loss-free obstacle, a set of characteristic functions exists which
possesses properties similar to the set of spherical functions, and
can be used to form a modal representation of a field scattered or
radiated by that obstacle.

To aid the development, Chapter II presents a brief introduction
to Hilbert space and the concept of an operator which transforms
eTements of one such space into elements of another. This mathe-

matical background is used in Chapter III, where the scattering process
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is interpreted in terms of operator language. This interpretation,
together with physical reasoning, lead to the conclusion that for

each perfectly conducting obstacie a particular set of surface cur-
rents and corresponding radiated fields exists which characterizes

the obstacle shape independently of any specific excitation. These
so-called “characteristic modes" form a useful basis set in which to
expand fields radiated or scattered at a far distance from the obstacle.
Certain properties of characteristic modes are inferred and these lead
to methods for determining them in particular cases.

In Chapter IV several examples of characteristic modes associated
with certain simple geometries are presented. First, the infinitely
long circular cylinder and the sphere are elaborated from the charac-
teristic mode viewpoint, and, although they are time-worn classical
obstacles, the development is instructive. A Tess trivial obstacle
composed of N infinitely long, thin, paraliiel wires arrayed arbi-
trarily in space is examined next. Two cases, where N = 3 and 8, are
worked out in detail to illustrate the resuiting modal currents and
field patterns. Another example of characteristic modes is given for
two coaxial circular loops of thin wire. The rotational symmetry
of this obstacle gives some a priorl knowledge of its modal currents
which simplifies their determination. The representation in terms of
characteristic modes is shown to be consistent with published results
for the single circular loop scatterer. Finally, the thin finite wire
of arbitrary shape is treated. Contrary to the infinite wire array, the

modal currents for this obstacle have no neat expression in terms of

11



well known functions. Therefore, computer techniques are outlined
for determining tﬁése currents which utilize certain properties of
characteristic modes.

Chapter V presents a summary of the defining properties of
characteristic modes. Some of the difficulties encountered in their
determination are discussed as are their potential use in the solution
of scattering and radiation problems.

One appendix is jncluded in which the concept of modal impedances
are discussed, specifically for the case of two coaxial circular Toops.
+iwt

An e time convention is assumed throughout this work and is

suppressed for convenience.
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CHAPTER II
LINEAR OPERATORS IN HILBERT SPACE-
A BRIEF INTRODUCTION*

A. Abstract Linear Spaces

In order to understand what is meant by the term "operator," it
is necessary to introduce the notion of abstract Tinear spaces. The

concept of a "space" is an abstraction and generalization of the famil-

iar three-dimensional Euclidean space ("people" space) in which distance
between any two "points" is measured along the "straight-Tine" between

them. The generalization of this space proceeds in two directions:

(1) to spaces of dimension greater than three, even to infinite dimen-
sion and (2) the introduction of more general measures of distance
between any two "points" (elements) in the space. The abstraction

of three-dimensional Euclidean space induces us to think not of con-
crete objects Tike points or vectors in the space but abstract elements
which must obey certain rules if they are to be considered members

of the space. By defining different rules, one may define many dif-
ferent abstract Tinear spaces, some of which have found more interest
than others. One of these is Hilbert space, named after the mathe-
matician who first studied infinite dimensional spaces. Hilbert

space has been of much use to science because its defining rules

have an interpretation in terms of physically meaningful quantities.

*Many of the statements in this chapter are extracted from Reference 1.

13



B. Postulates Defining Hilbert Space, H

A Hilbert space H is a system of elements, f,g,h,* -+ satisfying
the following rules (postulates):

1. H is a Tinear space

This means that two operations are defined; addition between
elements of H and multiplication of elements in H by complex numbers

(scalars) x,u, p,such that

f+g=g+f
f+(g+h)=(f+g)+h
A(f +g) = Af + g

(r + p)f = Af + uf
() f = auf)

1. f=f

()
—4
it

0 - g for all f, g inH

2. A distance function is defined by means of a scalar

{or inner) product

The scalar product of two elements f and g is a complex number
dehoted by <f,g> and possesses the following properties:

<af,g> = r<f,g>

c where superscript ¢ means
<g,f> = <f,g> complex conjugate

<f1 + fz,g> = <f1,g> + <f2,g>
<f,f>> 0 if f.if 0

<f,g> = 0 for all g is f = 0.

14



The quantityj'<f,f> =||f]| is called the norm of f. If ||f|]| =1
it is called a normalized element. The distance function between two
elements f dnd g is defined by ||f-g|].

3. H is complete, that is, every Cauchy sequence

in H must converge to a limit which also is in H

If fl,fz,f3,---, is a sequence of elements in H, then it is a
Cauchy sequence if ||fn-fm[| +0 as n->o, m>+. We require that
every Cauchy sequence must converge to a limit f in H if the space
is to be a Hilbert space, where convergence is defined in the strong

sense,

Tim [ |f -f[] - 0, or f_~ f,
tin | 17,7 :

A sequence fl,fz,f3 ++« of elements in H is weakly convergent to f
in H if
Aig < f1s9> = <f,g> for every element g in H,

or fn—é f.

Every strongly convergent sequence is also weakly convergent; the
converse is false.

4. The dimension of H is denumerably infinite

Let t be a subset of H. If every neighborhood of any element in
H always contains at least one element of t, then we say that t is dense
in H., If g, are the elements of t and we form all possible linear

combinations

[>2]

o “o
a=1

15



and if the totality of these linear combinations comprises a dense

set in H, then we say that : is a fundamental set in H. By definition,
the smallest possible cardinality of a fundamental set in # is called
the dimension of H. By the present postulate, therefore, a Hilbert
space must contain an infinite but denumerable fundamental set.

C. Two Realizations of Hilbert Space,
Ho and L.(a,b)

2

Tnere are two realizations of H which are important to our Tater
development. One is the Hilbert space of sequences (or infinite
dimensional Euclidean space) and is denoted by H s the other is the
Hilbert space of all complex-valued square integrable (in the sense
of Lebesque) functions f(t) defined in the real interval a < t < b with
a suitable definition of scalar product, and is denoted by Lz(a,b).

The space HO has as its elements all infinite sequences of
complex numbers with finite norm. If two typical elements (some-

times called vectors) are denoted by x = (xl,xz,x3,---) and

Yy = (ylsyzs,Y3""), then

C
XY T YL X> =
o

L s 4
<
<

(9}

is defined to be the inner product and

IRV =-E P

and
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[yl] =J?§§;;=[c§1 |ya|2l%

are finite. If <x,y> = 0, the two elements (vectors) are said to be
orthogonal.
The space L2(a,b) has as its elements all functions f(t) such
that
b > B
[P e and | sy o,
a a
where a < a < g < b, exist. The interval a <t < b can be infinite,
but the sub-interval o < t < g must be finite. A suitable scalar

product is defined by

b
<f,g> = J f(t) gc(t)dt.
a

If <f,g> = 0 the two elements f(t) and g(t) are said to be orthogonal.

D. Orthonormal Systems of Elements in H

A set {¢} of elements in H such that each element ¢ is normali-
zed, i.e., ||¢]| = 1, and any two different elements, say ¢  and ¢,
are orthogonal, i e., <bprdn> = 0, is said to form an orthonormal
system in H. Such an orthonormal system contains at most a countable
infinity of elements. If {¢} also is a fundamental set, then any ele-

ment f in H can be expanded in terms of 9, @S

[+]

f = z <f’¢a> ¢a .

a=1

17



where the weighting coefficients are the scalar products <f,¢a>,
called the Fourier coefficients of f. The set {¢} is then said to
be a complete orthonormal system in H. As an example, in the Hilbert

space LZ(—n,n), the set of trigonometric functions
e

e

{9} = J 1//m sin nt n=1,2, ---forms a complete orthonormal

1//m cos nt’

system in which any element f(t) in LZ(-w,n) may be expanded. The

resulting expansion,

[an cos nt + bn sinnt],

_')
———
i
p
1

o))
+
e~ 8

1

is the familiar Fourier series for f(t) and the coefficients

1 i
a = <f, 1/ ] 2u> = J f(t)dt,
0 J 2n - .
- 1 o1 [T
a = <f, =— cos nt> = — f(t) cos nt dt,
n —
v T \f‘ T -
. T
. 1 . _ 1 [ .
b = <f, =— sin nt> = — f(t) sin nt dt,

T gl

are the Fourier coefficients of f(t).

18




E. Isomorphism Between # and Ho

»

Having chosen an orthonormal system {g} in H, one can form the
infinite sequence of complex numbers (expansion coefficients)
X = (<f,¢1>, <f5 0,5 <f,¢3>,--s) for any typical element f in H.
But this sequence is one in the space Hy s and in fact it can be shown
that there corresponds to any element f in H a unique element X in Hy
and vice-versa, thereby defining a one~to-one correspondence between
H and HO. If this one-to-one correspondence, denoted by T, satisfies
the conditions

T(f+g) = Tf +Tg, for all f,g in H

T(Af) = ATf , for all f in H and all scalars »

TJf,Tg> = <«f,g> for all f,g in H
then we say that the Hilbert space H is isomorphic to the Hilbert
space H . Thus, if a function f, which is an element of H, is ex-
panded in a complete orthonormal set in H, the sequence formed by the
corresponding expansion coefficients, which is an element of Hys can
be used to represent f in subsequent operations on f. Such images in
HO of functions in H will be useful in Tater developments.

F. Linear Operators in H

Having introduced the concept of abstract Hilbert space, we now
are prepared to discuss operators in that space.

A map M which associates with each element x belonging to a subset
D of a Hilbert space H with an eiement y belonging to a Hilbert space
H' is said to be an operator with domain of definition D. The spaces

H and H' need not be distinct. The operator M is called Tinear if:

19



(1) D is a linear manifold, i.e., if x, and x, belong to D, so does
(Clxl + c2x2) for any complex numbers ¢, and Cos and (2) A(clx1 + szz)
= cMx; + cyMx,.  If the domain of definition of M1is all of H, and if
there exists a constant C > 0 such that |[M|| < C||f|| for all f in
H, then the operator M is a special one said to be bounded. The
smallest such C always exists and is called the norm of M, denoted by
1M |-
Suppose M is a bounded linear operator relating an element X in
H to an element y in #'. Symbolically, this operation is written,
Mx = y.
If x is expanded in an orthonormal system {¢} with associated ex-
pansion gpefficients X > = X in H0 and similarly, y is expanded
in an orthonormal system {y} with associated expansion coefficients
Yspy> = yB in Ho‘, then Mx = y implies that

y_8 = z <M¢a,¢8>xa.
a=1

In other words, the components of x and y are related by a matrix

whose Bath element is <M¢a,¢8>. This matrix, which can be denoted

by M = MAaé ,is called the kernel matrix of Fhe operator with respect
to the {¢} and {y} orthonormal systems. Thus, the symbolic equation
x =y for a bounded operator, M, can be transformed into an equiva-
lent algebraic system of simultaneous equations of infinite number
with infinitely many unknowns as a consequence of the isomorphism

between H and H0 as well as between #' and HO'.

20




G. Completely Continuous Normal

Operators in H

Bounded operators are a special case of the larger class of con-
tinuous operators; completely continuous operators are a special case
of bounded operators. Whereas a bounded operator in # implies only
that if X, > X (strong convergence) then Mx, - Mx, or if X = Xo
(weak convérgence) then Mx, —~ Mx the completely continuous
operator in H 1mp11es that if Xy = X then Mx, = M, Thus, an
operator p/ which transforms any weakly convergent sequence in H

into a strongly convergent sequence in H' and for which the domain

of definition is all of H is cailed compietely continuous. There

are alternative equivalent definitions and interpretations which will
be pointed out later.

[t may be shown[2] [3] that a sufficient condition for an
operator to be completely continuous is that the e]ements,AAaB =
< Mgy sv,>> of its kernel matrix [M], with respect to complete
orthonormal systems {¢} in H and { y} in H', satisfy

.
) /Y I
a=1 g=1 af

~3 &

This property of the kernal matrix suggests that in performing the
operation Mon an eiement x in H, all but a finite number of terms

in the expansion formula of the element y =M x in H' may be neglected.
More precisely, an operator H is called completely continuous if it can

be represented in the form[{

21



y = Mx = M'x + M'x,

where M' is a degenerate or finite dimensional operator and ||M]|

<¢ for any ¢ > 0. This implies that the expansion formula for the
element y can be truncated after a finite number of terms and the
result will be within an ¢ neighborhood of the correct y.

The kernel matrix which represents a completely continuous
operator is "almost" finite dimensional, and its rows and columns
can be ordered in such a manner that all entries, MaB’ where o > N(s),
B > N(s), have absolute values less than any preassigned s. Thus,
certain properties of completely continuous operators are analogous to
those of finite-dimensional matrices. In particular, the adjoint,
M* of a completely continuous operator, M, is the operator whose
kernel matrix is the complex conjugate transpose of the kernel matrix
of M.

A normal operator, N, is one whose kernel matrix commutes with
that of its adjoint, N*. For a bounded operator to be normal, it is

necessary and sufficient that its self-adjoint or Hermitian com-

ponents, defined by R = %—(N+N*) =R* and J = %7-(N-N*) = J*, com-
mute, '

A symmetric operator is one whose kernel matrix is symmetric,
that is, equal to its transpose. If an operator is both normal and
symmetric, its self-adjoint components become its real and imaginary
parts and therefore the real and imaginary parts of its kernel

matrix commute.
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If an operator M is normal and completely continuous a special
set of basis vectors, called the set of eigenvectors, exists, such
that any element x in H may be expressed in terms of the weighted

A

sum,

+

x = A Xq + A2x2 cee + Xg

1

where X, are a set of null vectors, i.e., those for which Mxo = Q.

Likewise, for any element y in H',

A.Xx A_x
y == 1L L2
11 Y2
whence
2 2
A5 A,
<MY X> = + F o
Y1 Y2

The Y, are called eigenvalues and satisfy the equations

< <
Yn Mxnzxn |Y1|—|Y2|—...3

where |yn[ ~ . The values 1/y, are the diagonal elements of the
diagonalized kernel matrix [M].

The formula for <Mx,x> is called the fundamental formula and
the formula for y = Mx is called the expansion formula; if the
sequence of eigenvectors is finite, then M is called a degenerate

or finite dimensional operator and [M] has only a finite number of

23



non-zero diagonal elements. A degenerate operator is always com-

pletely continuous. A1l the above statements Tead to the following

spectral theorem for completely continuous normal operators:[5]6]

Every completely continuous normal operator M distinct from
the null operator possesses either a finite number of
eigenvalues (degenerate case) or else an infinity of
eigenvalues, 1/{un + ivn) (in general complex numbers) with
no finite point of accumulation. Each eigenvalue has finite
multiplicity. The union of the null vectors and eigenvectors
of this operator contains a complete, orthonormal system.
The expansion formula and the fundamental formula both hold.
The self-adjoint components R and J of M have the respective
eigenvalues 1/u, and 1/vy. If all the eigenvalues of M are
real, then J = 0 and M is self-adjoint. In any case, M and
M* possess the same null vectors and eigenvectors. Con-
versely, if a completely continuous operator M has the same
null vectors and eigenvectors as M*, and if the union of

its null vectors and eigenvectors contains a complete
orthonormal system, then M must be normal.

Before stating additional mathematical concepts necessary to

the development of characteristic modes, it may help to interpret

those already presented in terms of the physics of scattering, for

which we have some intuitive feeling.
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CHAPTER III
THE CONCEPT OF CHARACTERISTIC MODES

A. Scattering and Perturbation
Operators

In the previous chapter we have introduced the notion of a linear

space and an operator. In this chapter we shall relate these con-
cepts to a physical problem, namely, the problem of electromagnetic
scattering by a perfectly conducting object in space.

We choose an origin within the volume occupied by the scatterer
and consider all the complex vector fields which satisfy the vector

Helmholtz equation,

2 el o= 0,

(1) vx (7xE) -k

in a homogeneous region outside a sphere just enclosing the obstacle,
and also satisfy the condition

(2) Tim {r(r x (v x E) + ik E1)} = 0,
r‘-)oo

on the sphere © at r-«. These will be called converging vector fields,
i.e., fields which travel inward toward the chosen origin. lSim11ar1y,
we consider all the complex vector fields which satisfy the vector
Helmholtz equation in a homogeneous‘region outside a sphere just
enclosing the obstacle and also satisfying the (radiation) con-

dition

25



(3) Tim {r(r x v x 2 - ikE% 1 = 0

| ghasd

on the sphere ¢ at «=. These will Be called diverging vector fields,
i.e., fields which travel outward from the chosen origin.
The scalar product of two fields E, and E,, both of the same

type (converging or diverging), is defined as

.1 c .2 s
(4) <E.,E,> = Tim — fJ E, - E; r" sin & de6 d¢
1°=2 Zo 1 =

Yo
z
where the surface integral is evaluated on the sphere of radius r.
We Timit our consideration to fields of finite norm.

The fields of either type form a linear space and, further,

through their representation in terms of vector spherical wave

functions (multipoles), may be made to correspond to elements in the

Hilbert space, Ho' In order to create an isomorphism between the

space of fields Eﬁ(EP) and the space Hy (H,'), we shall adjoin to
g] (E°) fields which are discontinuous (and therefove do not satisfy
the vector Helmholtz equation) but whose discontinuities do not

affect the inner product integral. Then, for every element in HO(HO'),

a unique element Ej (E?) in H(H') exists, which by isomorphism, implies

~

that H(H') is a Hilbert space.

In particular, the isomorphism holds between H0 (Ho‘) and the

tangential vector pattern functions{ r e1kr gﬁ Qr e'1kr EF})

on ¢ at « since these distributions completely define the associated

multipole expansions. We shall refer to these sets of vector functions
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(pattern functions) as {fi(e,¢)} in H and {f°(e.¢)} in H'. We under-
stand that they are functions of ¢ and ¢ on © and, except where
clarity is jeopardized, shall omit the explicit functional notation.

In the absence of an obstacle, any incoming function fj in H
is transformed without disturbance into an outgoing function f? in

H'. That is,

(5) £0 = 17,

where T is the identity operator and may be viewed as the scattering

operator associated with unbounded free space. By placing an obstacle
at the origin, this unit operator is perturbed to form the scattering
operator, S, indicating that the functidn fi in H is transformed into

a function in H' which is perturbed from fo. That is,

(6) £ + f° = sf’

The perturbation is represented by the operator (S-I), so that

(7) s£% = (s-1)f

The operator %—(S-I) will be called the perturbation operator,

denoted by P, and the perturbation éf?/z of the outgoing function
from its value in the absence of the obstacle will be called the

scattered function, f?. Thus

(8) £ = pel,

where jf is an element of H and f? is an element of H'. The reason
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for the factor %—in the definition P= %—(S-I) will become clear
iater.

Consider next, that a particular function exciting the obstacle
as well as the resultant scattered function are expanded into a
denumerably infinite, complete, orthonovmal set of vector spherical
waves or multipoles (a convenient basis system) with respect to the
chosen origin within the scatterer surface. The resultant kernel

matrix [S] associated with the scattering operator § of the obstacle

will be called the scattering matrix.[7] [§ [9] [10] It represents

the transformation of all spherical multipoles converging upon the
origin into all spherical multipoles diverging to the spherical
surface at infinity. The scattering matrix generally is infinite
dimensional but can be arranged so that only a finite number of
off-diagonal elements are non-infinitesimal and only a finite number
of diagonal elements differ significantly from unity. Since the
unit matrix [II 1s the kernel matrix of the identify operator I,

and the matrix —;— [S-1] = [P} is the kernel matrix of the perturbation
operator P, then [Pl may be decomposed into a sum of an infinite
dimensional matrix all of whose non-zero elements lay in an N x N
finite submatrix and an infinite dimensional matrix which has an
infinitude of small elements. If the contribution of this latter
matrix to the scattered field can be made arbitrarily small, then
the perturbation operator P and its kernel matrix [Pl may be con-

sidered to be "almost finite dimensional”.[11]
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. In the following section, some important mathematical properties
of the operators S and P are inferred from the physics of the scat-
tering phenomenon.

B. Some Properties of Scattering
and Perturbation Operators

In the previous section we have suggested that the operator
concept provides a convenient mathematical description of how
an obstacle scatters. By choosing a basis system, this operator
concept is articulated in the form of an infinite dimensional
kernel matrix which relates one vector whose components are the
expansion coefficients of the incoming part of the exciting function
to another vector whose components are the expansion cecefficients
of the outgoing scattered functions. We now are prepared to apply

‘ knowledge of the physics of scattering problems to infer certain

interesting mathematical properties of the operators and their
kernel matrices.

For isotropic media, the reciprocity condition on the fields
and a proper choice of phase conventions for the wave functions
ensure that the scattering operator $ and the scattering matrix {S]
are complex symmetric, i.e., SC* = § and [S]t = [S7], where SC* is the
complex conjugate of the adjoint of S and [S]t is the transpose of[S].
Furthermore, since the obstacles under study are lossless, an energy

balance must be maintained between incoming and outgoing waves.



This energy conservation condition together with the properties of
the fields under time reversal implies that the scattering operator
and the scattering matrix are unitary,[12] i.e., $*S = SS* =1 and
[s] trs) = [s] (5] Ot = [1] , where [s1 €t is the complex conjugate
transpose of [S]. Since S and [S! are unitary they are also bounded[13]
and normal, [14] [15] $*S = SS* and [S] CPIST = [S1 [} ¢F. Since S and
[S} are normal, so are (S-I} and [S-I1, or in other words, the
perturbation operator P and perturbation matrix [Pl are normal.
Clearly, P and [P] are also complex symmetrjc.

| In the previous section we suggested that P and [Pl are "almost
finite dimensional," that is, that they can be expressed as a sum of
a degenerate or finite-dimensional operator and an operator whose
influence on the scattered field is very small (whose norm may be
made less than any preassigned number). To say that this is indeed

the case, we must prove that P is a completely continuous operator.

To do this, it is sufficient to show that the elements, Pn®

of the kernel matrix of P satisfy the relation
(9 B

1P

o~ 3
1 o~ 8

— ¢

m= n=1

To show that [P] does satisfy this condition, consider the case of a
plane wave illuminating a perfectly conducting finite obstacle from
a direction, (ei,¢i). If this plane wave is expanded in terms of
standing spherical multipoles, we find that the associated ex-

pansion coefficients have functional variations with (91,¢1) equal to
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(2) (2)

the spherical multipoles, my and ng s given by Stratton. If
mn mn
0 A
these coefficients form a vector (u1(e1,¢1)), it is transformed by

the kernel matrix, [Pl, into a vector (u°(s',s")), i.e.,

(10) W° = [ (u').

Note that, in a strict sense, the incoming part of the plane wave
function does not belong to the Hilbert space, H, since its repre-
senation in HO would be a vector of unbounded norm. However, we

can approach the plane wave excitation by a sequence of excitations,
{u;}, which are weakly convergent, and for each of which the repre-
sentation in HO consists of a vector with a finite number, N, of
non~-zero components. As N increases, this sequence converges weakly
to a vector (ui) representing the plane wave excitation. The re-
sultant outgoing function belongs to the Hilbert space, H', since its
representation (uo) in HO‘, must be of bounded norm as a consequence

of the finiteness of the total scattered energy. That is,
Lll) HUOHZ - (uO)Ct (UO) = (U-I)Ct [P] ct [P] (U1) <

In fact, if we consider all possible angles of incidence, (o' ,s'), of
the il1luminating plane wave with all possible polarization states, o, we
can state from the physics of scattering that the total power averaged

over every such excitation is finite. That is,

(12) J [[ 1160t 117 sin d dol ¢l aa < =,

)
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which, together with the orthogonality of the spherical multipoles,
implies that
(13 ] 1 lpgltee
m=1 n=1
which is the desired conclusion.

With the assurance that P is a normal complietely continuous
operator in H, we may apply the spectral theorem which states that P
possesses either a finite number of eigenvalues (degenerate case)
or else an infinity of eigenvalues of the form (ar,n + i a1.n)'1
(complex numbers in general) with no finite point of accumulation
and of finite multiplicity. The union of the null vectors and

the vectors of P contains a complete orthonormal set in which

to expand an arbitrary element in the vector space. More specifically, .
since the kernel matrix [P] = % [S-13 is complex symmetric, its
self-adjoint components are its real and imaginary components,

[P] = %-[S—I] = %—[SF-I] + i %—[Si]. Hence, by the spectral theorem

(1) a,(U) =5 [T (u) = [P] (u),
and
(15) a: (V) = 7 1S3 (U) = [P (U),
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where 1/arn and 1/a1.n are eigenvalues* or else zeros and (Un) are
the associated orthonormal eigenvectors. Since [Sr-ﬂ and [Sﬂ are
real, G and a; . as well as all the components of (Un) are real
numbers. Hence, we imply that the perturbation matrix [P] = %-[S-ﬂ
possesses a set of complex eigenvalues l/an =1/(arn + 1a1n) and an
associated set of eigenvectors in HO which are real and orthonormal.

That is,
(16)  a (U ) = [s-1 (U) = [P (U).

The diagonalized perturbation matrix has entries on its diagonal
equal to its characteristic values as or zero, The diagonalized
scattering matrixlhas entries on its diagonal equal to its character-
istic values S, = Zan + 1 or unity[17] and the unitary property of

[S] assures that s = 129, g e, s,| = 1. Clearly, in the

complex plane the S, lie on the unit circle centered at the origin

and the a  Tie on the circle of half-unit radius centered at (-%,i0).
In Tater work it will be convenient to relate Sh and a, to a parameter,

An, by means of bilinear transforms,

1
)
n
1+(._
o

(17)

*In the Titerature a, are called characteristic values and l/an are
called eigenvalues. See Reference 16. In this work, we shall refer
to (Un) as eigenvectors or characteristic vectors, interchangably.
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and

S S
n 1+ 1xn
The Smith impedance chart, which graphically represents these trans-

forms, may be superimposed on the unit circle as shown in Figs. 1

and 2.

~

. Discussion

As a consequence of the complete continuity of the symmetric
normal operator, P, we have implied certain mathematical results.
It is important to the Tlater development that the physical implications
be understood at this point.

Once the oscillation frequency is fixed, a loss-free object of

given composition and surface shape has associated with it a denumerable .

set of special electromagnetic fields, each unique to within a multi-
plicative constant. Each such field may be produced by primary

sources located outside some sphere enclosing the obstacle and is char-
acterized by a cavity-mode total field behavior between the scatterer
and the enclosing sphere.' If the scatterer is removed and replaced

by the ambient medium, the primary sources also produce a cavity-

mode field in the region formerly occupied by the scatterer. A
harmonic field is said to be a cavity-mode field in a three dimensional
region if E (and H) vanishes instantaneously throughout the region
twice per period. Equivalently, the vector distribution of E or H
throughout the region is independent of time, but varies sinusoidally

in amplitude with time.
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These physical properties possessed by the special set of fields
are a consequence of two facts: (1) in the absence of the scatterer,
the incoming and outgoing vector spherical wave expansions of each
such field have identical real coefficients, and (2) in the presence
of the scatterer, the coefficients in the expansion for each outgoing
field undergo a uniform phase shift. These fields may be ordered
naturally according to the magnitude of their phase shifts, only a
finite number having phase shifts greater than ¢ > 0 in magnitude,
where ¢ is an arbitrarily small quantity.

In the case where the obstacle is a perfect electric conductor,
which henceforth shall be assumed in this work, a further interpre-
tation of the special fields and associated surface current distri-
butions may be made. Since the total fields exterior to the scatterer
surface are cavity-mode, the associated surface current distribution
(electric type) will have a standing-wave character, i.e., its strength
varies sinusoidally with time, but its spacial distribution over the
surface does not. Furthermore, in the absence of the scatterer, this
current distribution generates a cavity mode field throughout the
region formerly occupied by the scatterer (since the sum of the fields
produced by the induced surface current and the primary sources
present in the absence of the scatterer must be zero within the volume
occupied by the scatterer). |

Thus, for a perfectly conducting scatterer with a surface S, at

a specified angular frequency w, we may define a set of characteristic
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mode current distributions Qﬂ on S which radiate a set of character-
istic mode electric fields EﬁXt(r,e,¢) outside S, such that
(1) gﬂ is a standing wave current distribution of the form
gﬂ(u,v) cos wt, where u and v are surface coordinates
on S,

(2) Qﬂ generates a cavity mode field everywhere inside S
int

and this interior field can be expressed as E (r,e,¢)

i 3n s
cos(wt-a ), where 5 < o < =5 . The indices n are

chosen so that the magnitudes [cos o [ form a de-
creasing sequence with increasing n and only a finite
number of the |cos “nl are greater than ¢ > 0, where ¢

is an arbitrarily small number.

ext

(3) The electric field E_""(r,0,¢) is that radiated by the

surface current distribution J , and J_ is normaiized
-n =
so that it radiates unit power for each mode of finite

order n. On the sphere ¢ at r-e, gﬁXt(r,e,¢) = ~lou
Ax

~-ikr
& th character-

F,(8s¢), where F _(e,¢) is then

r
istic mode pattern function on £. The normalization

to unit radiated power implies that

2

=1 2 . 4

< HE > =5 JJ |Eﬂ| sing dg dg¢ = i—ﬂl—é
o (kz )

th

Furthermore, since EﬁXt(r,e,¢) is the n™ character-

istic function of the perturbation o0 ~ator P, and these
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are orthonormal to all others according to the spectral

theorem,

. 1 . rC s -
<£n’£m> = 3 f[ Eﬂ Em sin o do d¢ = 0, m #n.

The characteristic mode current distributions as defined are an
extension of the set of resonant current distributions, if any exist,
for the cavity enclosed by S at angular frequency w. These familiar
cavity modes, if they exist, are included as a degenerate subset of
the set of characteristic modes; they correspond to values of
n, = % OF %13 i.e., |cos o | =0, for which the radiated field is
identically zero.* Such modes are not encountered for finite n
because of the mode ordering chosen on [cos o |.

Having defined characteristic mode currents and characteristic
mode radiated fields of a perfectly conducting scatterer with surface
S and at angular frequency w, it seems natural to investigate methods
for expanding an illuminating field (such as a plane wave arriving
from an arbitrary direction) in terms of a linear combination of
characteristic mode interior fields Ezpt(r,e,¢) and then deriving
an expression for the scattered field as a linear combination of

ext

the gﬂ (r,6,¢). In the following section we shall see that such

an expansion is possible and in the process, reduces the expression

*For these resonant cavity modes, the tangential component of the
electric field on S is identically zero.
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for the far-zone scattered field due to plane wave illumination to
a particularly simple bilinear form in terms of the characteristic

pattern functions, B,6) .

F

0. The Bilinear or Characteristic
Mode Expansion

Having defined a complete, orthonormal (in the sense of radiated
power) set of modal fields, g;nt(r,e,¢) and gﬁXt(r,e,¢), interior and
exterior, respectively, to S, we wish to use them to expand the field
due to a current source J arbitrarily Tocated at (ri,ei,¢1). In the
absence of the obstacle, this field in the vicinity of the origin

must be of standing wave type and can therefore be expanded as a

weighted sum of the fields, g;“t(r,e,¢). The weight, An,of the nth

term in this expansion is given by the reaction[18] [19] [20] of the

nt" radiated field, £

1

(r,6,9), with the source current. That is,

(19) A, = JJJ g?ﬁt(r,e,¢) -+ J(r,8,9) dv,

v
where the integration is over the volume of the source. If the source

is an electric dipole located at (r1,e1,¢1), this simplifies to

(20) A= iwE M (r el e') - p

where p is the electric dipole moment of the source. But it is
precisely this incoming wave, with pattern function Fn(e, $) on ¢,
which is transformed by the obstacle into an outgoing wave with the

- . S Sy i i
same far field pattern, i.e., 2a_ F (67,6°) = 2P F (o .6 ). Hence,
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the nth characteristic mode field at an observer point, (rs,es,¢s),

due to a dipole source at (r',8',s') is

(21)  E (r°,6%,6%5r 18T 50") = -tua ESXE(r%,6%,0)E N L0T,47) -+ p,
and if the first N such modes are important,
s s s, 1, N ext ext
(22)  E(r7,87,¢75r 18 ,0) = -iu 21 a, B (% ,6%, ) ESXE (v T o)
n:
" B

Clearly this is a bilinear expansion in the characteristic fields,
£eXt(r 6 ¢)
n

If both the source and observer are at extreme distances from

the scatterer,

(23) E‘rs’es,¢s; ri,eis¢1) = -iw e £ ¥

N
\ S .S S .S
Loay F(07.47) Eo(e7.¢7) - p

If the source dipole is considered to cause an essentially plane wave
in the vicinity of the obstacle, with unit electric field intensity
of zero phase at the origin,
(o) 2 ikl

4y . pP=&

3
r

where £1 is polarization state vector of the plane wave. Hence,

D . -ike® N .. .
s S .S, 1 1y . 1t e s 3 T .1y 21
(25)  E(r7,67,9730 40 ) = + 4= < nzl a F (67,07 )F (87 ,67) « &
AT
. -ikr . s
S F(6%,¢%50,") » ',
r
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where

s s, iy _ s S i i
(26) E(e s 30 50 ) = - a _En(e ¢ ) _En(e s ¢ )s

1 n

InNe~1=

n

is the dyadic pattern function represented as a bilinear expansion
in the characteristic pattern functions, En(e,¢).

Thus, in the bilinear or characteristic mode expansion we have a
particularly compact_formulation for bistatic-scattering from any loss-

free obstacle (metallic, dielectric, or magnetic). With knowledge of

the characteristic fields gﬁXt(r,e,¢), or pattern functions En(e,¢) on
r, together with the characteristic values a, associated with the
obstacle, it permits the evaluation of the scattered field in any
direction due to a source near or far from the obstacle. In the next
chapter we shall apply the bilinear expansion to express the scat-

tered fields of several perfectly conducting obstacies.

E. Summary

Summarizing the results of the previous sections, we find that
an appropriate representation of the electromagnetic fields associated
with a Toss-free scatterer utilizes a special set of characteristic
vector fields, determined uniquely by the scatterer shape and compo-
sition, together with the frequency. When the forms of the outgoing
parts of each of these vector fields are known as a set of vector
surface distributions, En(e,¢) on the infinite sphere, z,.surrounding

the scatterer, together with an associated set of characteristic values
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a, = |cos an|e1an, where %-E_an 5_5%-, the scattering of plane waves
arriving from arbitrary directions into arbitrary receiver directions
may be evaluated concisely.

The determination of these characteristic fields and their
characteristic values, a.s is not a simple task, however. In the
special case of a perfectly conducting scatterer, it has been inferred
that a set of characteristic surface currents can be defined, together
with their characteristic values, by certain cavity-mode properties
of the associated fields within and on the mathematical surface de-
fined by the scatterer. We shall later discuss the use of these
defining properties to determine the characteristic modes in special
cases.

It is appropriate at this point to consider the forms of the
characteristic mode currents and fields on £ for special conducting

scatterers, and illustrate the general bilinear formulation for

bistatic scattering in each case.
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CHAPTER IV
EXAMPLES OF CHARACTERISTIC MODES
FOR PERFECTLY CONDUCTING OBSTACLES

A. The Infinite Circular Cylinder

The problem of plane wave scattering by a perfectly conducting
circular cylinder of infinite length viewed normal to its axis has a
well-known solution in terms of cylindrical wave functions,

In this section, the same problem will be discussed in terms of
characteristic modes.

For normal incidence, the set of characteristic mode current

densities on the surface of the cylinder have no variation along the

cylinder axis and may be separated into TM and TE types. For a cylinder
whose circumference in wavelengths is ka (see Fig. 3), the character-

istic mode current densities on S are:

™ Type:
(TM) - En cos n¢
(27) an (¢) =z 'z—ﬂ—a—dn—(m sin no cos wt,
{
TE Type:
(TE) _ 7 V[E; ‘cos ne
(28) an (¢) = ¢ EEETJETEE) *lsin no cos wt,
where
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th order Bessel function

M

3
1
J and Jn(ka) is the n

and Jﬁ(ka) is its derivative with respect to

ko evaluated at o = a.

Fig. 3--Coordinate system for an infinite
circular cylinder.

The characteristic fields radiated by these current densities

at a large distance r are:

™ Type:

=T -ik
(29) M O (g = - for [HL el Iy

TN ) v Jke ~
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O N LG
TE Type:
(TM)ext w7 eTike (TE)
(31) E ( ’¢) IR B N B —_— F (q’)s
S N Joo G
where

(TE) R :
(B2 e - g " 8 ne
The characteristic fields produced by these current densities

interior to the cylinder of radius a are:

TM Type:

) e = 2 —dy S lke) Fne
n

TE Type:

(34) ggE)"“t () = w‘é‘n Ty dalke) £ e

n

The symmetry of the circular cylinder causes a 2-fold de-

generacy in the characteristic values, aéTM) and aﬁTE). These
values are
. (™)
(35) aﬁTM) = - Jg(ka) = |cos aﬁTM)l emn ,
HY“/(ka)
n
where
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(36) o™ < gan7t { E—:é%} R
and |
(37) a{TE) = —(—)—-[Jn(ka)]' = Jcos o\TE)| emS‘TE) ;
" [Hy?) (ka) T "
where \
(38) aiTE) = tan"! { %%ﬁé;;;%;} , %'f_aéTE)f. %1
!

The bilinear expansion leads to the following expression for the
2 and é components of the far-zone scattered field observed in the

. L. S . . ~i "
direction, ¢~ , where a plane wave of polarization £ = cos o z +

sin o é is normally incident upon the cylinder from the direction

¢
~— _ike A
(39) E(pst 3¢") = - / e & F(o%30") - €,
AU {kp -

where the dyadic pattern function is

. N .
(20) £l - T 2l L T (9)

P (9) FT (67
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There are only a finite number of characteristic va]ueg, CHP
of magnitude significant enough to be included in the bilinear ex-
pansion for E. The number that must be used, however, increases
with the value of ka so that the characteristic mode expansion is
most useful when ka does not exceed 10 or 20.

For cylinders of noncircular cross section, the trigonomentric
functions no longer form characteristic modes. In these cases, the
modes are unknown, except for the perfectly conducting elliptic

cylinder where they take the form of Mathieu functions.[23]

B. The Sphere

As another illustration of characteristic modes, consider their
application to the spherically symmetric scatterer. This classical
obstacle has been investigated by many authors under a variety of
exciting conditions. Of particular interest here is the illumination
of a sphere by an arbitrarily located and oriented electric di-
pole,[247]25] or, more specially, such a dipole removed to an ex-
treme distance from the sphere (plane wave excitation}[26] 277287
Conventional techniques fall into two categories: the use of vector
and scalar potentials[29 J[307], and the use of a dyadic Green's
function[31]. Results obtained by the Tatter formalism resemble
in form those described here from the characteristic mode approach.
A discussion of the spherical scatterer in terms of the scattering

matrix appears in Newton[32].
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Fig. 4--Coordinate system for a sphere.

Referring to Fig. 4, the characteristic current densities and
fields are described in a spherical coordinate system centered at
the sphere. The sphere circumference in wavelengths is ka. The
characteristic mode current densities and fields are separated into
TM and TE types, with an "e" and "o" degeneracy similar to that
encountered in the circular cylinder. The current densities,

normalized to radiate unit power, are:
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T™ Type:

™) 1 1 ®n 2n+1 (n-m) !
a) 3™ (a,0,9) = . | - x
. . n(n+tl) (n+m).
~omn kVzZ, a [kaj, (ka)]

m m

aPn (cos o) cos cFm Pn(cos ) sin m¢$}

56 sin ¢ sin 8 cos *
E Type

(TE) _ 1 1 “m 2n+l -m) !
n

o

m m
Pn(cos 6) sin - aPn(cos 8)

CoS -
=m - my -1 O
+ sin @ cos 2 sin M® ;}.

The characteristic fields radiated by these current densities

at large distance r are:

™ Type:
. -ikr
TM)ext gy e (T™)
43 E( 0 R F 8, s
(43) B (r,6,¢) e 7 Fe (8,0)
where
(TM) J fm  2ntl n-m) !
(44) E%mn (8:¢) = kJ_- 1(1) &y n(n+¥1) (n-m): *
ap™ . PM(cos o) . .
n {cos 6) coOs = _n sin
30 sin M & F M~ cos ™ ¢
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. . -ikr

" (TE)ext _ fwy e 1 (TE)

45 E es - = es
(45) Eemn (r,y6,¢) o - ’%mn (6,9)
whefe

(TE) - V/v m 2n+1 (n-m)!

(46) E%mn (8,9) kv,__ Ir n(n+1)  (n¥m)?

J PM(cos 8) . R aPm(cos 6)
- n sin n
l+ m sin o cos MO - 30

cos
sin

mcbdaj.

The characteristic fields produced by these current densities

interior to the sphere of radius a are:

98

(47) gé;r)int(r,e,qs) = %y— il 51?:11) %2;%: Ckrg (kr
n
{'3Pﬁ(gzs 8) g?z o Pﬂsgioz 6) i;g no o
TE Type
w0 e S B e
Pn(cos e) cin . BPE(COS %) cos AJ.
™ Sths cos MO T sin™ O

A11 the above currents and fields are defined form < n, n > 1,

The high order of symmetry present in the sphere produces a (2n+l)-

fold degeneracy in the characteristic values, aéTM)
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depend only upon the index n and the TM or TE type. These values are

o \ . (TM)
(M) [ka j (ka)] _ (tM), 1%
(49) a, = - !i;—EEESELESj' = |cos o | e ,
where
i e k)T gy s
(50) b4 = tan l [ka anka> }n jfa '2" £ OLn s 2 s
{
and
. . (TE)
(TE ~ J (ka) _ (TE) Ta
(51) an ) = - hj:é—j—(m = lCOS a ! e n N
where
TE) _ .. -1 oo (ka) «  (TE) _ 3«
(52) (xr(] ) = tan \l- j:ka(’_fian = 5
\ J

The bilinear expansion leads to the following expression for
the 6 and @ components of the scattered field observed at a Targe

distance in the direction (es,¢s) when a plane wave of polarization

o1

£ = COS w8 + sin a% is incident upon the sphere from the direction
(e',¢"):
s s ... i i wy e-ikrs s s, 1.1 o
(53) E(r?.87,0738 50 ) = - = = E(e7,¢738°¢) - €,
r‘ —

where the dyadic pattern function is
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N | n ..
§ | L e gt
n . .
1 FUTE) (65,4%) £UTE) (91,¢>1)}

This is the most general form of the characteristic mode expansion
for arbitrary directions and polarizations of source and receiver.
It is simplified considerably without significant loss of generality
by restricting the direction of incidence of the plane wave %o the
polar axis (ei = m), in which case the finite sums on the index m
reduce to a single term each, for m = 1. The number of terms

needed in the characteristic mode expansion increases with ka so

that it is of greatest utility when ka does not exceed 10 or 20.

C. An Array of Infinitely Long,
Thin Parallel Wires

Consider a scatterer whose perturbation operator P is a prioni
known to be well approximated by a degenerate or finite dimensional
operator. Such a scatterer might consist of an ensemble of N scat-
terers each of which supports a current distribution of fixed form
but variable magnitude, under plane wave excitations. One example

is an ensemble of short, thin conducting filaments arrayed in a
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specified fashion throughout or on the surface of a given volume
of space. If crossed filamentpairs are arrayed to outline a
closed surface, a quantized model of an arbitrary shape can be
envisioned which may approximate the continuous closed surface in
some sense. The far field patterns associated with such a scatterer
ensemble are functions of 6 and ¢ on £ and in general possess both
6 and ¢ directed vector components. In order not to obscure the
characteristic mode formulation with a vector formalism, we shall
consider the simpler two dimensional analogue of the foregoing
ensemble scatterer -- an array of N infinitely long, parallel
wires, each of which is electrically thin under TM plane wave ex-
citation. The far fields are functions only of ¢ and are longi-

tudinally directed, implying an effectively scalar problem. Such

wires arrayed around a closed contour have been used as an electrical

model of a smooth conducting cylinder of the same contour.[33]
Consider the N-wire array sketched in Fig. 5, where the

location of the pth wire is given in polar coordinates by (pp,¢p)

and the radii of all the wires are assumed to be equal to b, where

b << A. (Wires of differing radii can be treated in the same

manner so long as they are all small in terms of wavelength.)

Because they are thin, the current density is assumed to be uniform

around the surface of each wire such that the current flowing on

the pth wire is given by Jp. With a specified ordering of the

wires, a set of currents on the wires can be represented by an

N component vector, (J} whose pth component is the current, Jp,
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Fig. 5--Geometry associated with scattering by an array
of infinitely long wires.

on wire "p". The field radiated by such an arbitrary set of

currents (d), evaluated at position p, is given by

N
-~ A N 2 —_ —_
55)  EE) --2gE ] W8 (k[5, - 51 9,
If this field is evaluated at the center of the qth wire, Eq. (55)
becomes
(56) £ =- ) WAWE -5 9
Yq B o °p T Pql’ Yp»
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or, in matrix notation,

(570 (e) = - B g, - 50T ),

£z7 (9).

The quantity IE@—SQI js the distance between the pth

and qth wire
centers and ]Eb - Eﬁ[ = b by definition.

Thus, an N » N matrix, [Z], whose elements have been defined,
relates the current vector (J) for N filamentary currents to the
electric field intensity vector these produce at the centers of
the N wires. From our previous observations regarding character-
istic current distributions of a perfectly conducting object, we
would expect in this case to define N real characteristic current

vectors, (Jn), by the requirement that the associated electric field

intensity vector, (En), must have equiphase components. That is,

the characteristic current vectors would satisfy,

(58) a4 TRI() = [XJ (J.),

where

(59)  [R]=Re[z]=g%i[z]+[zI%,
and

(60)  [X1=In[z]=-%(C2]-[23% .

There should exist N real values, Xy in general, related to the
characteristic phases, G between the currents and the fields they

produce, where
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(61) o = tan”
We shall show that this can be done, énd that corresponding to

each characteristic current vector (Jn), there is a normalized far
field radiation pattern, Fn(¢) which it produces. These character-
istic mode patterns, in a manner completely analogous to that

shown earlier for TM excitation of a circular cylinder, may be

used to obtain the scattered field intensity. Thus, the field
scattered in a direction ¢S, produced by a plane wave incident

from ¢1, is given by

. R - -ikp
(62) E(4',0°) = 4z ,_2_1_ €
T V|<p n

To prove the foregoing statements, let us return to the [Z]

| cos an\e1a” Fn(¢1)Fn(¢S).

=

1

matrix of the array. We see that the 1 are solutions of the

determinantal equation,

(63) det[X - AR] = 0,
or
= + L PO =
where the elements of [X] are Xi 3 t No(k‘pi pjl) X5 and
STy - = = .
the elements of [R] are P4 1 Jo(k’pi pjl) TE Since [X]

and [R] are symmetric matrices, the solutions, Ay of the determi-
nantal equation must be real.[34] The associated characteristic
current vectors (Jn) are then easily found from the defining

Eq. (58).
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At this point, let us digress for a brief observation. Given
a set of N radiating current filaments (J) and along these fila-
ments an impressed electric field intensity (E), the complex power

input per unit length is

E. J¢ .

- ct -
O A MG EEIN AR

e~ =

N
The real part of P measures the radiated power per unit length of
the array and the imaginary part measures the 2w times the net
average reactive power per unit length associated with near-field
energy storage. Using the [Z] matrix of the array and assuming

that the currents are real, we can express P compactly as,

(66) P =-(0)* [z] (),

and
(67) Re(P} = -(J)Y [R] (9),
(68) P} = -(3)% X7 (v).

The ratio of the reactive and radiated powers is

(69) P} _ (N [x] ()
Re P ()t rr1 (0)

which is a ratio of real, symmetric quadratic forms. Since the
quadratic form in the denominator represents power radiated it is

negative semi-definite at least. Furthermore, since the set of N
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wires does not form a closed interior region which can support

resonant cavity fields, there is no non-zero current set of the

assumed type which radiates zero power, implying that the de-

nominator quadratic form is negative definite.

established, theorems concerning the extremal properties of the

ratio may be stated.[34]

(1)

The extrema of the ratio

(D1 )
(0 R1 ()

are associated with the roots of the determinantal
equation det [X - AR] = 0. These roots are real and
may be arranged in non-descending order according to
their absolute values, Xy, Aps "tt Ay where |Aj| <
gl - '
The maximum ratio of radiated to net reactive power
for real currents is equal to 1/|k1\; and the cur-
rent (J;) associated with this value satisfies

xl[R] (Jl) = [X] (Jl), i.e., it is a characteristic
current vector of the array with a phase shift

L

= tan (=)

“1 1)
The minimum ratio of radiated to reactive power for
real currents is equal to l/lxN[, and the current

(J,) associated with this value satisfies

N
My [R] (JN) = [X] (JN), j.e., it is a characteristic
current vector of the array with a phase shift

_ -1
oy = tan (-AN).
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(4) The N real characteristic vectors (Jn) associated with .
the An form the columns of a matrix [J] such that
[93° TRICIT and [97% [XJ0IT both are diagonal
matrices. Further, when the vectors (Jn) are
normalized, each radiates unit power per unit length

of the array,

(70) 07" [RI07 = - [17

and

(71) w97t TXI0T = Al

where

1 0
(72) {11=‘ ! :

10 1

and

Al 0]
(73) =1

2
0 M

While the characteristic mode current vectors (Jn) do not,
in general, form an orthonormal set (nor do the associated field
intensity vectors, (En), where (En) = [7] (Jn) , they satisfy the

orthogonality property,
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(74) 0, k#1

—
Ca
~
~
—+
—
m
—
~
1]

and

(75) (J - {1+ ix

K
This orthogonality property ensures that the complex power associated
with an excitation of the array of filamentary sources is equal to
the sum of the complex powers associated with each of the charac-
“teristic mode excitations, when these are known.

Another important use of this orthogonality property arises
when decomposing a given excitation into its characteristic mode
components. Thus, if an irncident TM field produces an excitation

(E) on the set of wires, we may wish to express this as a weighted

sum of the characteristic field vectors, (Ek); that is,

N
(76) ()= ] &

Since the (EP) are not orthogonal, the usual technique for obtaining.
the Ak does not apply. However, if both sides of the equations are

multiplied by (Jrgt(inner product operation),

N
7 )t E) - bR @E () = - A1+ 1),
. n=
whence
(78) A= - (3% (E)
n
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Returning to the development of the bilinear expansion formula
for bistatic scattering by the wire array, we define the far field

characteristic radiated fields, En(p,¢), by

N
. 5 21— =
(79) E(o,8) = Tim -2z 5 0@ ana,
t oo 4 p=1 © p pn
N et e -ikp
= -2z %_)}i \Ii_'l Je_k._ Fn<¢)s
| Ke
where the nth characteristic pattern function is
o N 1kpp cos(¢-¢p)
(80) Rl =] I 3 :
p=1
and J__ is the current on the pth wire in the nth characteristic

pn

mode (Jn).

Next, assume that the exciting field is that of a plane wave
incident upon the array from a direction ¢i and represented by the
vector (E1(¢1)). We assume that the strength of this incident
plane wave is normalized to unit incident field intensity at
each wire. As indicated previously, we can determine the
strengths of the induced characteristic currents by expanding (E1(¢1))
in terms of the (En), utilizing the inner product operation. That

is,
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(82) A (o) = - 75— ) (EN (6.
n

The field scattered into a direction ¢S at a great distance is

. ~ 1 37 ~ike N .
(83)  E(6Te%) -z B e} () R (65).
; /K =1
4 o] n

Furthermore, since (Jn)t(E1(¢1)) measures the reaction between the

th

unit plane wave source and the n~ characteristic mode current,

we can say

(88) [ )t E) = - F 6,

whereupon

. . 5T ~ikp N .
(86) E(s',05) =z [&4 &—— 7 a F(s) F (o5,
. o _-ike N jo .
=z g;l— ?~;_ 21 | cos an|e n Fn(¢1) Fn(¢s).
i n=
4



is called the scattering pattern, so that

. —'|kp .
87 E 1’ - _ojai ,
(87) (41,65) Z[_/K 16).

As in the previous examples,

- 1
S R T
n
and
'S
| by
(o)
“ 1 n
which are interrelated by the Smith chart constructions of Figs. 1
and 2.
We might point out that, although Egs. (86) or (87) have been ‘

specialized to the case where source and receiver are distant from the
array, it is possible to obtain a bilinear form similar to Eq. (22)
for z-independent Tine sources near the array by applying reaction
between the source and the characteristic mode field intensities.

The total power scattered per unit length of array is

Z2m
(90) o) = [ IEGTL6Y 17 od®,
0
0
N .
I RN CH ERENCOIE
= )|
KZ nsp M n

The average total power scattered per unit length of array is
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2n
(91) =L P (o) dol I\EJI
T. 2u T¢ ¢ an an
0

assuming the incident plane wave is of unit electric field intensity.
These results are consistent with the total scattering cross section
theorem.[35][36]

Assuming an incident plane wave of unit electric field intensity,

average backscattered power per unit length of array is

- 2T
(92)  Pps ot 3 | K0P ede
0
0
N N 2T
1 1 2 < c o 2
L1 7 aaj[F(q»)F(q»)qu».
7T2 kZO Nl mep MM ! n m .

N

If the integrals in the above equation form the elements 6mn = P

of an Hermitian symmetric matrix [ﬁ], and the an are the components

of an N-dimensional column vector, (a), then in matrix notation

(99 Py = Yo (0TI

As an example, consider scattering by the array of three

wires sketched in Fig. 6. The wire circumferences in wavelengths

are kb = 0.3 and their locations are given in Table I.
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TABLE I

Wire Locations - 3 Wire Array

Wire No. kx ky
1 3.0 0.0
2 0.0 3.0
3 -3.0 0.0
' Y
___%E_ T-R
,’ \\\
,/’ \\\ -~ 7
// \\
/
/ ‘\
I ka=3 \ ¢
3! X
é\f\ ? X
\
v “kb=0.3 H
\\ /
\ /!
\
N\ /
N\ /
~\ /
\\ //
~ -

Fig. 6--An example of a 3-wire array.
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The roots, oo of the equation, det[X-AR] = 0 and the angles,

o and coefficients, 3, are given in Table II.

TABLE II

Values of A , o and [a | for

3 Wire Array

Mode No. Ao o, = tan “(-2)) |an| = fcos a
1 0.4968 153.7° 0.896
2 0.6278 147.9° 0.846
3 2.090 115.6° 0.432

The coefficients a, have been plotted in the complex plane in Fig. 7.

The characteristic currents (Jn), normalized such that
-4
(Jm)tLu R} (J,) = &pq» are given in Table III.

TABLE III
Characteristic Currents for 3 Wire Array
Mode No. 1 2 3
Wire No.
1 0.348981 -0.777566 0.684139
2 -0.636539 0.0 0.977887
3 0.348981 0.777566 0.684139

The characteristic fields (En) produced on the axes of the

respective wires by the (Jn) of Table III are given in Table IV.
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Fig. 7--The coefficients 3, for the 3-wire array.

68

Imagn




TABLE TV
Characteristic Fields for 3 Wire Array

Mode No. 1 2 3
Wire No.

1 -0.629478 0.643032 -0.409748
-10.312740 +10.403618 -i0.856310

2 0.880777 0 + 10 -0.449287

+10.437591 -i0.938941

3 -0.629478 -0.643032 -0.409748

-i0.312740 ~i0.403618 -i0.856310

Note that the ratio of the imaginary to the real parts of each
component of (En) is equal to Ay

The far field modal patterns, Fn(¢), are plotted in Figs. 8,
9, and 10. The sum of their squares, weighted by the coefficients
a, yields the far field backscattering pattern shown in Fig. 11.
The pattern in Fig. 11 agrees with that arrived at by the method
of Richmond. [33]

[t is instructive to compare the 3 wire array described by
the [Z] matrix to the hypothetical case of the same three wires
without mutual coupling. In this Tatter case, the [Z] matrix is
diagonal, its elements each equal to - <& ng) (kb). Accordingly,

4
for this example, kb = 0.3,

fc = = = 1
{(94) a; = a, = a, N0(0,3) .
L1363
i140.5°
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Re F, (¢)

Fig. 8--The first characteristic mode pattern,

3-wire array.
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Fig. 9--The second characteristic mode pattern,
3-wire array.
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Fig. 10--The third characteristic mode pattern,
3-wire array.

72




2 Y I S
-90 -80 ~-70 ~-60 -50 -40 -—30\ -20

Re F ()
e\¢
AN
'Y

Fig. 11-~-The backscattered field pattern,
3-wire array.
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The corresponding value of éT is

3 > _ 4
Y la.|® = 5= (1.78), decoupled array.

4
(95) P =
0 kZO

T kZ

From Table 11, the value of ﬁ for the coupled array is

T

(96) p_= 4 ; la |2 . (1.706), coupled arra
T K7y oiy%0 TRz, TR COUP Y

indicating that on the basis of average total power, the coupling
creates a slight disadvantage. If the average backscattered power
per unit Tength is calculated for the two cases, the results in-

dicate that they, too, are approximately the same and equal to

~ N 1—-. 4
(97) Pys * 3= W (1.78).

Since the wires are rather widely spaced, implying weak coupling
among them, these results are not unexpected.

A less symmetrical array of eight wires is shown in Fig. 12,
The wire circumferences in wavelengths are kb = 0.01 and their

locations are given in Table V.
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Fig. 12--An example of an 8-wire array.
TABLE V
Wire Locations ~ 8 Wire Array
Wire No. KX Ky
1 1.0 0.5
2 0.5 1.5
3 -0.3 1.4
4 -1.0 0.5
5 -0.6 -0.7
5 0.5 -1.5
7 0.9 -0.9
8 1.1 0.0
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The roots, Ao and the angles, G s and coefficients, a,s are

given in Table VI,

TABLE VI
Values of A , o and |a_ |
for 8 Wire Array

Mode No. ‘ . o = tan'l(—xn) lanl = |cos an[

1 0.16945 170.38° 0.9860
2 1.6375 121.42° 0.5213
3 2.7189 110.20° 0.3353
4 11.918 94,80° 0.0837
5 18.799 93.05° 0.0532
6 214.59 90.27° 0.0047
7 393.93 90.13° 0.0026
8 31659 ~90° 0.0

The four most significant coefficients a, have been plotted in the
compiex plane in Fig. 13.

Similarly to the 3 wire array, the 8 wire array may be com-
pared with a decoupled set of 8 wires of the same diameter with
respect to the quantity ﬁT' For the decoupled wires,

— - ¢ e 0 = - - 1
(98) a; = 8, = ag Won

1-3 3,(0.00)

= 0.3156 ¢1108:4°,

and the corresponding value of ﬁT is
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Re a,

Fig. 13--The four most significant coefficients ap
for the 8-wire array.
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(99) . (0.7968), decoupled array.

4
T kZO

From Table VI, the value of ﬁT for the complex array is

(100) p (1.3662), coupled array.

T kZO
Hence, we conclude that in this case coup1ing has enhanced the average .
total power scattered.

The characteristic currents (Jn), normalized such that

(3,)°¢ [— ;ﬂa. R} (Jp) = Spp» are given in Table VII.

Assa%ing that a single mode current is forced to exist gn the
wires, a contour plot can be constructed of the equiphase Tines of
the resulting near electric field. Such a pliot is shown in Fig. 14
for the Towest order mode, n = 1, associated with the eight wire
array. The number asgigned to each contour indicates the phase
delay 1in degrees of the electric field with respect to the zero
phase of the currents. The feature to note is the approximately
equiphase plateau caused by a characteristic mode current in the
region "enclosed" by the wires. As more wires are added to the
array better "enclosing" this region, this plateau becomes flatter.
In the case of a c1§sed surface rather than a quantized one this
plateau should represent a phase of ~aq degrees associated with
the first mode of the closed contour. Outside the region "enclosed"
by the wires, outward traveling fields are evident, the phase

angle decreasing on successive contours as one progresses out-

ward,
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Wire MNo.

R B O S

O~

£ W N b

S0~ Oy O BN

Characteristic Currents for 8 Wire Array

Mode No.

O O O O o o o O

1
o

1

. 182500
.187858
187122
.218317
.223291
.179910
.178142
.178027

4

542448 .

0.611046
0.801384

496285
.273849
.08536

.118843
.617696

7

.50352
66507
.03621
57486
.238635
.32441
.93429
.26945

TABLE VII
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2

-0.054018
-0.279852
-0.299729
-0.159926

0.142351
0.353085
0.236645
0.071283
5
.412859
1.05674

o

-0.766030
-0.921224

1.43922
0.59561

-0.905579
-0.382319

8
-64.1309
21.4775
-10.8736
8.71565
-3.85685
18.4251
-40.4532
77.1455

0.292452
0.242099
-0.100081
-0.480015
~0.446582
-0.062725
0.140012
0.274535

6

-2.34525
-2.16842
4.27750
-4.22445
3.08460
-3.47798
1.80761
1.87558



Fig. 14--Contour map of equiphase electric fields radiated
by the major characteristic mode on
the 8-wire array.




D. Two Coaxial Circular Loops of Wire

Although the previous example illustrated certain features of
a characteristic mode expansion, it was somewhat over simplified in
that it reduced to a two dimensional scalar problem and applied to
an obstacle that is impossible to construct, i.e., wires of infinite
length. A scatterer comprising two circular loops of wire, coaxially
oriented in different planes in general, is a more practical exampie.
In this case, the characteristic currents and fields are of known
form around each Tloop, but vary in amplitude from loop to loop
depending upon loop spacing, loop diameter, and frequency.

Before considering the two Toop configuration, Tet us exémine
the characteristic-fields for the single circular loop (Fig. 15)
which is simplier and for which there exists a substantial 1itera-
ture treatment both as an antenna[37][38](397] and as a scat-
terer.[ 40 ) 417][ 427437447 The work of Harrington and Mautz[44]
is of particular interest here because their formulation for plane
wave scattering by a loop of thin wire is based upon a modal ex-
pansion which is almost directly interpretable in terms of the
characteristic mode formalism,

Since the loop of Fig. 15 possesses rotational symmetry, the
s-variation of the associated characteristic-mode currents and
far radiated modal field patterns are already known to be of the

) coS n¢
f 1>
orm l$in n¢}

reai modal current J" flowing on the Toop are[45]

, n=0,1,2,+-«. The radiation zone fields of a
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Fig. 15--Coordinates for the single circular Toop.

(101) E (8,0) = - &2 Q:iir- I COS Moy ()M 3 (ka sin e)
e ¢ 2 r sin n¢ T 7n i
¢}

Y e'ikr { g C0s noy (1)n+1 ra x
4 r sin n¢

(0,41 (ka sin 8) - 9 _;(ka sin )]}

and
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, ikr , nJ (ka sin @)
| N, _ 7 wpa e 4o sinng ooyn n
(102) %g}(o,¢) g 7 9 Los ne M) e
= ~lwp e 1KY 3 gn sin n¢}(1)n+1 a cos
b r Cos n¢ " o x

[Jn+1(ka sin 8) + J_ ,(ka sin 8) J} .

n-1

The factors inside the brackets in Egs. (101) and (102) will be

called the far field modal pattern functions, 8Fg(e,¢) and 8ﬁ:(e,¢),

respectively. The subscripts e or o refer to the use of cos n¢
or sin n¢ current modes, respectively.
According to the definition of modal impedances given in Ap-

pendix A, the power radiated by s

(103)  P" =] "7,

where R?l is defined by the relationship

~ €

(104) "= o (R

. n n
e 53 +1 X7.) d

n
11 11

and ég is the maximum of the electric field tangential to the wire

axis produced by J". Alternatively,
§
(105) "= L @[13E2|2 + 1 E01%3r2 do
o 37 © 5

4x Z0 ! & 8 8 )

i
.
3 /
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The currents are normalized to radiate unit power, i.e.,

n_ 1
(106) A
J1

so that the characteristic patterns are

&

N+l
(107) o) - B (0 0 Dyl sin )
JR1)

- Jn_l(ka sin 8)J ,

and

' L\n+l .
(108) Fg(o,¢) - I na(i) (8in no

n coS n¢
% [Rll

+Jn_1(ka sin 8)] .

}cos e[Jn+1(ka sin 8)

Employing vector notation,

(109) 85?(e,¢) = (, F'(8,6)) =| n ’

the dyadic pattern function of the loop due to a plane wave arriving
from (8',6') is

F(o7,0T)) (. F"(6%,05)) " +

(110)  E(a'eT3e5,6%) = - T L, .

- n=0
a"(, F(sTh6)) (NS,

and the far scattered field is
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i

T,6'36%,6%) « &'y

(111) E:’_i.‘i’l{ € F(o

where ;1 is the polarization state of the incident plane wave. The

coefficients a  are

(112) P ,
1+ )"
where
-
) Im {8 E¢} XTl
(113) A" = = =,
ve g ") Ri1
and ZTl = R?l + 9 Xgl are as defined in Eq. (104). From these last
two equations
RN
(114) a" = - 2L
I

It may be verified that Eq. (111) is identical to Eq. (50) of
Reference 44 with the observation that Znn in that treatise is

related to Zn

11 in the present work by

n
11 Znn'

(115) - VA

Values of"Znn, n = 0-4, for certain loop sizes are given in curve

form in Reference 44 and a numerical tabulation is available[46]

for values of n up to 20. Independently derived integral expres-

: o _ 1 _1 . .
sions for le = Z00 and 211 =521 have been derived by using a

—
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transform method. Typical values for an 0.5) average diameter loop
of wire 0.005x in diameter are

zfl = 724 + 93055,

1 .
271, = 380 + 11225.

Comparable results given by Harrington[467] are

ZOO

723.4 + 13041,
z

11 384.8 + 11219.

Table VIII Tists the first six modal impedances for this loop as given
by Harrington[46] as well as the associated scattering coefficient
angles, a". The corresponding coefficients a" are plotted in Fig. 16,

where we recognize that for each n # 0, two values of a"

are coincident,
one for the even modes, one for the odd modes. We also recognize

that the ordering of the modes is on increasing orders, n, of

the trigonometric ¢ variations of the modal currents rather than

on the magnitude of the |a"|. This standard notation permits

a direct correlation with the literature, similarly to the examples

of the circular cylinder and sphere.

TABLE VIII
Modal Impedances and Scattering Coefficient
Angles for the Single Loop, a/x = 0.25, b/x = 0.0025

nooe 20 = e (RY + X)) SV tan~t(-2")
0 723.4 + 13041 4.204 103.4°

1 384.8 + 11219 3.168 107.5°

2 197.2 - 11620 -8.215 263.1°

3 27.82 - 15860  -210.6 269.7°

4 1.760 - 11060 -6284 2700

5 0.0657 - 117070 -259800 ~270
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Im a"

Re a" -y

Fig. 16--The three major coefficients, al, associated
with a circular Toop,
a/» = 0.25, b/x = 0.0025.
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It is instructive to observe the variation in the phase angles,
o, for the same loop as functions of frequency. Utilizing the
curves of Fig. 2, Reference 44, we have plotted these angles in
Fig. 17 forn =0, 1, 2, and 3. The scattering resonances for the

= 1 and 2 modes, i.e., those frequencies for which QT = 180° and

o% = 180°, are clearly evident as are the rather narrow bandwidths
of these resonances. We suggest that such curves may play a role
in evaluating the effectiveness of a scatterer in comparison with
others, particularly when only a single mode is important. Here,
the problem of ranking a variety of wire elements according to
some figure-of-merit involving such curves, comes to mind.

If PT again is defined to be the total power scattered by
the loop averaged over all possible directions of incidence and
polarization states of an exciting plane wave of unit electric field

intensity, then

(116) PT =

where the factor e/ —{1’ 2 : 8 accounts for the existence of both

even and odd modes when n # 0. For the Toops represented in Fig. 17,

typical values of ﬁT at a/x = 0.25 and a/x = 0.325 are

(117) P 22“ (0.263), a/x = 0.25,

(118) P 22“ (2.2), a/x = 0.325.
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Fig. 17--Variation with frequency of phase angles, o,
n=20,1,2,3, for a singie loop of wire.
a/b = 100, a = loop radius, b = wire radius.
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In this last case, the overwhelming contribution to ﬁT comes from
the resonant n = 2 mode, implying that a figure-of-merit based on

Pf could safely be evaluated using this mode alone.

We proceed to the two Toop geometry sketched in Fig. 18.

/"
PN e,
-

Fig. 18--Coordinates for two coaxial circular Toops.

Similarly to the single Toop, the ¢-variation of the characteristic
mode currents and patternskis of the form {ggi 22} s N =0,1,2,04+,
The problem Ties in determining the proper combinations of amplitudes

of such currents on each Toop which give rise to characteristic mode
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patterns in the g-variable. To this end, the Z operator is repre-

sented hy a set of N 2 x 2 complex matrices, [Z"] = [Rn] + i[Xn],

th such matrix

n=1,2,---N. In Appendix A the elements of the n
are related to the self and mutual modal impedances of the two Toop
configuration. (Clearly, if the method is extended to M coaxial
Toops, each matrix would be of the order M x M,) These N matrices
are diagonalized individually, leading to inverse characteristic
values, ag, and real characteristic current amplitudes, (SJ;)=

t

(%J?m Sdgm) , with m = 1,2, (number of loops). The radiation

integral yields the associated fields,

. -ikr
(119) ~N - "11.0[._( e

g = o S Coag ™ oq (G

8 Im {sin n¢}
[Jn+1(ka1 sin g) - Jn_l(ka sin 98)]

n+l1 n

. CoS N¢ .
+ na2(1) e’ Tein n¢}[dn+1(ka2 sin o)
-Jn_l(ka2 sin 6)]] e1kd cos 8y |
-ikr
= ~lwy e n
4,” Y\ SFm(b( ’d))’

and
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no_ =lwpy e n+l sin n¢
(120) SEm¢ T - { & nal( i) 8Jlm {cos né }cos 6 «x

[Jn+1(ka1 sin 8) + Jn_l(ka1 sin 6)]

= n+1 sin n¢ .
+ na2(1) SJZm {cos n¢} cos 6[J +1( 5 sin 8) +

Jn_l(ka2 sin 8)] e1kd cos 8}

. -ikr
- =Twu e Fn ( ¢)
4 r & mo *
where (6,4) and F" (9,4) are the characteristic patterns. As

& m¢ g mo

before, the subscripts e or o refer to use of cos n¢ or sin n¢ current

modes, respectively.

The modal currents are normalized to radiate unit power, i.e.,

(121) P = (M R

6 §
m 8 m 8 P mp nq
where the [R"] matrix is defined in Appendix A by
_ 5h
(122) % 0 ) [Z 7 ( S m) = [R" + 1X 8Jm),
£
’7- Zﬂg 0
= 1 [R" + ix" 7 (.3 ny,
! e 5"
0 __n
' Zwaz

where the components of (eE£¢) are the maximum electric fields tangential
0
to the Toops produced by (ng). Alternatively,

0
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(123)  °M= L JJ [[85[?19[2 ¥ \SE[?wIz] vl do =1,

-
L

kZ 2
=| 7 l—” CioFmgl” * 1oFh 1% Jda = 1
(4n ) Z, ) g ms | g mo
The dyadic pattern function of the loops due to a plane wave
arriving from (ei,¢i) is

w 2

(124)  F (o',0750%,0%) - -1 L Fal( Pl (6T ,0)) (FReS, %))t +
al( PR (67,41 (S, et

and the far scattered field is

-ikr

(125)  E(6',6"36%,6%) = P E— F (0',0'36%,0%) - £,

where é1 is the polarization state of the incident plane wave. The

. . n
coefficients a, are

n _ 1
(126) . T

..n
+ i
1 An
where A; are solutions of the second order polynomials,

(127) det {[Yh] - ARy = 0. o

For the case, al/A = 0.5, a2/A = 0,333, bl/A = bZ/A = 0.0167,
the modal impedances were calculated using a transform method for

n =0,1. The results are tabulated in Table IX.
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TABLE IX
Modal Impedances for Two Coaxial Loops,
al/x = 0.5,a2/x = O.333,b1/x = bz/x = 0.0167

n n n _ n
n 1172, ZoolZ4 21224 = L5172,
0 5.832 + i6.182 4.031 + i6.347 1.762 - i2.721
1 2.052 + 14.299 0.605 + §1.833 -0.0217 - i0.286

Using these impedances in Eqs. (127), values for A; and a;

are found and tabulated in Table X. The coefficients a; are plotted
in Fig. 18. For n # 0, the same coefficient, ag, is associated with

even and odd modes.

TABLE X

Values of Ag and ag for Two Coaxial Loops,

al/x = 0.5, az/x = 0,333, bl/A = bz/x = 0.0167

n n _ -1 n
n m - o = tan (ﬂm)
0 1 0.523 152.4°
) 2 2.986 108.5°
1 1 1 2.047 116°
1 2 3.067 108.1°

Table X1 Tlists the characteristic current amplitudes associated

with the n = 1 mode.
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n
Im ol

Fig. 19--Tour scattering coefficients, a’, associated with
two coaxial circular Toops, aj/x» = 0.5,
a?_/.x = (}.333, b-l/J\ = bs/3 = (]).0667,
d/x = 0.333.
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TABLE XI
Characteristic Current Amplitudes for Two Coaxial Loops,
al/A = 0.5, aZ/A = 0.333, bI/A = b2/A = 0.0167

n n
n m 8J1m 8J2m
1 1 +0.682 +0.278
1 2 -0.132 +1.258

1 modes

For broadside excitation of the two loops, only the n

are induced. For the backscattering case, 6! = o5 = 0, ¢1 ¢S =0,

only the even mode is induced, and

B 1121]2
(128)  F(0,050,0)= -{ a;[F;,1° + 2y [Fp 1%

2 'I 'I . 2
Gl +ikd
g —— [Jd., a, +J,, &, € 1 +
1+ 1A1 11 71 21 72
2 . 2
T 1 1 +ikd
— [J4, a, + d,, a, € ]
T Lpagp v 8
1+ 1A2
) i _ s _ i_ .S _
For the backscattering case, 6 =6~ =m, ¢ = ¢~ =0,
c 2 c 2
) - 1 1 - 1
(129) F(WQO’TTSO) {a]. [eF1¢] + a2[6F2¢] } )
1+ 1X1 11 71 21 "2
1
——-T“Z 1 1 ikd -2
~i
1+ 23t e I
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For the Toop of radius al/x alone,

, A 12
(130) F. (0,0;0,0) = ——— o~
a x1 f
1 i IR
-I + .i ..-I_-I_I\J ].].
Rl
11
For the loop of radius az/x alone,
? a e1‘kd 12
(131)  F, (0.0;00) = —" 2
2 y R]
T+ 22 22
RYs

Using the pertinent values given in Tables IX-XI, we obtain the

ratios of echo areas,
2
lFaz(o,o;qo)|

(132) 5 = 1.2, (1.3 +£0.06),
IF, (0,0;00)
1

2
(133) Liﬂlglglgllg - 0.603, (0.6 +0.03),
|F(7T90;7E0)‘

-~ where the numbers in parentheses are corresponding experimentally

determined values.
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E. Filamentary Scatterers of Finite Length

We shall now give some examples of characteristic modes for fila-
mentary scatterers of finite length and arbitrary shape. Unlike the
previous examples, the characteristic current distributions é1ong
the filaments are not known a priorni. Nevertheless, computational
techniques[477] 48] have been developed which permit one to determine
the induced current distributions for various directions of plane
wave incidence and these may be interpreted for our purposes.

When the filament is thin, perfectly conducting* and less
than about 0.5x in Tength, one finds that to a good approximation,
the current distribution induced by a plane wave does not change
in form for arbitrary incidence directions. In fact, Fig. 4 of
Reference 47 indicates that this invariance of the induced current
distribution characterizes the linear wire even for dipole sources
quite close to the wire. Moreover, the current distribution is
characterized by a nearly-constant phase over the length of fila-
ment. In terms of characteristic modes, it is clear that such a
scatterer possesses only a single dominant mode.

As an example, the dominant characteristic currents for several
perfectly conducting filaments curved in the form of circular arcs,
each 0.475x in length and 0.0017x in filament diameter have been
determined. The current distributions, normalized to radiate unit

power, are shown in Fig. 20 for several radii of curvature for the

*This statement also holds if the filament is merely a "good"
conductor.

98




(amp)
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Fig. 20--Dominant characteristic mode currents on circular arcs
of wire. The wire Tength is & = 0.475x and its diameter
is d = 0.0017x. The currents are normalized to radiate
unit power.
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circular arcs. In Fig. 21, the corresponding phase angle, Qs is
shown for each radius of curvature.

Significantly, one notes that the form of the current distri-
bution does not change much with radius of curvature, suggesting a
close relationship between the dominant characteristic current
distributions for a range of filament shapes, provided that the
overall filament 1eng£h is held constant.

While the data shown in Figs. 20 and 21 were obtained from the
induced current distribution and backscattered echo area for one
direction of plane wave incidence, i.e., broadside to the plane
of the circular arcs, it is possible to predict from this the
scattering for any combination of source and observer directions.

To do this one must calculate the pattern function, Ei(e,¢),

radiated by any normalized current distribution of Fig. 20. This,
together with the phase constanta 1 of Fig. 21, leads to an ex-
pression for the dyadic plane wave scattering pattern,

1'0L1

(138)  F(e',0'30%,6%) = -cos ayle D Fy(el.0") Fy(e°,6%).

The total scattered power, averaged over all directions is

o 2 2
(135) P. = —ﬁﬂ—- |cos oy |7,

T
k Z0

and may be predicted from the values of oq given in Fig. 21. It is

also possible to determine the average backscattered signal over

all directions from the data of Figs. 20 and 21, but this would
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Fig. 21--Variation of phase angle, o> with radius of curvature of
circular arcs of wire. The wire length is ¢ = 0.475x
and its diameter is d = 0.0017x.

involve additional calculations such as the averages of [51(9’¢)]2
over 7 and we shall not pursue this further, here.

When the Tength of the filamentary scatterers exceeds about
0.5x, the form of the current distribution varies appreciably with

direction of plane wave incidence, indicating that more than a
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single characteristic mode current must be considered. The in-
duced current distribution in such cases can be decomposed into
several characteristic mode components by a variety of techniques.
As an example Fig. 22 presents modal current distributions for a
straight wire 0.75x in Tength and 0.01x in diameter. The values
of @ associated with each current are also indicated and these

may be used to calculate an average total scattered power,

S TR 2 2r
(136) PT = 5 E |COS OLn| = "k—z—z— (0.217).

k Zo n=1 o

For comparison purposes, we have presented in Fig. 23 similar curves
of characteristic mode current distributions for a straight wire
0.5 in Tength and 0.01x in diameter. These data further support
our earlier contention that essentially a single mode is important
in the scattering from the wire. The average total scattered

power in this case is

(137) p_ = g“ [cos oy

T
k Z0

122 2 (0.605).

The problem of determining the characteristic modes for a
filamentary scatterer over 0.5) in length may be approached in
several ways. In each case, we assume that a finite-dimensional
(N x M) representation of the Z operator,'which carries an N-
parameter current distribution into an M~-parameter description of
the related electric field intensity along the filament. Such |

would be the case, for example, if the current were specified by
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N uniform currents (in each of N subintervals along the wire) or

by an N-term Fourier series along its length, and if the tangential
electric field intensity produced by this distribution were specified
at M points along the filament. This is one of the accepted methods
for computer solution of scattering by thin wires, wherein the 7z
operator is described by an N by M matrix with complex elements.[49]
Methods for determining the characteristic mode currents for a
specified [Z] matrix representation, determined by filament shape,
'radius, and frequency, fall into two general categories. In the
first of these, the induced currents are detefmined for

a selected set of incident field intensity vectors, which requires
inversion of the Z operator, or a square matrix derived from it.

If each of the set of incident field intensity vectors has only

real components, a linear combination of the induced complex

current distributions with real coefficients is sought which will
have minimum phase variation along the wire Tength. There will be

a number of such combinations which yield different equiphase cur-
rent distributions, and each of these corresponds to a characteristic
mode current distribution. In the second general method, a set of
real current distributions are chosen and the associated set of
electric field intensity distributions are determined through the
[Z] matrix directly. A real linear combination of the set of
electric field intensities is then sought which has minimum phase

variation along the length of the filament. The same real linear
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Fig. 22--Four characteristic mode current distributions on a
straight wire of length 2 = 0.75x and diameter
d = 0.01x. The currents are normalized
to unit maximum value.
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Fig. 23--Three characteristic mode current distributions on a

straight wire of Tength & = 0.5\ and diameter
d = 0.01xn. The currents are normalized
to unit maximum value.
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combination of the current distributions is then a characteristic
mode current distribution.

The data presented in Figs. 22 and 23 were obtained using the
second of the general methods discussed above. In particular,
the current distributions were specified by an N = 10 term
(5 even, 5 odd) Fourier series with real coefficients and the
resulting tangential electric field distributions were specified
at M = 80 points along the linear wire. The resulting [Z] matrix
is a rectangular array of M rows and N columns. This array may
be decomposed into the sum of its real and imaginary parts, i.e.,
[Z] = [R] + i[X], where [R] and [X] are real rectangular arrays.
From previous considerations, if [Z] were a square array we would

wish to determine the roots, Ay of det[X-aR] = 0 in order to

find the phase constants, o = tan'l(—xn). Because in the present ‘
instance M # N, making [Z] rectangular, a related square matrix
must first be devised before utilizing the determinantal equation
procedure to find the Ap s To this‘end, we form the rectangular
array of real elements, [M(A)J] = [X-aR] and multiply it by its
transpose to obtain the real, symmetric N x N array [P(A)] =
[M(A)]t [M(A)]. We now are in a position to form the determi-
nantal equation det[P(r} - y(A)I] = 0 and seek its Neigenvalues,
v(2), which must be all real and positive. By virtue of the
process of multiplying [M(A}] by its transpose[507(511, it may
be verified that the minimum eigenvalue (call it Ymin(x)) repre-

sents the least mean square error of the phase variation of the
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Fig. 24--Variation with frequency of phase angles, a7, of the
dominant characteristic mode of a straight
wire with diameter d = 0.07x.
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electric field along the filament caused by the current whose
Fourier expansion coefficients are the N real components of the

eigenvgctor associated with v_. (A). By choosing various

min
values of -» =2 f-w, we can obtain a curve of ymin(x) Versus i
(or alternatively, versus a= tan'l(-k) where /2 = o = 37/2) and

(2)

reaches relative minima. If these values of x are ordered ac-

center attention around those values of A for which Yin
cording to non-descending values of their magnitudes,[x1| 5-|A2|
we obtain a set of phase constants Gps Gos ** associated with a
set of characteristic current distributions specified by the eigen-
vectors going with Y

Ta

_ n
a, = | cos an[e

(A)s Ypgn(2)s * o respectively. Since

min min
it is clear that the modes decrease in

dominance with increasing n. In Figs. 22 and 23 we have plotted the
first few characteristic mode current distributions and associated o
found by the above procedure for two Tinear wires.[52] If desired,
these currents may be normalized so that each radiates unit power,
Figure 24 shows the variation with frequency of the phase angle, %y
associated with the dominant mode.
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CHAPTER V
SUMMARY AND CONCLUSIONS

We have shown that it is useful to view a scattering obstacle
as a device which transforms an incident wave converging (collapsing
in) upon it into a scattered wave diverging away from it. Mathe-
matically, this transformation is represented by a perturbation
operator, P, which simply is a way of expressing the change in the
diverging field which an observer at some distance from the obstacle
would measure if the obstacle were suddenly removed and only the in-
cident converging waves remained. Once such a transformation opera-
tion is postulated, it is necessary to determine some of its features
which are useful to us.

One feature which every Toss-free scatterer possesses is a set
of special converging waves or modes, each of which is transformed
into a diverging wave or mode of the same form as its incoming
counterpart. That is, if fn(e,¢) is the far-zone pattern function

of the nth

such converging wave, the corresponding far zone pattern
function of the scattered wave will also be En(e,¢). They are

related by,

(138) (6,6) = PE (85¢),

F
an—n

where a, is a complex constant of magnitude less than or equal to
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unity. It is convenient to order the functions En(e,¢),‘which are
called characteristic pattern functions, such that they correspond
to characteristic values, a , which satisfy Ia1| > |a,] 3_|a3|_3 e
It is also convenient to normalize the fn(e,¢) such that they each
represent unit radiated power. Every finite obstacle possesses an
infinite set of an‘s and En's, but the scattering operation is such

that

is finite, implying that only the first N waves are significant
enough to include in practical problems. That is, we may treat

the scattering operation as efféctive]y a finite dimensional one to
a good approximation.

The complex characteristic values, C associated with any loss-
free scatterer all must lie on the half-unit circle centered in the
complex plane at (-%,i0). That is,

"iocn 3

- |
(139) a, | cos o, € s

m
< < —F=
S %277

DVE

The real angle, o is a measure of the "effectiveness" of the

obstacle in scattering the associated nth

order converging char-
acteristic wave. Those waves which are scattered best are as-
sociated with angles o, having values near m3 those which scatter
least, i.e., which behave almost as if the obstacle were not present,

are associated with angles o, having values near 7/2 or 3n/2. 1If
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h

o = =, a = -1 and we say that the nt characteristic wave or

n n
mode is in ~cattering resonance; if o = /2 or 3n/2, a, = 0 and we

tn characteristic wave is in scattering null. We may also

say that the n
remark that if the scatterer is not loss-free, i.e., is made of im-
perfect metal, dielectric, or magnetic materials, the numbers a, fall
inside the aforementioned half-unit circle in the complex plane and
the angles i become complex. This case is not discussed here.

The characteristic pattern functions, En(e,¢), form a complete
orthonormal set (with respect to radiated power) on the sphere ¢ at -
infinity, thereby permitting the expansion of any reasonably well

behaved scattering pattern, F (8,6), on T in terms of the Eﬂ(e,¢).

That is

A 6,9)

W~ =

(140) F(o,) =
n

F(
, n-n

where the coefficients An are found from knowledge of the primary
source in terms of a "reaction" between the source current and the
nth outgoing field (specified by fn(e,¢)) analytically continued
in to the primary source region.

If the primary source is a unit plane wave incident upon the

obstacle from an arbitrary direction (61,¢1), the scattered electric

field intensity observed in a direction (es,¢s) on £ is given by

C . -ikr : s
(141)  E(8',0'36%,0° ) = - 72 S—— F(e',0'36%,0%) - &,
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where £1 is the polarization state of the incident plane wave and

5191,¢1;es,¢s) is the dyadic scattering pattern,

(142) (6',0 38°%,0%) = -

i S S
F ) (67,067) E (87567).

It~

a F
p N

Thus, knowledge of the characteristic pattern functions Eh(e,¢) and

the assocjated characteristic values, a_ (or angles an), permits a

n
compact bilinear expression for the field scattered in any direction
due to a unit plane wave incident from any direction.

The properties described above are common to ali loss-~free
obstacles, but to simplify the problem of determining the forms of
the characteristic waves, in this work we have restricted ourselves
to perfectly conducting obstacles. In these cases it is always
possible to define real characteristic current distributions, Qn
induced on the surface S of the obstacle by the nth converging wave
such that in the absence of the obstacle they each radiate a field
with a characteristic field pattern En(e,¢) on £ and an electric
field intensity inside and on S which is equiphase and Tags gn by
the angle, op e Thus, for a particular surface S, determining those
unique current distributions, gn, which possess this property,
makes it possible to construct the bilinear expansion formula for
plane wave scattering from the corresponding perfectly conducting
obstacle. As suggested previously, those characteristic current
distributions for which the phase angle @, =mare in scattering

resonance and are the most effective contributors to radiated

energy; conversely, those current distributions for which & = n/2
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or 37/2 are in scattering null and do not contribute at all to
radiated energy. In fact, these latter current distributions are
nrecisely those which are associated with the perfectly conducting
cevity formed by the region interior to S when this cavity is

in resonance.

Having introduced the concept of a bilinear expansion for plane
wave scattering in terms of characteristic mode functions, and having
developed a property of such modes for perfectly conducting obstacles,
which can be used to determine them, several examples were chosen as
illustrations,

The infinite circular cylinder and the sphere under plane wave
il lTumination were treated first in order to relate the characteristic
mode formulation to the more familiar formulations of these problems.
For these cases, the cylindrical and spherical wave functions, re-
spective1y, are shown to be essentially the characteristic modes.

Next, plane wave scattering by an arbitrary array of N thin,
infinitely Tong, parallel wires was formulated and specific results
were calculated for a 3-wire and an 8-wire array. The characteristic
currents and associated phase angles, o, Were tabulated and in the
.case of the 3-wire array, the characteristic pattern functions, Eﬂ(¢),
were plotted and combined in the bilinear form to yield the back-
scattered field pattern for the array. In the case of the 8-wire
array, the near fields of the lowest order characteristic current

were calculated and an equiphase contour plot was calculated to
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illustrate the near-constant nature of the modal field inside the
region outlined by the eight wires.

Scatterers consisting of closed circular loops of thin wire
were considered next. Plane wave scattering by a single loop was
analyzed from the characteristic mode viewpoint and shown to be
equivalent to formulations in the Titerature. We introduced the
concept of an impedance associated with each modal current on the
loop and using data extracted from the 1iterature, related such
impedances to the phase angles, o Derived curves of o, Versus
frequency were plotted for the first few modes associated with a given
loop. The characteristic mode approach was also applied to plane
wave scattering by two coaxial circular Toops of wire. The concept
of modal impedances was extended to include such a geometry and ex-
pressions were derived for their evaluation. Phase angles, G s and
characteristic currents were computed for the lowest order modes
associated with a chosen pair of Tloops.

The final example considered was plane wave scattering by a
circular arc of thin wire. Using often-used computer techniques
devised in the past few years for solving complicated boundary value
problems, we have observed the essentially single mode behavior of
plane wave scattering by arbitrarily shaped thin wires less than
0.5)x in length. To illustrate this behavior, we have plotted the
induced current distributions along wire arcs 0.475x in length and

of various radii of curvature, together with the phase angle, Gy s

114




associated with each arc. The invariance of these current distri-
butions with change in shape suggests that this common feature may
be exploited for comparing the elements. For example, using these
current distributions to obtain the associated characteristic pat-
tern functions permits the expression of the back scattering cross
section for any angle of incidence, which in turn can be used to
obtain cross sections averaged over all or selectedtumhle angles.
Or, since the value of !cos un\z are proportional to the total cross
section averaged over all tumble angles, a comparison of wires of
different shapes based on this criterion is immediately available
from knowledge of the phase angles, o For planar geometries of
the wire these angles are easily found, as in the case of the
circular arcs, by inspecting the phase of the computer derived
current induced on each geometry by a broadside-incident plane
wave. For three dimensional wire geometries, an excitation composed
of two plane waves incident from opposing directions immediately
would provide the same information. Comparison schemes based on
these principles can be applied to wire dipoles, where warpage
from the ideal straight element is common, and its effect on a
tumble average is desired.

If the wire length exceeds 0.5x, such comparisons are compli-
cated oy the fact that higher order modes enter more significantly.
Several methods have been devised to isolate the characteristic

current and associated phase angle of each mode in these cases.
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One such method is discussed in this work and is applied to a linear
wire of length 0.75)x as an example. ’

Having summarized this treatise, we now suggest some possible
topics for near-future study. In our opinion, efforts should
proceed along the following lines of investigation:

(1) Just as in4the case of the open circular arcs

discussed in Section IVE, it should be possible to
use standard computer techniques to determine the
phase angles, o , and characteristic current distri-
bution on other wire configurations, both planar and
non-planar, such as elliptical arcs, spirals, helices,
and S shapes. It is recommended that these be ob-
tained for a variety of shapes over a range of fre-
quencies, and a comparison made with respect-to
backscattering cross section and total scattering
cross section averaged overall aspect and polari-
zation angles. Such comparisons would allow an ordering
of various elemental scatterers according to a chosen
figure-of-merit which accounts for tumble average
cross section and bandwidth. Because we expect that
the form of the current distribution is rather in-
variant with- changes in wire shape, the modal
expansion formulation should provide a rapid and

efficient way of evaluating such figures-of-merit.
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Similarly, it should be possible to use standard
computer techniques to determine the phase angles,

o s and characteristic current distributions on

more complex scatterers of small size. In par-
ticular, bodies of revolution where distributions
along a longitudinal curve suffice to describe the
modal currents, can be attacked using computer methodg
presently in use.

The methods suggested in this work for determining
characteristic mode current distributions suffer from
the fact that several such currents are postulated

tu exist simultaneously, the task being to isolate
them and their associated phase constants all in one
operation. This approach encounters dffficu1ty
because the higher order modes, even though only
slightly excited, corrupt the determination of the
deminant mode. At the same time these higher order
modes are minor contributors to the overall scat-
tered field and may even be neglected in the final
analysis. Thus, future efforts should include the
determination of characteristic mode currents by

some method which isolates one mode at a time,
refining it by an iterative procedure. In this way
the dominant modes could be given preferential treat-

ment and the higher order modes could be jgnored or

117



determined without influencing the dominant ones. The
exact procedure for accomplishing this has not been
developed. Characteristic mode fields associated

with a perfectly conducting obstacle are an extension

of resonant cavity fields (the interior problem) to
radiation and scattering by the obstacle (the exterior
problem). As such, it may be possible to extend methods
of determining resonant field distributions inside ideal
cavities of arbitrary shape to the scattering problem.
However, two basic differences exist between these two
situations: whereas the cavity supports a single field
distribution at resonance (discountihg degenerate modes)
and must have an associated phase angle, o = /2 or
3:/2, the scatterer at the same frequency (or any fre-
quency) supports an infinitude of modal field distri-
butions for which the associated phase angles, a, s are
not known a paiori. This additional freedom of the
phase angles will complicate any iterative method

which seeks to converge upon the associated character-
istic field distributions individually. However we
speculate that it may prove useful to try as initial
current distributions resonant cavity currents permitted
to exist at the frequency of interest by considering the
interior region filled with dielectric or magnetic

material.
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(4) Properties of the characteristic modes of lossless
die1éctr1c or magnetic obspac1es should be investigated
in order to aid the development of methods for their
determination. |

Up to this point, we have emphasized the use of characteristic

modes for plane wave scattering by perfectly conducting obstacles.
[f, however, the primary source lies in or near the surface S, the
whole complex forms an antenna and the associated characteristic
currents and pattern functions may aid radiation pattern control,
pattern synthesis, and feed design. For example, we may obtain
the admittance of an infinitesimal slot in a conducting body in
terms of its characteristic current densities according to the

formula,

"2
Ystot = - 3y 19p(usv) - vl

n

I ~——=2

1
where (u,v) is the Tlocation of the slot on S and the unit vector
w fixes its orientation.

We may generalize characteristic modes to N-element arrays of
small elements, thereby obtaining characteristic-excitations and
patterns for use as basis functions in array synthesis procedures.
In contrast with other basis functions (for example, those devised
by Mﬁ11er[53]), the characteristic modes provide a natural set

which simultaneously orthogonalize radiated and net stored energies.
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Because of this property, for example, it is possible to devise an
array excitation which simultaneously maximizes the directivity of
the array and minimizes its net stored power.

Or, one may utilize the characteristic patterns of an array of
elements to approximate a prescribed pattern in a Teast mean square
sense and thereby obtain the appropriate array excitation. It may
also be possible to incorporate a restriction on net stored energy
in the manner of Rhodes[547][55](56](57], in which case we suggest
that the Towest order mode associated with M T -tan 0y should

possess the minimum super gain ratio, v . =1+ [xll.

min
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APPENDIX A
DEFINITION OF MODAL TMPEDANCES
FOR COAXIAL CIRCULAR LOOPS

In the development of a characteristic mode expansion suitable
for the representation of far fields radiated or scattered by two
coaxial circular loops, it is convenient to define and derive
sé]f and mutual modal impedances of such a structure. Although they
are defined precisely in this appendix it may help to say here that
these impedances relate a current on one Toop to the tangential
electric field it produces on itself or on the other loop, respec-
tively. The descriptor, "modal", implies that not just any currents
are assumed, but characteristic ones, which in this case are cur-
rents distributed sinusoidally around the Toops.

Referring to Fig. 25, assume a time harmonic current on loop 1

of the form
(144) Q{; = &x%;(B)cos Ne,
where an ei“t time factor is understood. The resultant electric field

tangential to loop 2 will be denoted by

- N _ gen
(14°)v E2m¢ E2m¢ (B) cos n¢ .

)

121

il



Fig. 25--Coordinates for two coaxial circular loops.

The voltage induced between two adjacent nodesof %;b on loop 2-1s

n/2n x/2n
n o _ “n _ “n
(146) Vv on™ % J E2m¢ de = 2, E2de (B) J cos n¢ do,
-n/2n -t/2n
2a
_ 72 In
= = E2de (B).

Since there are 2n such voltages around the Toop, the sum of their

absolute values is

no_ n
(147) 2n Vo = dagEpp, (B).
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The current on Toop 1 averaged between two adjacent modes is

ﬁ/Zn
, oo_n n
{148) i =3 J Jlm(B) cos n¢ do ,
-r/2Zn
= 2 9N
= Jlm (R)

The mutual modal impedance is defined by

n n
(149) oo VZ (% Eong (B
't - I ’
21 o] “n " (B)
m S 1m

n n
z and 222

11° are arrived

with « = ¢ i 8} Definitions for 27

n 1
at. in an ana]ogous manner.

12’

In order to clarify this choice of definition for the modal

impedances, consider the power radiated by a pair of Toops with

T | = gn .
Jlm Jlm(d) cos ng on loop 1 and J2m 2m(B) cos ny on loop 2:
1RO n = - T n t =N =
(150] " Req() (M () do s m = 1.2,

S

Using the definition for modal impedances

fEn \ 5_ “n , 0 Zn Zn Bl /Jn
[ Fing | 17 Zng I Ip Im
; = |
(151) | _n = n n n n ’
£ |0 - Z 204\
ey i Zna2 21 22 Zm
or
_ o 0 1
n | Zna; n|
(1s2)  (ED) R R KR v RO
n .
O - 277a2
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Substituting Eqs. (152) into Eq. (150),

. n o_ n .n 2 n n n n n 2
(153) Pm = Sn{Rll [ulm(B)j + 2R12 Jlm(B) JZm(B) + R22[J2m(8)j } ox

i

J cos 2 ne dé,

-m

= R0, 000 (B)T + 2R, o (B) 93 (B) + RO,CID (B)°

n n
where Jlm(B) and J2

on loops 1 and 2 respectively.

m(B) are the maximum rms values of the current

Thus, the impedances as defined are related to the radiated
power in such a way that they represent an extension of the con-
cept of radiation resistance for the uniform loop of current.[58]

The above development of modal impedances for coaxial circular
Toops represents a particular case of a special class of scatterers,
viz., ones which are composed of individual coupled elements, each
of which supports a known characteristic current distribution
identical in form to that which it supports when isolated. In
such cases, characteristic current distributions of the ensemble
are a weighted combination of those for the individual elements.

As an example, consider the two element scatterer (such as the loop

pair). If Jl is a characteristic current distribution on isolated

1

element #1 and J is a characteristic current on isolated element

22
#2, then the characteristic current distributions on each element

in the presence of the other are:
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. 4
NllJll on element #1

)
l
{ characteristic current distribution #1
J

WZIJZZ oh element #2

W 9J11 on element #1 )

12 |
I characteristic current distribution #2
W22422 on element #2

If we continue the convention of making all characteristic current
distributions real, the Wij must be real quantities. We inquire
what information is necessary to determine the “Hj for perfectly
conducting scatterers?

In addition to the phase angles, a, and an s by which the

1
tangential electric field distribution on elements #1 and #2 lag
their respective characteristic current distributions when iso-
lated, we must know the strength and phase of the induced current
on each eltement (neglecting multiple interactions) when excited
by a characteristic current (isolated case) on the other and nor-
malized to radiate unit power. These induced currents could be
expressed as a dimensionless ratio between the isolated charac-

teristic mode current and the induced (on the same element) cur-

rent. That is,

amplitude and phase of current induced
J on element #1 by unit characteristic
, =21 _ current on element #2
21 11 characteristic current amplitude on
isolated element #2
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amplitude and phase of current induced

J on element #2 by unit characteristic
s = 12 _ current on element #1
12 J22 characteristic current amplitude on

isolated element #1

When modal impedances can be defined,

_ LY.
2107 0 B2t T E
1! 12201
We can form the matrix,
P! Ty n L1g
7128 7,0 TET
" 1 11
, a2 e'*“z Z1p La2
in which the off-diagonal elements have the same phase, but not neces- ‘

sarily the same amplitude. Continuing the normalization so that the

real parts of the diagonal entries are unity,

[ -ia . - - -1
e 1 2, -igg Ell. ?i&
CcoS o CcO0S o ) I’}
M = 1 Lo, || 1
-ig 2 = =
Zo] e 2 g o1 Loo
CosS o —_— —_—
cos Gy 2 B R
L 22 22

We seek the real matrix
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which satisfies the relation
W1 T3] = 017 + 4 [A]

1 and Az. In

the absence of coupling (W] is the unit matrix and we get the

where [AJ is a diagonal matrix with real elements, A

original characterisitc currents, J11 and J22, for the individual

elements. With coupling, the columns of [W] yield the linear com-
binations of J11 and J,, which form the characteristic currents of
the pair of elements, and these are properly normalized. Clearly,

the phase angles associated with these characteristic modes are
oy = tan

and

a, = tan

Using this method, it is unnecessary to define modal impedances,
although when they can be defined, the results are entirely equiva-
lent.

It may be proper here to reiterate that the above method rests
upon the hypothesis that the form of the characteristic current on
any element in the ensemble of scatterers is the same when the
element is isolated or in the ensemble. For coaxial circular Toops
this hypothesis is valid even when the loops are extremely close;
for Tinear elements this hypothesis is approximately valid beyond
a certain (yet unknown) spacing which depends upon the lengths and

relative orientations of the elements.
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