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Abstract
The problem of the penetrat'ion of a quasi-static magnetic field

into & hemispherica‘l indentation in an infinite conducting plane is fof-
mulated as an integral equation, and solved numerically to a high de-

ree of accuracy. The resulis are directly applicable to the study of
a large class of aircrafi aatennas, such as the marker beacon antenna.
The value of the magneatic potential inside the cavity, the induced
magnetic dipole moement, and the magnetic flux passing through a

receiving loop antenna erected in the cavity are calculated,




I. Introduction

| Many aircraft receiving antennas are housed in cavities indented .

directly on the metallic aircraft skin., To analyse!the performance of
such antennas, it is important to understand the manner in which an in-
coming electromagnetic signal enters the cavities. Very often the an-
tennas are electrically small; and a quasi-static analysié is applicable.
We have recently solved exactly the problem of quasi-sta'tic electric
field penetration into a hemispherical cavity in an infinite conducting
plane [1]. Having closed the electrostatic problem, we turn to its
magnetostatic cqunterpart. |

The‘ exact solution of the electrostatic problem was effected by a

skillful inversion trausformation which, unfortunately, is of little use

to the magnetostatic case because of the difference in boundary con-~ ‘
itions. Accordingly, we seek a different approach and formulate the

present problem as an integral equation. A highly accurate - and in fact |

practically exact - solution is constructed from physical considerations.

The solution is used to compute the magnetic potential, the induced

magnetic dipole moment, and the magnetic flux through a loop antenna

in the cavity. These results, together with those in the companion re-

port [1], are directly applicable to the analysis of the excitation of electri-

cally small stub and loop antennas in rnetallic cavities by external electro-

i
1
E

magnetic signals,

The two-dimensional problem of quasi-static field penetration into

a rectangular trough has been solved in a report by Marin [2]. .
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II. 3tatement of the Problem

We consider a perfect conductor occupying the half-space z > 0,
except for a hemispherical indentation of radius a cenfered at the co-
ordinate origin (see Fig. 1). It is excited by a uniform external mag-
netic field Eowhich, in the quasi—-.étatic limit, must of necessity be
tangential to the conductor surface at large distances from the cavity;

and we can set

H_ =H?%. (1)

It can be derived from the magnetic source potential

| U, =-Hx | (2)
through the relation
Hy,=- VT, (3)

As is well-known, the magnetostatic problem consists of finding the

total magnetic potential U suchw’lchat it is a solution of the Laplace equation
in free space, its normal derivative vanishes on the conductor, it reduces
te UO at large distances from the cavity, and that it bas no singularities |
in finite space, The last condition guarantees the ab'sence of true

sources except at infinity.



—b=
o
Fig. 1.--Geometry of the problem.
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I1I, Derivation of the Integral Equation

. - To facilitate the construction of mathematical expressions for the
set of conditions just enunciated, we introduce an imaginary hemispherical

surface S defined by

r=a, 7/2<¢<m, (4)

where r and g, together with ¢, are the standard spherical polar coor-
dinates. S is clearly the spherical complement of the hemispherical
cavity wall (see Fig. 2), It divides free space into two regions: ’ghe
sphere with radius é. will be cailed region 1; its exterior, excluding the
conducior, will be called region 2. In terms of r, 9 and ¢, Uo in (2)

becomes
. Uo(r,f),(p) = - Hor sin ¢ cos ¢. (5)

By symmetry the total potential U mwust have the same qs—éiependence as
Uo‘ We expond U in terms of suitable harmonic functions in regions 1
and 2 separately, distinguishing the two cases by the suffixes 1 and 2

respectively:

[+,°]
n
U ) L 1 5 9)
1 (r, 9, ¢) hoa E An (a> Pn (cos 9) cos ¢, {6)
n=1 '
2 o m+l 1
- — I'4
U, (r,0,¢) = U +Hea -2- B_ (%) Pl (cosercoss, (D
m=1
odd
. where Prl1 is an associated Legendre function. U1 and U2 are just dif-

ferent incarnations of the total potential U, By construction they are
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Region 2
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| N /

: Fig. 2.--Division of free space into regions 1 and 2 by
the imaginary hemispherical surface S.




botn reguiar solutions of the Laplace equation; and Uz tends to Uo at
infinity. The summazation over m is 1irhited to odd integers to make the
normal derivation of U2 vanish on the entire flange of the cavity., With
so many conditions already built into (6) and (7), the coefficients An
and Bm are determined entirely by conditions on the spherical surface
r=a.
Let the radial derivative of Uon S be
8Uu

'a—r—-‘fHef(G) CoSs ¢, r=a, T/2<9<m, (8)

where (@) ig as yet unknown. We must necessarily have

£(r) = 0, (9)

or elge Lhe expression (8) has a ¢- (iependenée even at § = 7w, which is
abeurd. Since S is only an imaginary surface, the potential and its nor-
mal derivative must be continuous across it. We are led to the following
three bouadary conditions at r = a:

oUu

, 1
(1) o —0, 0< gL 11'/2,
= Hof(g) cos ¢, r]2< o<, (10)
U,
(ii) ryaalie Hof(e) COS ¢, wl2<e<7, (11)
(iii) U1 = Uz 7l2 <6< 7. (12)



Substituting (6) into (10) and using the orthogonality relation of the

associated Legendre functions in the interval 0 < g<w:

T
. 1 1 _ 2n(n+l)
f dg sin 6 Pn {(cos 5) Pn,(cos ) = ST § (13)
we obtain
T
2n+l . . 1 .
L f dg sin g £(6) P_ (cos ). (14)
2n " {n+1)

72

Similarly, substituting (7) into (11) and using the orthogonality relation

in the interval 7/2<6< 7

T
. _ m(m+1) .
f dg sin @ P (cos 8) P , {cos 9} = T ;s m,m'odd
/2 (15) ‘
we obtain
T
B = 5 . -2l d6 sin 6 £() P (cos o). (16)
m 2 ml
m(m+1) 212

From (14) and (16) it is clear that finding the function £(g) in (8)
is equivzlent to golving our presént magnetostatic potential problem.
Let us derive an integral equation %or it. Even if we insert an arbitrary
f(g) in (14) and (16), the potentials .. U1 and U2 in (8) and (7) so constructed
will still satisfy the boundary condition on the conductor, the asymptotic
condition at infinity, as well as the continuity condition of the radial
derivatives on 3, The true and unique £(6), however, is determined by

the remaining third boundary condition (12). Substituting (14) and (18) ‘
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in (6) and (7), and the latter two in turn in {12), and interchanging the

orders of summation and integration, we obtain the 'following first-kind

integral equation for f(g):

where

T
f dg' sing' K(g,6') £f(6') = - 3 sin 6, #/2 <9 <,

7/ 2

K (0,0") = K, (6,

2

6') + K, (0,67,

[¢ o]
K1 (6,0') = E 2n+l Pl (coso) Prl1 {cos g'),

n

© .
Z _2m+l
K2 (0’ 6')

1

‘.

n*l)

m=1 m(m+1)

o

d

Q.

L

1
(cosg) Pm

(cosg').

(17)

(18)

(19)

(20)



IV. Evaluation of the Kernel

We can expect the kernel K{g,6') to exhibit one type of divergence .
or another. As a first step towards solving the integral equation (17),

we evaluate K in closed form and analyse its singularities. From the

addition theorem

Pn(cos Q) = Pn {cos 8) Pn (cos 9') +

+ 2 Z 224_23, f: (cosg) P;n (cosg') cosm ¢  (21)

where

cosS @ = ¢OsS § cos Q' + sin g sing' cos ¢, (227

we obtain, affer multiplying both sides of (21) by cos ¢ and integrating over

$ from Q io 7, the relation ‘
T
P (cos g} P (cos 9') = i(%tl—-)— f d¢ cosé Pn (cos «). (23)
0
i
Then (19) and (20) become
v
K, (9,86 f d¢ cos ¢ }: k2 + _) Pn (cos a), (24)
0
T
1 = 1
KZ (6,0") = o /d¢ cos¢ n?;l ( - -I’I_l'i"_l> Pm(cosa). (2?)
0

Let us consider the infinite sum iy (24). From the generating function of

the Legendre polynomials




n

1 ; th (cos a ), (26)
n= ‘

Jl-thosa+h2

we have forh =1

0

1
P _(cosa)=s ———-
:L;l n . Qz(l-cosa)

1. (27)

Dividing (26) throughout by h and integrating over h from 0 to 1, we get

0
Z%Pn(cosa)-—'ﬁn( 2,._.._._____> . (28)

n=1 1 - cos a +N2(1-cosa)

Substituting (27) and (28) into (24) we obtain

bia
K, (6,6') = —21— f dé 006@< 2 -
' 0 \(2(1 cosa)

-4n [1 -cos a+ 2(1-cc3?c-r )]) . (29)

The sum in (25) can be evaluated in a similar fashion., The odd-integer

sum can be extracted from (26) by changing the sign of h., The result is

T
f’
K, (6,6') = lw fd¢> cosg = - 2 -
0 \l?.(l-cos ) ’JZ(lfcosa)
- o (1 - COS @ +V2(1-coscz)) - in ( 1 -cosw +V2(1+cosa) )
l-cosa ‘1-cos ¢

(30)
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It is easy to see that both Kl(e, g') and Kz(e, 6') have logarithmic

divergences at § = 9', because the leading terms of the integrands _in (29) ‘
and (30) diverge linearly at one limit of integration or the other when

9 = g'. As we are going to solve the integral equation numerically in the

next section, it is imperative that we pacify these divergences in some

efficient manner in advance. Take for example the integral

T T .
/d¢> _Cos¢ . qus Losé (31)
0 \}l-cosa 0 \/;&—Bcosé '

where, by (22),

A

1 -cos gcosg'> 0,

B=singsing' >0, =/2<g, 6'<r7. (32)

Let us split up the integral as follows:

T T T
dé 1 -cosd
as _f.e.s_?__.:f_____._-fdgb _Locosé (s
v[ VA-B cos ¢ 0 VA-Bcos ¢ 0 VA-B cos ¢

The second integral on the right-hand side is regular. The logarithmic
divergence at § = ¢' is isolated in the first integral which can be expressed

in terms of the complete elliptic integral of the first kind:

T

/‘ dé _ 2 K( [2E )
\fA-B cos ¢ \}A+B ,A+B

0

(34)

where
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K(k) = dé , 0<k<1. (35)
\/1 - k2 sin2 ¢ :

o

(The complete elliptic integral K(k) is not to be confused with the kernel
K(g,6'}!) It is well-known that K(k) diverges logarithmically as k - 1.
Therefore the integral (34) diverges for A=B or, by (32), for 9 = 4'.

A similar manipulation can be applied to the integral

T
dp ——S089 (36)
jO‘ \Jl +cos o

in (30). Gathering all the results, we can express the total kernel

K =K, + K, in the form

1 2
K(G,O')=A1(9,6')+ Az (6,6")+ 1L (8,0"), , (37)
1 w2 2sin6 sin 0
A (8,01) = = e K(J ) ’ (38)
! T \1-cos (6+61) L-cos(6+99
1 N2 2sin 8 sin 6! .
Lh_(0,0') == K(# ) s (39)
2 T \l+cos (6-01), 1+cos (6-6")
T
146,61 = - ;1r_/d¢ 2(1-cos @) + l+cos ¢ .
% \/2(1-cosa) ‘f2(1+cosa)

| 1/2
+ cos ¢ In ( 2 + 1) (\/2(l+cosa -1-cos a) s (40)
V2(1-cosa) . '

where cos « is defined in (22),
The tortuous passage from (29) and (30) to (37),(38), (39), =2nd (40)

should not be dismissed outright as a mere exercise in algebraic futility,
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despite the more complex appearance of the latter expressions, since we
can now make good use of the polynomial approximation for the complete

elliptic integral:

R 2 2
K(k)—(ao+alk+va27t )-<b0+ blh-i-bz). Y 4n A, | (41)
where
A=1- k?‘ R
a - =1.3862944, b =0.5
(o] o]
a1 =0,1119723, ’o1 =0,1213478,
a, = 0.07252986, bz = 0,0288729. (42)

. ' 0
. 34 e = . - .
The ercor is less than 0. 00003[ ]. The surviving integral L(6, 6') in (40)
can be easily evaluated on the computer, since its integrand has at most

logarithmic singularities at the limits of integration,
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V. Numerical Solution of the Integral Equation

There are more than one way to solve the integral equation (17)
numerically, and we will choose the best one. We will construct a trial -
solution from physical considerations, and the parameters of the trial
solution are determined to satisfy the integral'equation. This method
is the best since the solution f(g) is expected oﬁ physical ground to -
diverge at the rim of the cavity, and we can represent this divergence
faithfully with a well-chosen form of the trial 'solution.

It is clear from (8) that the function f(9) is proportional to the
radial component of the total magnetic field on the imaginary hemispherical
surface S. Let us digress a little, and for a few moments delve into the
nature of the divergence of magnetic fields at sha“rp conducting edges.

Let us consider the immediate ne'ighborhood of the edge of a conducting
wedge of exterior angle B, and let us set up a local eylindrical polar
coordinate system (5,9 ,Z) such that the Z-axis is tangential to the edge

and that the two wedge surfaces are given by ¢ = 0 and B. If we are close
enough to the edge, variations in Z can be ignored. The magnetic poten‘tial
satisfies a two-dimensional Laplace equation in p and ¢. The condition

of perfect conductivity requires the vanishing of the normal derivative on

both wedge surfaces. Then the potential can be expanded in the form

=t . =2t
a +a; P cos(t¢)+a29 cos (2t¢) + ..., (43)

where ' : | A

— 7r .
’C—Bm. - {44)
i



As a consequence both the p- and §-compounentis of the magnetic field be-

have near the edge like p t-]'. For B < 7, they are finite; but fora sharp .

edge with B> 7 , they diverge. In our hemispherical cavity problem,
B = 37/2, hence we can expect a divergence like 7 -1/3.
The above congiderations suggest a trial solution for (17) in the

form

(]
1 1/3
T ITE tep sl (45)

£(g) = - sing

since P in (43) becomes aicos 9' in our case. c:l and ¢, are adjustible

constants. The term in Cq represents the effect of the third and sub-

sequent terms in (43).. The factor - sin ¢ serves the dual purpose of

providing an overall envelope which imiiates the incident part in (5),

and of insuring the satisfactior of condition (9). ‘
We substitute (45) into the lefi-hand side of (17) and evaluate the

integral numerically on the computer for the two values cos § = -0.2 and

-0.8. To avoid having the logarithmic singularity of the kernel K(g, 0"}

inside the range of integration we break up the integral into two parts;

thus

T a T
f do! sing' K(g,8') f(g') = f +f . (46)

7 2 af 2 6

The constants ¢, and c, are adjusted to satisfy the integral equation (17)

at these two chosen values of cosg. The result is

-18-




0.55100

f(9) = -sing + 0.51154 lcoselll3 . (47)
ll/3

|cos g
When this f(g) is resubstituted into (17), we find thafc it practically satisfies
the integral equation uniformly. The discrepancy between thé two sides

is well within 1% throughout the entire interval #/2<g<#z. In real life we
seldom fuss over an error of this order. The solution is quasi-exact, and
we really hit the nail on the head with our intuitively constructed trial
solution (45). The explicit solution (47) is plotted in Fig. 3 and compared

with its incident part - sin 9.
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-1 cos 6 0

Fig. 3.--Solution £(9) of the integral equation (17) as
compared with its incident part - ging
(broken line),
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VI. Potential in the Cavity
We proceed to calculate the value of the total magnetic potential in
the cavity. For this purpose we need only the potential U1 in region 1

given by (6). Puting (14) into (6) we obtain

2 _ontl fr\"_1 1
(r,0,¢) = acosé / dg'sing' £(g'") (E) Pn(cos 8) Pn(cos 6'),
.?.n (n+1) '

w2
(48)
The infinite sum can be evaluated in closed form by the method in Section
IV, Here we set hin (26) and its derived expressions equal to r/a instead

of 1. 'The result reads

Ul (I', 6:({)) = Hoa u (rs 6) cos (i” (49)
T

u (r,9) =/ de' sing' £(8') W (r,e,6'), (5Q)
7l 2
T

W(r,0,6') = -z-l—f ¢ coso 2 = -
0 1 2 z cos « -!—(E-)
a a

r r T ]

-n {1 - =cosa + 1-2—-coscx+(——) s (51)
a a a

where cos a is defined as in (22), ' Using the solution (47) we evaluate Ul
1

numerically for ¢ =0, and the results are tabulated in Table 1. We have

used a uniform net of field points most conveniently specified by the

eylindrical polar coordinates



p =r sin 6, Z =r cos f . (52)

For other values of ¢, the tabulated values must be multiplied throughout
by cos ¢.

The computed results for ¢ = 0 are also plotted in Fig. 4. The
intersections of the equipotential surfaces with the x-z plane, that is,

for ¢ = 0 and 7, are sketched in Fig. 5.




..'l;z..

Table 1. Total magnetic potential U_ in the cavity in units of Hoa for

1
$=0(p=rsing, z = rcosg). For other values of ¢, the

entries should be multiplied by cos ¢.

a

z/a & 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 J.8 0.9
0.9 0.000  -0.025 -0.049 -0.073 -0.095
0.8 0.000  -0.027 -0, 054 -0.081 -G, 106 -0.130 -G.153
G.7 0.000 ~-0.030 -0.061 ~0, 090 -0.118 -0.145 -0.171 -0.193
-'0.6 4- 0.000 -0.034. -0,068 .-0.101  -0,133 -0,163 -0.191 -0.217 -0.239
0.5 0.000 -0.038 -0.076 -0.113 -0. 149 -0.183 -0.215 -0.244 -0.269
0.4 0.000 -0.043 -0. 085 ~-0.127 -0.167 -0.206 -0.243 -0.276 -0. 305 -0. 329
0.3 0.000 -0,048 ~0.095 -0,142 -0.188 -0.232 -0.275 -0. 314 -0. 349 -0. 376
0.2 0.0600 -0.053 -0. 105 -0.158 -0.210 -0.261 -0.311 -0. 358 -0.401 -0.436
0.1 0.000 ~0.058 -0.116 -0.175 -0.233 -0.291 -0. 349 -0.406  -0.462 -0.512
0.0 0.000 -0,064 -0,127 -0.191 -0.256 -0.321 -0.388 -0.456 -0.528 -0.606




IJI/aH0

0 z/la 1

Fig. 4.-~~Tctal magnetic potential Ul in the cavity in units of ald ‘
0
for ¢ =0 (p = rsin g, z = rcos@). The curves terminate
on the right at the cavity wall. ' ‘
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Iig. 5.~-Intersections of the equipotential surfaces with the x-z
plane (i.e., ¢ = 0 and 7). For other values of ¢ the
surfaces are more fanned. out due to the factor cos ¢.
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VII. Induced Magnetic Dipole Moment

Let us consider the behavior of the total potential at large distances ‘

from the cavity, From (7) we have

3 sin g cos ¢
o - fadachit S hatelt, 24 >>
U, = U -Ha B1 5 s, T>>a. (53)
r
The last term characterizes the far zone behavior of the induced potential,

and is of a dipole form. We can define an induced magnetic dipole moment

m such that

1 mer
U2 o U0+ I 3 - (54)
r
Comparing (53) and (54) we obtain
m=«a H o = -4738 a3 - (55)
— “m~-0o’ m 1= “
From (16) we have g
T
1.3 . 2 » .
B1-2+4 f do sin"g f(g) . (58)
w2
For £(9) given by (47) the integration is trivial, and we obtain
o = 1,73 3
m - . a . (57)

This is to be compared with the finding in the more readily soluble problem
of a hemispherical boss, where ¢. = -27 a3. Comparing again the present

result with that from our companion electrostatic calculations [1], we note .

that the eleciric and magnetic polarizabilities of the hemispherical cavity '
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differ in sign. The same observation holds also for the case of the hemi-
spherical boss. |

With an induced rhagnetic dipole moment determined from (57),
the total magnetic potential U2 difiers from the incident potential Uo

- by less than 1% for r 2 2.4a.



VIII. Magnetic Flux

Suppose a thin conducting wire is stretched from one side of the
cavity wall to the other. ’fhen, together with the conducting cavity wall,
it constitutes a loop antenna which can be excited by temporal variations
in the magnetic field fluxing through it. It is desirable to calculate the
magnetic flux passing between the wire and the cavity wall.

Let the wire be perpendicular to the z-axis, lying in a plane which
contains the z-axis and which makes an angle ¢ with the x-z plane. It
is depicted as the straight line MN in Fig. 6. Let D be its distance from
the zenith of the cavity (or nadir, depending on one's preferred point of
view). We wish to calculate the magnetic flux through the dotted area

in Fig. €.

It is clear that the flux is due entirely to the ¢-component of the ’

magnetic field. From (49) we have

(58)

By symmetry the total flux is twice that through, say, the right half of the
dotted area in Fig. 6, for which we can take 0 < ¢ < 7. Moreover, it is
sufficient to consider the case ¢ = 7 /2 when the antenna loop is normal to
the incident magnetic field Eo’ For other orientations the flux is diminished
by a factor sin ¢. For ¢ = 7/2 the total flux & through the entire dotted

area is given by

b = 2uo[[dA. Hx = -2#0’!}'(1.& H(b

-26-
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- o
X-y plane

Fig., 6.-~Geometry of the magnetic flux calculation.



where the surrace integral goes over the right half of the dotted area in

Fig. 6. Substituting (58) into (59) we have ‘
a aZ_ 2
d=-2u Ha dz de u(r,8) (60)
0O O ) Iy ’
a-D 0

where the connection between (p,z) and (r, 9} are as in (52). The expres-
sion (60) is evaluated numerically on the computer, with u(r, ) obtained

from Table 1 by interpolation. The results are plotted against D in Fig. 7.
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0.6

0.4

D/a o1

Fig. 7.--Total magnetic flux & versus the distance D of a
wire from the cavity bottom for ¢ = 7/2. For other
values of ¢ (0<¢<r), ® is diminished by a factor sin R
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