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Abstract

A detailed analyecis is presented of how the electric polarizability of
an aperture in a csable shield varies with the thickness and the permittivity
of the dielectric jacket as well as with the permittivity of the insulating
medium within the shield., From a knowledge of this variation the influence
of the dielectrics is then determined on the current source term of the

transmission~line equations describing the braided-shield cable.
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I. Introduction

The shield of a cable is used, in addition to being part of the cable
itself in some cases, to shield against external electromagnetic disturbances.
A commonly used type of shields is the braided-wire shield because of its
mechanical flexibility. A schematic picture of a braided-shield cable is shown
in Figure 1. Exterior to the shield is a dielectric jacket and imside the
shield are conductors immersed in an insulating medium. Since there are always
small holes between the wires in the braid this type of shicld is not perfect in
that a small fraction of the electric field outside the cable can penetfrate
through these holes into the cable.

In the past, a considerable effort has been directed towards the calculation
of leakage of clectromagnetic fielde through the cable shield into the cable.
One ugsual approach is to derive a set of transmission-line equations from which
calculations can be made of the currents and voltages induced in the load by
the fields outside the cable shield. 1In deriving the transmission-line equations
for a braided-cghield cable one common approach is to incorporate the concepts

L1-5]

uszd in statics into the conventional transmission-line theory . Another .

L6

equations are then derived by using a modal analysis and by keeping only the

approach starts out from the Maxwell equations and the transmission-line
dominant mode (which is justified in the frequency regime where transmission-
line theory is applicable).

So far the cffccts of the dielectric jacket and the dielectric insﬁlation
within the shield have been neglected in all shielding calculations except in
some limiting cases[3’7]. The purpose of this note is to incorporate these
effects into the transmission-line equations previously derived for braided-shicld
cables. It will be assumed that the apertures arc small compared with the radius
of the cable, so that their electromagnetic effect can be described by an
electric dipole moment p and a magnetic dipole moment m. The dielectric propertics
of the jacket and the insulating medium in the cable will, of course, only
influence the electric polarizability of the aperture.

By applying a first orderréeftﬁfbation theory to the Maxwell equations

the following transmission-line equations have been derived for the voltage and

current in the braided shield[()] ’
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Figure 1. A braided-shield.cable with a 'dielectric jacket.
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This set of equations is valid when no dielectrics are present or when the entirve
space outside the cable is filled with one homogeneous dielectyic and/or the
insulating medium inside the cable consists of another homogencous medium. Usually
5e << 1 so that the factor GeC modifying the characteristic capacitance of the
cable is small compared to C. In this note we will therefore concentrate our
efforts on the calculation of the dielectric effects on the electric-source

driving term in the transmission-line equations for a more realistic model of

the cable.

In order to develop a feeling for the dielectric effects on the electric
polarizability of the aperture we will "isolate" this effect by treating a problem
where, for example, the effects due to the curvature of the shield, the inter-
actions between different apertures, the prescunce of other conducters, and the
hole shape are neglected. An estimate of all these effects have becn made

(3]

In Section II, a derivation is given of the dipole moment of a circular

previously

aperture in a plane screen sandwiched between two layers of dielectrics. One
of thesc layers represents the dielectric jacket and is of finite thickness,
while the other represents the cable insulation and can be taken as a hall-
space. The dipole moment can be expressed in terms of the solution of a set

of dual integral equations and the solution of these equations is prescnted in
Section IIL. Finially, in Section IV, certain dielectric effects on the dipole

woment of a longitudial slot in a circular cylinder is studied.




II. Formulation of a Boundary-Value Problem

In this section we will formulate a boundary-value problem, the solution
of which shows the effects of the dielectrics on the polarizability of the
aperture, In the model that we use it is assumed that the aperture is small
compared to the radius of curvature of the cable, so that we can consider the
aperture to be located in an infinite ground plane. Moreover, since our main
effort is concentrated on the dielectric effects we choose the aperture's shape
to be circular thereby simplifying the analysis somewhat. Finally, the distance
between the shield and any conductor inside the braided cable is assumed to be
large compared to the size of the aperture and so we can neglect the influence
of these inner conductors when calculating the polarizability of the aperture.
| Keeping these assumptions in mind we can formulate the boundary-value
problen depicted in Fig. 2. The relative dielectric constant of the insulation

inside the cable is denmoted by €., and the relative dielectric constant of

1

the surrounding jacket is ¢ The medium outside the jacket is assumed to be

air having the relative dielictrie constant € iy 1. The incident electric
field, which is perpendicular to the ground plane, is denoted by Eo’ the vadius
of aperture by a, and the thickness of the jacket by h.

The electric field in region 1 (see Fig, 2) far away from the apérture can

Le]

be expressed in terms of the dipole moment p of the aperture
p = -€ 502 J ¢ds (1)
A

where ¢ 1is the electrostatic potential in the aperture. To find this dipole
moment we will solve the Laplace equation for the electrostatic potential in
regions 1, 2, 3 together with the proper boundary conditions at the junctions
of the media and the correct behavior of the field at infinity. Let @n(p,z)
denote the electrostatic potential in region n (n = 1,2,3) and we can derive
the following expressions for the electrostatic potential by performing a

Hankel transform on the Laplace equation, in cylindrical coordinates,
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Figure 2. A circular aperture in a plane screen sandwiched
between two layers of dielectrics
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¢, (p,2) = j A exp(Az)J _(Ap)da, z <0
0 © ‘

@2(p,z) = f [B(Mexp(rz) + C(W)exp(~xz)]J (Ap)d) + E z/ez, 0<z<h (2)
O [0} (e}

@B(p,z) = jOD(x)exp(—Az)Jo(ApjdA + Eoz - th(s2 - l)/ez, z > h

where Jo(x) is the Bessel function of the first kind and the functions A(X),
B(x), C(x), and D(X) are to be determined from the boundary conditions at
z =90 and z = h. The integrals in (2) can be viewed as the "scattered"
potential, i.,e., the influence on the field due to the aperture, and this part
of the potential approaches zero as the radius of the aperture tends to zero.
The boundary conditions at z = h (i.e., the electrostatic potential

and the normal component of the displacement vector being continuous) imply that

0,(p,1) = 0, (1), 020
(3)
8% 8¢
2 -3 =
€2 5z (p,h) = 3z (p,h), 0 0.

Similarly, the boundary conditions at 2z = 0 can be expressed mathematically

in the following way:

¢, (p,0) = ¢,(p,0), p =0
‘I’l(p,O) = @2(0,0) = O’ p > a (4>
20 3@2
= —t =
€ 57 (p,0) € 57 (p,0), 0 p < a.

0f these equations the first one expresses the continuity of the potential at
z = 0, the second one the fact that the potential is zero on the plate, and
the third one the continuity of the normal component of the displacement vector

across the aperture.



From (2), (3) and (4) we can derive the following relationships:

(sz—l)A(K)

B(A) = e2_1+(€2+1)exp(2>\h)
(52+1)A(?\)

c(r) = €+ 1+ (e - 1) exp (~2Ah) (5)
ZEZA(X)

D(X) = €2+1+(€2—1)exp(—2Kh)

Substituting the expressions (2) and (5) into the boundary condition (4) we

arrive at the following set of dual integral equations for A(N),

J AT Gpdx = 0, p > a
o
0
(6)
JOF(A)A(A)JO(Rp)dA = EO, 0 < a
where
F(\) = (el + 52)1[1 + kl(x)] @)
and
€y cosh(Ah) + €, sinh{)h)
k. (X)) = - -1 (8)
1 €l+€2 sinh{(ih) + €, cosh (ih)

It should be pointed out that kl(k) tends to zero when €, > 1 {(no diclectric

jacket) or when h =+ « (a very thick dielectric jacket). In these special
cases an explicit solution of the set of dual integral equations (6) can be
foundES].

To find a solution of (6) in the general case we introduce the normalized

quantities:




u = p/a, £ = ai,

)

el+e2

K(E) =k, (V), () = == AQ)
E a
o)
and we arrive at the following set of equations for X(g),
J gLl + k(&)]X(E)JO(uE)dE =1, 0=uc<l
0

(10)

J X(8)J_(ug)dg = 0, u > 1,
0

Before we go on to solve (10) let us see how we can express the quantity
of interest, namely the dipole moment, jin terms of the solution of (10). After
some simple manipulations on (1), (2) and (10) we can derive the following

representation of p,

el

3

p=-2mee Ea (e, +e,) 2 f £ (o), (2. (11)

0
In conclusion, we have in this section reduced the problem of finding
the electrostatic potential in the aperture with a dielectric coating to the
solution of the set of dual integral equations (10). Once the solution of
these equations has been found, the equivalent dipole moment of the aperture
can be obtained by performing the simple integration (11), and the dielectric
effects on the polarizability of the aperture can be determined. In the next
section we will study the polarizability of the aperture by solving (10),

analytically in some limiting cases and numerically in the general case.




III. Solution of the Integral Equations

In this section we will solve the set of dual integral equations (10).
In the most general case it is not possible to find a closed form sclution of
(10). Numerical methods must therefore be used to “solve'" (10). Later in
this section we will formulate a Fredholm integral equation of the second kind
with compact kernel and from the solution of this integral equation we can
calculate the dipole moment of the aperture. However, when h >> a we can uge
perturbation techniques to obtain an approximate solution of (10). Also, we

can derive some limiting forms of the solution of (10) when h << a.

A. The case h >> g

The set of dual integral equations (10) can be reduced to the following

Fredholm integral equation of the second kind[8]
xp + 4 | [l sl | xan = 6o, £20 a2
T g £-n £tn
vhere
c(g) = Z(Si”;gg cos &) (13)

The function k(&) ({see (8)) can be expanded in the series

252 B 0 )
k(g) = ) v exp(-ngg) (14)
1

eytey 2

where
B = 2h/a, y = (1 - 52)/(1 + 82). (15)

For § > 1 we can, after some simple but tedious algebraic manipulations,

derive the following approximate solution of (10),

X() = 6(6) = xQu(Y)E(E)ET = rQ (26" (8) - 1.26(8)]8 7"

+ r* S (ne@e™ + o) (16)

10




where

8¢

2
r= 3w(el+52) ’
(17)
Qm(Y) = ) VT m = 3,5,
n=1

The dipole moment of the aperture as defined by (1) can be expressed in

the following way,

p=pF(e se,,8) (18)
with
4al€OEOa3
= e e 9.9 , o)
‘EO 3(€1+€2) zZ. (l/)

Equations (11) and (16) enable us to derive the following expression for

F<513€2>8>
T(ep,ep08) = 1= xQ (187 + 2.4205(Y)B + £ Qo (B " + 0(87). (20)

It is observed from (20) that the normalized factor F(el,ez,B) approaches
unity rather fast for large values of B. From the numerical results that
we will present in the next section it will be seen that the asymptotic
expansicn (20) is valid for £ = 2, and that in this regime the dipole

moment differs less than 2% from its value for g =+ ,

B, The case h << a

To obtain an integral equation, which can be solved with perturbation

techniques when 8 << 1, we first make the substitution

l+el

S X (1)

Y(€) =

11



and Y(&) satisfies the set of dual integral equations

[+2]

J gL+ 2(&)}Y(£)Jo(u£)d£ =1, 0=u<l
0

(22)
J Y(£)J _(ug)dg = 0, u > 1,
0 o]
where
D) = (ey = D/(ey + 1) + (e) + e,) (e, + D7Ik(E) (23)
and
E) = (eh - Dl2e,e, + DI7es™ + 06, 8 << L, (24)

An asymptotic solution of (22), valid as B + 0, can be obtained by first
reducing (22) to a Fredholm integral equation of the second kind gimilar to
(12) and then solviné the resulting integral équation with perturbation
techniques. With this method we derive the following asymptotic representation
of Y(&)

(eg—l)sin £

y(g) = 2ein 5;£3°°S £ 5 g In B + 0(B). (25)
T ez(el+1)

For small values of B the normalized factor F(sl,ez,ﬁ) is asymptotically

given by

e ¥, 3(53—1)(€l+52)
F(sl,ez,B) = + 5 g In B + 0(R). (26)

gl+1 2ﬂ€2(€l+l)

Comparing the two expressions (20) and (26) we observe that, as expected, the
dipole moment of the aperture without the dielectric jacket (B = 0) 1is larger
than its value when the thickness of the dielectric is large compared to the
aperture size (B = «). We also expect F(el,ez,B) to vary between the two
limiting values given by (26) and (20) as B varies between zero and infinity.

The numerical calculations show that this is indeed the case.

12




C. The general case

To find an equation suitable for a numerical evaluation of the dipole
moment in the general case we introduce the normalized potential f£(u) din the
aperture, defined by

fluw) = (e, + 82)¢(ua,0)/(an) 27

1
and f(u) is related to the solution of the set of dual integral equations
(10) by

oo

£(u) = J 3 (EX(E)dE. (28)
0

After some algebraic manipulations on (10) and (28) we arrive at the following

Fredholm integral equation for f(u)[8]

1
£(u) + J L(u,v) £ (v)dv =-% A - o, 0sus 1 (29)
0
where
2v (Tf1 g
L(u,v) = ?"f j 22250 nk(n)J_(vn)dnds. (30)
: 0/u g2~u2

To find the solution of (29) we first extend the domain of definition of
L{u,v) to (~1,1)x(~1,1), so that L(u,v) is an even function in both u
and v. Similarly, we extend the domain of definition of f(u) to (~1,1),
so that f£(u) is an even function of u. Expanding £(u) in terms of the

Chebyshev polynomials of the second kind, Uzn(u)[gj,
£ =/ -u" ] £U, () (31)
n=0

we can trancform the integral equation (29) to the following set of algebraic

equations by applying the Galerkin method,

ot 2 |
£+ ) anfm ==8 (32)
m=0

i3




where Gnm is the Kronecker symbol and

2 w0
Ln =7 Jonk(n)Gn(n)Hm(n)dn‘ (33)
The function Gn(n) can be expressed in terms of the spherical Bessel functions,

e () = 13 WDy, (/2) =5 (/2)y  (n/2)] (34)

while Hm(n) is given by

v n 3 K 2k
(-1) (m+2)!(22,)! (<)
() = 1 - cos n e
" 520 (21)% (-2 1n 24 [ k__E_o 70 ]
% K 2k-1
+ sin n kzl L:l(_)z_ﬁ_l_)_!_:l )

The normalized factor F(el,ez,ﬁ) can be obtained from £(u) and the

solution of (33) as follows:

3 1
F(ey,e,,8) = ~—27l jOuf(u)du
-1
- 3T Of D L ' (36)
2 n=0 (2n~1) (2n+3) ° )

In the next section we will present the results of the numerical cal-

culations performed based on the formulas presented in Sections II and 11T,

14




IV. Numerical Results

In this section we will present the results of the numerical calculations
that have becn performed. Especially, detailed results will be presented of
the variation of the electric polarizability of the aperture with the thickness
and permittivity of the dielectric jacket.

Fquation (32) constitutes a form that is suitable for numerical solution.
The integrand in (33) decays exponentially as exp(~4ha_ln) (c.f. (8)), but
for small values of h/a this decaying is very slow thus making it difficult
to accurately evaluate (33) with numerical means. We therefore had to limit
the numerical computations to h/a =2 0.1, In the limiting case as h/a tends
to infinity it can immediately be seen from (33) that the solution of (32) is
given by fn = 2/w6no and that the'normalized factor F(al,sz,m) = 1., In the
numerical solution it was found that satisfactory accuracy (<1%) was obtained
by truncating the infinite set of equations (32) to a set of 4 equations and
4 unknowns. This fast convergence of (31) can partly be attributed to the
fact that ecach term in the expansion (31) satisfies the edge condition at
p =a (u=1).

The parameters in the transmission-line model of a braided-shield cal:le

(6]

ability oy is affected by the presence of the dielectric jacket and is

are the electric and magnetic polarizabilities Only the electric polariz-—

related to the dipole moment p through

P = ogeq (57)

where ¢q dis the charge density on the exterior surface of the conducting wall
when the aperture is short circuited, i.e., (note that normal component of

D is continuous)

q=¢kE . (38)

We therefore get

15
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1]
=l
b
(]
[&]
=
[&]

e
2€Oa3 2€1
= ’_""""F(E s € sB)
3 €l+€2 1’72
_ f—
= dede. (39)

£, , A . . .
where a, is the polarizability of a circular aperture in a conducting plane

in wvacuo,

f _ 3
a, = 2€0a /3 (40)
and Eé is given by
_ 281
a, = e he, F(sl,ez,ﬁ). (41)

In Figures 3a-3g we have graphed aé(el,ezsh/a) versus h/a for different
vaiues of and . '

s € g,
increasing function of €y whereas it is a decreasing function of

It is seen from these'figures that E; is an
€9 and
h/a, as expected.

The asymptotic form (20) for F(el,ez,B) can be used to obtain an
asymptotic form of oy for large values of h/a. This asymptotic form for
Gy deviates less than 10% from the exact form when h/a = 0.8. However, the
difference between the asymptotic form and the exact form increases rapidly
when h/a < 0.8. The limiting form (26) can be used to obtain the following
expression for .Ee in the special case of vanishing thickness of the dielectrie

jacket

Ze(el,ez,m = 2e, /(L +¢e)). (42)




LT

0.2

Figure 3a.

The variation of the electric polarizability with the dielectric
constants and the thickness of the dielectric layers.
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Figure 3b. The variation of the electric polarizability with the dielectric
constants and the thickness of the dielectric layers.
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Figure 3c. The variation of the electric polarizability with the dielectric
constants and the thickness of the dielectric layers.
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The variation of the electric polarizability with the dielectric
constants and the thickness of the dielectric layers.
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The variation of the electric polarizaebility with the dielectric
constants and the thickness of the dielectric layers.
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Figure 3f. The variation of the electric polarizability with the
constants and the thickness of the dielectric layers.
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Figure 3g. The variation of the electric polarizability with the dielectric
constants and the thickness of the dielectric layers.



V. A Longitudinal Slot in the Shield

In this section we will investigate the dielectric effects and the
effects of the radius of curvature on the dipole moment of a2 longitudinal slot
in a cable ghield. It will be assumed that the transverse dimensions of the
slot is small in terms of wave lengths of the incident field but that the length
of the slot is large compared to the radius of the cable. The model we use is
that of a cylinder with an infinite longitudinal slot, and a schematilc representa-
tion of the structure is shown in Fig. 4. The radius of the cable is denoted by
a, the exterior radius of the dielectric jacket by b, and the slot occupies
the angle 2¢1. The angle between the direction of the homogeneous incident
electric field Eo and the outward normal at the center of the slot is denoted
by ¢O. The permittivity of the insulating medium inside the cable (p < a)
is € and the dielectric constant of the jacket (a < p < b) is €ge

Before we carry out the analysis of the problem just posed it is perhaps
appropriate to point out the differences between our problem and the associated
problem where the slotted cylinder has a net charge q per unit length. The

L3

cannot be solved by conformal mapping because of the form of the excitation

latter problem can be solved trivially by conformal mapping whereas our
field., As we will see later, the solution to the problem formulated in the
beginning of this section can be obtained from thg theory of dual series equations.
Also, for very narrow slits it is customary to think that the related problem
is more appropriate (and, of course, more managable) for cable calculations.
However, for slots of considerable width one cannot really separate the exterior
and interior regions of the cable. 1In this sense, the solution of our problem
complements the results already reported in [ 3] from both practical and theoretical
view points.

The electric field can be determined from the electrostatic potential
¢®(p,¢) which satisfies the Laplace equation and certain regularity conditions
at p =0, p - o and therefore has the following representation in the

respective regions:

24




dielectric jacket

Figure 4. A slotted cylinder with a dielectric jacket.
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&0

2, (0,0) = Anoln!ein¢, pSa
petoo
2, (ps0) = E_w @ o™+ ¢ pMe™, aSp=h (42)
050,8) = nj—w an—fnleimp e ol ey. o zb
where
¢ (0,0) = E_p cos(é ~ ¢, (43)

and EO is the strength of the incident field., The conditions on the field at
infinity implies that DO = 0, Employing the boundary conditions gt p = a
and p =b (c.f£. (3) and (4)) we arrive, after some algebraic manipulations,

at the following expression for the potential inside the cable

@1(0,¢) = Z xu(p/a)n cos nd - Z yn(p/a)n sin n¢, p < a. (44)
n=1l n=1 .

The coefficients X and y, are gilven by the solutions of the following two

dual series equations,

(o]
z x cosng =0
n=0 O
(45)
nzl n(l + kn)xn cos ng = (an cos ¢o cos ¢
and
z Yy gin n¢ = 0
n=1
(46)

E

L n(l + kn)yn sin né = Kan sin ¢o sin ¢,

26




where

€,~1 2 e,-1 2n
o1 2 a, <o 2 a. _
kn T e te {81 * EZ[} - €2+1 (b) J[i * €2+l (b J 1
and
e, +1 e,~1 2 e, ~1 2 é -1 2 -1 €,~1 27
K= ?(ez+é b) {1 - sz+1 ('E) + [l - ez+1 (%) Hl + 624-1 <%> J [l * e2 I <}T);> J
U1 T2 2 2 2 2+ <

L 6]

The dipole moment, p' per unit length of the slot is given by

¢l © x gin n¢
| . 5 o 2} 1
p' = ase x [ ¢, (a,¢)d¢ = 2ae € x ) SR (48)
—¢1 n=1

To find this dipole moment one first has to solve the set of equations

(45) and in the general case it is not possible to find a closed form solution

of (45). Numerical means must therefore be applied to find the X Howaver,

it is possible to solve (453)

L8]

with analytical means. In this case we have

in the special case where b >>a or b = a

rh]
4a5220 cos ¢O

x = - £
n 81482 n
(49)
1 1
gn T2 J [:Pn(X> - Pn—l(x)]dX
cos ¢
1
so that the polarizability of the aperture is given by
£,€,€ a
=2 o120 o 5
“e E' e e G(¢l) (50)
o} 172
where
© ["gin n¢l sin(n+l)¢]
G(¢;) = 4 Z [ - - —1 I, = I, sin ¢, (51)
n=1 ,
and

27




1
I = J P (x)dx. (52)
cos ¢l n

Here, Eé is the electric field in the medium surrounding the cable, i.e.,
“E' = E and e. =1 when b=a and E' =E /(1 + ¢,) when b >> a,
o o 2 o ol 2
The normalized factor G(¢l) of the slot is graphed in Figure 5. 1In
order to understand the effect of the radius of curvature on the polarizability
we have also graphed in broken lines in Figure 5 the polarizability of a slot

L6]

of width d in a planar sheet, which is given by
2
@, = nd” /4, (53)

The equivalent opening angle of this planar slot is defined as ¢l = d/a;

so the function plotted is
6, (4;) = m67/4 (54)
1Vl 1

It can be observed from Figure 5 that the effect of the radius of curvature

on the polarizability is negligible when the total slot width is less than or
equal to the radius of curvature.

Before concluding this section some comments about the results presented
in this note are in order. Two isolated effects on the polarizability of an
aperture have been studied namely (1) the dielectric effects and (2) the cffccts
of the radius of curvature of the shield. Although the combined effect can be
obtained by solving (45) (which is a rather cumbersome task) it is felt that
this effect can be obtained by judiously combing the results of Sections IV

and- V.
Finally, most cable jackets have appreciable conductivity. The presence
of such conductivity will affect not only the electric polarizability but also
the magnetic polarizability, the latter being left out of consideration in the
present note. One might think that an approximate way to account for the
conductivity effect on the electric polarizability is to replace the dielectric
constant of the jacket ¢

by 82(l+io/we in the results presented throughout

2 2)
this note, 62/0 being the relaxation time of the jacket. Unfortunately, such

simple replacement will lead to many inconsistencies, as can be seen from ‘

28
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Figure 5. The variation with the slot angle of the polarizability
per unit length of a slot in a circular cylinder.
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Maxwell's equations. Nevertheless, conductivity is present in all cable jackets
and therefore its effect on EMP coupling with cable systems merits immediate
attention. Figure 6 shows a relevent, well-posed problem the solution of which

will reveal what one desires to know about the jacket's conductivity.

30



conducting

il

A cable shield with conducting jacket and a longitudinal slit. .

Figure 6.
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