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ABSTRACT

Various features of widely used computer programs for the electro-
magnetic analysis of thin wire structures using integral equations in
the frequency domain are analyzed. A set of criteria are developed so
that a given current distribution can be compared to a reference solution
by use of a few simple scalars. Extensive computations are performed
for the straight wire, L-wire, and crossed wire configurations with easy
evaluation using the selected criteria. Using information regarding
accuracy, efficiency, and simplicity, a recommendation is made regarding
the "best" program available at this date.

*This work was performed under the auspices of the U.S. Atomic Energy Commission.
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INTRODUCTION

The widespread usage of integral equation techniques in the
evaluation of electromagnetic interactions has led to a variety
of numerical techniques and as a result, a large number of
different computer programs. As might be expected, some subtle
differences in the reduction of a physical structure to a
computer model using a given numerical technique for solving the
integral equation could lead to significant differences in accuracy
and efficiency. It is the purpose of this report to investigate
various computer codes which are widely used and to evaluate
their performance in solving for the bulk current and charge
distributions on several thin wire structures. A recommendation
will be made regarding which code (in its present stage of
development) should be adopted for use in evaluating current and
charge distributions on aircraft-like thin wire structures
exposed to an EMP environment.

A preliminary discussion of program philosophy regarding
mathematical modeling initiates the technical portion of this
report. It is followed by a brief theoretical development of

the pertinent integral equations finding widespread use in electro-
magnetic modeling for conducting wire structures. Also included
is a discussion of the method of moments with particular

regard paid to choices of weight and basis functions. Brief
descriptions of presently operational computer programs follow,
hopefully providing the reader sufficient information regarding
the fundamental differences in the programs. The area of error
analysis relevant to this project is discussed in order to
establish those error criteria which find use in the determination
of efficiency for the computer programs used in this effort.
Finally, using the results of error analyses such as convergence
rates, a recommendation will be made regarding that program,

or combinations of program segments which can be used in

analysis of the class of structures considered herein.

PRELIMINARY DISCUSSION

The major initial emphasis in this effort has been the collection
of data pertaining to the use of various existing computer programs
and algorithms which may be applicable to the general problem of
analyzing aircraft-like geometries composed of thin wires in the
sense of the thin wire approximation. This approximation
necessarily limits the highest frequency for which valid and
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reliable computations can be performed for surface current and
charge density distributions on wire-like structures. In order
to systematize our discussion of the various sources of error
which may be encountered in the computer modeling process let
us consider the steps involved in developing numerical results
for the problem of interest. This will be done in order of
increasing approximation (or decreasing model realism)
beginning with the rigorous problem statement.

A. The Exact "Model"

An exact numerical model of an aircraft would, if it were
possible to develop, include the precise geometrical details
of the structure as well as the electrical properties of the
air frame and would permit variations in the structure
geometry which would normally occur during operation. This
might include for example, gear up versus gear down, flaps.
in various configurations, etc. This of course is a formid-
able problem in the current state of development of computer
modeling in electromagnetics. Rather than considering the
object to be a closed perfectly conducting surface as is
most often the case treated from a numerical viewpoint, it
would be necessary to allow for the real-life effects of
apertures, finite conductivity, imperfectly conducting
contacts, etc. For obvious reasons, real-life problems are
generally idealized to a certain extent as is duscussed

in the following approximating steps.

B. The Smooth Closed Surface

It can be argued that for many practical considerations it is
permissible to replace the complicated geometry of an '
actual aircraft by a smooth version which approximates in

gross outline the real structure. It may be furthermore
anticipated that it is permissible to consider such a model -
to be perfectly conducting for purposes of grossly evaluating
the surface currents and charge density distributions. An
approach somewhat similar to this has been taken for the
analysis of a Chinook helicopter (Knepp, et al. 1970). The
problem as stated, while neglecting local effects due to
apertures, etc., and thus simplifying the original problem

a considerable degree, is still extremely difficult in

terms of its numerical complexity. Straightforward application
of conventional integral equation techniques to this particular
problem and extending to the upper frequency of the EMP pulse,
100 MHz or so, could require an indeterminate amount of
success. It would furthermore be necessary in any event to
consider the perturbing localized effects of apertures, imperfect
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conductivity, etc. The impracticability of analyzing an
aircraft such as a B1 from this viewpoint for the entire EMP
spectrum is fairly obvious. For this reason an additional
degree of approximation such as the one that follows, is
mandatory.

Composite Simple Shapes

Putting aside the question of the wavelength-size ratio for the
aircraft but considering for the moment only the complexity
involved in defining the geometrical model, it is at once
apparent that a great degree of simplification could be
obtained were the aircraft modeled not as a smooth, accurate
version of the real structure but instead represented by a
series of simple geometrical shapes. The most obvious model
might consist of constant diameter circular or perhaps
elliptical, cylinders in the case of the wings, or tapered
cylinders to form cones in the aircraft forward area. An
approach basically like this has been used to apply the
geometrical theory of diffraction to the analysis of aircraft
radiation patterns with a considerable degree of success. The
computational problem at this point is however still of
impressive complexity since the number of the unknowns or the
order of the matrix which results from the integral equation
reduction will still increase as the surface area of the
aircraft in square wavelengths. Thus while an appreciable
degree of simplification will have been obtained from using
this model from the geometrical viewpoint of structure
description, the actual numerical solution may not have been
reduced in magnitude to any appreciable degree. This naturally
leads us to a further degree of approximation.

The Thin Wire Approximation

The least complex model of an aircraft structure is a "stick
mode1" wherein the aircraft is replaced by interconnected
circular cylinders. In this model, each cylinder is used to
represent portions of the aircraft such as the fuselage, wings,
vertical stabilizer, etc. Such a model necessarily loses a
great deal of geometrical detail and as a result is most

useful for assessing gross effects and not reliable for detailed
studies. For instance, a stick model of the B-1 would be quite
useful for determining the bulk current on the fuselage at a given
cross-sectional plane but would not be useful for determining
surface current density at the wing root. Nonetheless, the
information available from stick model studies provides a
starting point for more detailed analyses.

The thin wire approximation basically involves three assumptions:
a) azimuthal currents may be neglected, b) azimuthal

variations of the longitudinal current flow may be negilected,
and c) the rigorous kernel may be replaced by the so-called thin
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wire kernel to permit the surface integration to be reduced

to a line integration along the axis of the wire. As a fourth
assumption we might mention that the current flow at the end
of the wire is usually taken to be zero regardless of the
wire diameter. In order that the thin wire approximation be
acceptably accurate it is necessary for two conditions to be
met: first, and most obvious, is the fact that the wire
diameter must be small relative to the shortest wavelength
involved. Generally speaking the maximum wire diameter that
can be considered within the context of the thin wire approxi-
mation is on the order of 0.2 wavelengths. A second

condition concerns the length (L) - to-diameter (D) aspect
ratio of the wire. Unless some special treatment is employed
it is usually necessary that the L/D ratio of the cylindrical
structure or wire exceed 10 or 20 for the problem to be suited
to a thin wire treatment. This basically is due to the effect
of the end cap on the thin wire fields. For wires with large
L/D ratios, the end cap has a negligible effect on the

overall solution. However, when L/D becomes small the fields
produced by current and charge on the end cap may be of
significant influence and therefore require attention if a
va]i? numerical solution is to be obtained (Taylor and Crow,
1971).

It may be appreciated that the thin wire approximation incorpo-
rates a great deal of idealization in terms of the computer
model which has replaced the actual problem of interest.
However, the thin wire approximation has at the same time
enjoyed a considerable degree of success in application to
many practicable problems including not only those which are
obviously suited to this approach (for example wire antennas
and scatterers), but for the analysis of extended surface
objects in frequency ranges where their maximum transverse
dimension is small relative to the wavelength. Furthermore,

"the thin wire approximation has been employed to develop

numerical models of surface structures whose dimensions are

not suited to a direct thin wire model by the development

of numerical wire meshes or grid models of such structures.

The thin wire approximation thus has the potential for providing
a numerical approach which is considerably broader in scope

than would be at first expected from the assumptions inherent

in its development.

The basic approach taken here for determining aircraft EMP surface
current and charge density distributions is to work backwards

in the- direction of an increasingly rigorous computer model

from the thin wire approximation discussed above. We see this

as involving essentially the following steps: a) identification
of the thin wire computational algorithm which may be used

with confidence in the low frequency EMP regime; b) determining
whether simple corrections, modifications, or extensions of the
basic thin wire formulation will permit it to be extended



significantly in frequency coverage. These extensions

might involve for example, the end cap correction already
mentioned, surface integrations in place of the thin wire
kernel, and the possibility of using thin wire model for the
still higher frequencies by employing the wire mesh

concept; and c) identification of likely approaches for the
frequency range where the basic stick model thin wire
approximation of the aircraft will no longer work. For
other than wire meshes this might involve a surface apqroach
based on either the electric or magnetic field integra
equations. In the still higher frequency regime where
surface integral equations may be inappropriate because of
computational inefficiencies or inaccuracies, entirely

di fferent approaches such as those based on physical or
geometrical optics may be necessary. As mentioned above,
our attention to-date has been focused primarily on step 1,
the thin wire model,and in particular the thin wire stick
model by which we mean a thin wire computation without wire
gridding.

A wide variety of computer programs and algorithms have been
developed for the analysis of wire structures. These programs
exhibit a diversity of formulations and numerical treatments
which differ not only in the integral equation types but also
in the current basis functions and boundary condition matching
employed for the integral equation solution. A survey of
current approaches and organizations responsible for their
development follows in the next section.

ITI. THEQORETICAL DEVELOPMENT

In order to facilitate ensuing discussions concerning integral equations
for thin wire structures, it is advantageous to pursue an abbreviated
derivation of the pertinent formulations. Questions concerning validity
of each specific equation, the existence or uniqueness of solutions,

and various features of the Timiting process which reduces the

integral representations to integral equations are necessarily

glossed over. Rather, the integral representations will herein be
derived and the reduction to integral equations will be performed
without considering some of these delicate questions. The resulting
integral equations which are among the most widely used, will be
specialized to thin wire structures by introducing several
approximations leading to the thin wire kernel.

A. Integral Representations

A popular starting point for the derivation of various integral
equations for the currents on perfectly conducting bodies is the
definition for the electric field in terms of potentials. This
expression, valid for a solenoidal magnetic field, (V-H = 0) is
given by (with exp (iwt) time convention, i = ¢21$
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E=-1@K-v¢ B .(1)

where A is the magnetic vector potential and ¢ the scalar
potential due to a volume current density J A gauge condition
for these potentials of the form

VeA = -jwed (2)

allows A to be written as the solution of

v

!r [ ) G(r,r') ,
Vg

G(r,r') = exp(:jEJFﬁF[D
[r-r'|

VZA + k2R = -J. (3)

that is,

Using equation (2) and Maxwell's equation for the divergence
of E,

V-E = p/e (5)

one arrives at the integral expression for the scalar potential

6= g | dr'o,(F) G(FF) (6)

where the charge density p(r) can be related to the current density
through the continuity relation



@vm -7 (7)

From the above equations, one can obtain some of the widely used

integral expressions for the electric field due to arbitrary

electric source distributions contained within a region of space

ng The first of these arises by using equations (1), (4), and
, Viz.,

E(r) = - 14 jdar- J,(r) 6(r,r")
v
S .

-V fdsr' o, (F') 6(F,7") (8)

Ys

Note that the continuity relation allows this representation to
be written solely in terms of the current density J(r). A second
form arises by using (1), (2), and (4), viz.,

E(r) = E-E}TE (Vv-+k?) ,[d%' IJ'V(F') G(r,r) 0 (9)

VS

For r # r' (reV_), the order of integration and vector differentiation
can be interchaﬁged. The subsequent use of the vector relation

VO[3, (7)) 6(F.7")1 = VI3, (F') -9 6(F.F")]

(3,(r')v)v G(r,r')
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leads to

E(F) = grim Jd%' (T, (F)-)v 6(F.F)

vS
(10)
+ k2 J,(r') 6(r,r'))
or, in dyadic notation,
) = g fdar- 3, (r')-[w + k2 T] 6(F,7) (1)
v
s

with T the unit dyadic and the term [VV + k?T]G often referred to
as a form of Green's dyadic.

For electric current sources constrained to a surface S which may be
considered to be the boundary of Vg, the integral representations are
simply modified in that volume densities are replaced by surface
densities and the integrals are carried out over the surface S. The
most widely used integral representations for the electric field due
to electric sources over a surface S are therefore

B = - 12 Jaze 3Fe(rr)
S

(12)
- V[dzr' v -I(F) G(F,F)
\ S ‘ :

drive
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E(F) = i (V94 K2) gdzr' I() 6(Fr) (13)

)

E(F) = gt jdzr' I(F) - [w + k21D 6(F,F) (14)
S

Integral Equations

The general boundary value problem of determining the current
distribution on a perfect electric conducting surface due to an
impressed excitation can be approached using an integral equation.
The boundary condition on the surface of the conduct1ng body

can be stated as

n(F) x E (=0 ;5 TFes (15)

A

with the n(r) the outwardly pointing normal to S and E¢(r) the total
electric field at the surface. Since the total electric faglg_is the
linear super-position of the impressed (incident) field E' "~ (r)

and the scattered field Es(r) the boundary condition requires that

n(F) x ES(F) = - n(F) xE(F) : Fes . (16)

The scattered field is due to distributions of electric current
and charge over S and as such can be represented by equations (12)
through (14). Note that the condition V-H = 0 required for the
validity of (12) through (14) is satisfied in the absence of
magnetic currents or charges. The procedure of taking the
observation point r to the surface S must be performed delicately
and the integrals in (12) through (14) should be interpreted

in a principal value sense. The integral or integrodifferential
equations, as the case might be, are therefore
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n x EMC(F) = n x (W [ d2r 3(7) G(F.7)

o

_ 1 v |d*r v e3(r') G(r,r')}
l'n'lwg

~

n x EINC

r) =

N x {1 (- + k2) j:izr' IF) G(FT))
S

-n x ET-:!I-E LZY" j(F')'{W + sz’} G(F,F‘)
S

with r € S and a suitable interpretation having been taken of the
1imiting procedure as r approaches S.

Thin Wire Integral Equations

For conducting bodies composed of thin wires, i.e., structures
comprised of interconnected conducting cylinders whose radii ay
are small in terms of wavelength (aj/A < 1), several
approximations regarding the behavior of current and charge
densities can be made. It can be assumed that

1. Azimuthal or circumrerential currents produce nedqliaible
effects when determinina the net axial current on the wires.

2. The induced electric sources on the surface can be Jocated on

the axis of the wires thus giving rise to a filamentary source
representation.

-11-
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3. The boundary condition on the electric field can be
enforced on the surface of the conductor.

Note that it is equally valid to allow the current to flow on the
tube representing the conductor surface and to enforce the boundary
condition on the axis (Taylor and Wilton, 1972)

Using s(r) to denote a unit vector tangent to the copductor and
parallel to its axis at the observation point r and s'(r) to denote
the axially aligned unit vector at the source point, the boundary
condition and current density become

S(MEM =0 ;5 res | (20)

IF) = s Hedo (21)

Because of the assumption of the locations of the source and
observation points, the distance variable |r-r'| in G(r,r') is
approximated by a distance R which can never be zero since it is
the distance from a point on the axis of the wire to a point on
the surface and as such is never less than the radius a. For
example, the distance R for a z aligned straight wire is

R = /(z-2")% + a% .

With s and s' denoting the axial coordinates at the observation
and source points and C(r) denotin? the range of integration over

the wires, equations (17) through (19) become

A~ _3 . A A -.ikR
s<E'NC(s) = l%% :/Pds' ses' I(s') & R

c(r)
(22)
-ikR
1 s [ ,al(s') et
T Iriwe 35~ ds s’ R

C(r)

C-12-
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A~ '.ikR
SENC(s) = - gi= (52 ve+k2s+) J/;s-s'x(s-) S (23)
C(r)

I
p—}

s-ENC(s) = - [ds' I(s') (=2 2 + k2s.s" }equ (24)
Inive i ) 39S 5-5_'_ R
C(r

with R = |[r(s) - r(s')| and s € C(r) in all cases.

The integral equations which have been developed differ only in
their specific forms and can be transformed one into the other with
relative ease. In particular, since the approximate forms in (22)
through (24) have bounded integrands, they can be shown to be
identical by simple mathematical manipulation such as interchanges
of differentiation and integration. This is not to say however that
the ease with which each one is solved is similar. In fact,
equation (23) is generally cast into a somewhat different form by
first solving the differential equation. The result, .referred to as
the magnetic vector potential integral equation, can be written for
thin wire conductors of arbitrary configuration as (Mei, 1965)

‘/rds' I(s') {G(s,s') s-s + %’ 4/;59(5'5) [Qﬁégiill (est) + 85 355|

c(r) C(r)

+ G(E,S') a_(g_.il] e’ikls“gl} - Ae‘iks + Be'ikS + 1 j'dsl s E—inc(s,)
" % (r)
C(r

: | (25)
o~ Tk[s-s'|

where 6(&-s) = 1 for &> s and zero elsewhere.

Hallen's integral eqya;ion for straight wires follows from (25) with
the introduction of s=s', i.e.,

-13-
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[ds' I(s') G(ss') = AeTTKS 4 pelks +-2L fg s-EINC(sr) e Tklss I
c(v)

R (26)

s € C(r)

In the following discussions, equation (22) will be referred to as the
Potential 1ntegrod1fferent1a1 equation, equation (24) will be referred
to as Pocklington's integral equation, while

equation (25) will be referred to as the magnetic vector potential
integral equation.

Numerical Solution Methods

The basic method used in attempts to solve the aforementioned integral
equations is the "method of moments". Only a brief discussion of this
method is presented at this point since it is assumed that the reader
already has a degree of familiarity. For those who do not, Prof.
Harrington's book "Field Computation by Moment Methods", Macmillan
Company, New York (1968), serves as an excellent introduction.

Denoting any linear operator equation as
Lf = g¢g (27)

with L a linear operator (e.g., integral, differential, integro-
differential), f an unknown response, and g a known forcing or
excitation function. The method of moments, in effect, projects the
space of g onto another space and enforces the equality between the
projections. Concisely then, taking the inner product of (27) with
a suitable set of independent weight functions {wy} which define the
projection space, one obtains an equation for the equa11ty of
projections,

WosLf> = W, 9> m=T1(1)M . (28)

It may be necessary for an arbitrary f to expand that function in a set
of basis functions {f }, i.e.,

N
f=§af (29)
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so that (28) becomes

N
) a, <WoLf> = <wo,g> m= 1(1)M . (30)

n=1

Equation (30) can be written in matrix notation as

[WI[A] = [6] - (31)
where wmn = <wm,Lfn>
An =a
Gm = <W,9> |

so that the solution is simply
[A] = W] '[6] (32)

The numerical solution methods reported upon here will all be

based upon a formulation leading to a matrix equation of the form of
(31). The differences will be the specific nature of L, and the
choices of {fn} and {wm}.

The weight functions which are most widely used fall into one of two
classes. The first class leads to a collocation solution by choosing

W = §(x - ih) m=1(1)M (33)

that is, the weight function leads to a sampling of the operator
equation at a discrete set of points {xy}. The other class of
weight functions lead to a Galerkin type formulation, i.e., with

Wy = Fm= 1(1)M (34)

-15-



one converts (30) into

N
) a, <fLf > =<f 9> m=1(1)M (35)
n=1

In the following discussions, each of these classes wi]]lappear in
the numerical solution techniques.

The basis functions used in the description of the unknown are quite
“important in determining the ultimate efficiency of a numerical
technique. For the purposes of this report, attention will be
focused only on the subsectional basis function expansions, i.e.,
the use of specific functions f over subintervals of the domain of
the operator L. Complete domain representations are excluded since
they may be impractical for complicated structures (Miller and
Deadrick, 19733. For instance, if the operation range of L is divided
into m portions A, i = 1(1)M, then one can consider f to be
approximated over each Aj by one element of the set {fy}, namely f;
or by some finite combination over Aj. More detailed explanations
concerning the moment method and its ramifications are found in
Harrington (1968), Mittra (1973), and Fenlon (1969).

A modified version of Fenlon's (1969) tabulation of typical pairs of
functions is given in Table 1. .

Method n"" term of A Weight Function
1. Galerkin a f (r) | f.(r)
2. General Collocation a f (r) , | 6(r-rm)
3. Delta Point Matching a, G(Fth) : G(FLFE)
P
4. Subsectional Collocation U(?h) ) anp‘b(F) G(Fth)
p=1
Table I.

Representative Pairs of Functions in the
Method of Moments

-16-
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IV. SURVEY OF APPLICABLE COMPUTER PROGRAMS

In this section, the basic numerical modeling schemes used in
various computer programs will be briefly discussed. The program
will be classified as to which equation is used in the formulation
and comments relating to specific features will be included.

Each computer program will be identified as to its originator.

The computer program 1ist below is by no means exhaustive. It
contains programs generated at organizations where there is
continuing developmental work in the extension and applicability
of the programs. The list of the users of computer methods in the
analysis of electromagnetic interactions with wire structures
would be very large and quite redundant since successful algorithms
find wide usage. The culling of the 1ist of a nucleus leads to
most useful overview. Organizations where work is currently known
to be in progress on such computer programs (with the names of
specific individuals who have aided in this effort) include

AFWL, (M. Harrison)

Arens Electromagnetics, Inc. (V. Arens)

Boeing Aircraft Corporation (W. Curtis)

Dikewood Corporation (F. Tesche)

MB Associates (G. J. Burke)

Mission Research Corporation

Mississippi State University (C. D. Taylor)

North American Rockwell Corporation (J. Yang)
Ohio State University ElectroScience Laboratory (J. Richmond)
Sandia Corporation

Syracuse University (R. Harrington, B. Strait)
TRW, Inc. (W. Imbriale)

Technology for Communications International (TCI)
University of California, Berkeley (K. K. Mei)
University of Mississippi (C. Butler)

G WNhN—0WoONOTOUTEWN —
e e e e N e N e e e N S e
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These organizations have been contacted with regard to their present
state of development, numerical results for certain problems for use
in comparisons, and the possibility of obtaining a copy of their
program for use at LLL in detailed comparisons.

A. The Potential Integrodifferential Equation

The potential integrodifferential equation has been used in
computer programs developed at Syracuse University (Chao and
Strait, 1970?. This formulation is also being used at
present by Boeing (1973). Both codes model curved wires by a
continuous collection of straight wire sections, i.e., a
piecewise linear approximation to arcs of a curve.

1) Galerkin's Method, Triangle Bases, Triangle Weights (Syracuse U.)

The basis functions in the most widely used program from
Syracuse University are triangular with overlapping portions

thereby giving rise to a piecewise linear approximation of
the current distribution (Chao and Strait, 1970). Galerkin's

=17~
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method is used in the solution procedure with the weight
functions (wg,) axially directed triangles.

Upon applying the method of moments procedure outlined
above, there is found

- 1
J[-ds §-E'"C(s) wo(s) = - g ,/rds J[.ds' [k%-s" I(s"')w_(s)

C(r) c(r)  C(r)
(36)

oW (S) ' -ikR
m algs } e
T ) ] R

S

The triangular expansion function is shown in Figure la where the
first subscript on the P refers to the wire number and the

second to the segment number. For purposes of integration, the
triangle is approximated by the pulse functions shown with Q's
referring to the centers of these pulses. The required derivative
of the current is evaluated at the centers of each of the four
pulses representing the triangle thereby avoiding points of
indeterminancy of the derivative. The testing (weight) functiori
for the Galerkin procedure is also a triangular function.

An intersection of M wires is handled by overlapping M-1
half-triangles of the M connected wires with one of the other
wires. A three wire junction and its model is shown in Figure
2. The overlapping portions are one-half triangle width in
length and actually occupy the same region of space. Details
of this method are discussed in Logan (1973) and in Appendix A.

Collocation, Pulse Bases, Delta Weights (Boeing)

The basis function for the current in the Boeing computer
program are pulses, i.e.,

N
I=J IF (37)

where f, is an axially directed pulse function of unit
amplitude on the nth segment and zero elsewhere. The

derivative of current as required by equation (22) is determined
by a finite difference scheme applied to the pulses giving rise
to the expression

N
v-T= ] Ig (38)
n=1
-]3-
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FIGURE 1.
EXPANSION FUNCTIONS (SYRACUSE UNIVERSITY)
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ACTUAL CONFIGURATION

MODEL

FIGURE 2

Junction Treatment (Syracuse University)
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An example is shown in Figure 3. The required derivative of the
scalar potential is performed numerically by a finite difference

approximation. This method for approximatin? the integral equation

is basically that reported on in Harrington (1968).

Junctions in the Boeing program are treated using a charge redis-
tribution technique. For example, if M wires of differing radii

intersect at a point, one determines V-I by first noting that
the continuity relation, when integrated over the region whose
outer Timits are defined by the sample points along each arm
nearest the intersection yields

1.“":'totaT =

n =X
—
—

j

with the I inwardly directed.

Furthermore, the average surface charge density in the vicinity
of the intersection is given by

~
—

where A%; and aj are the length of the ith intersecting segment
and its radius, respectively. The derivative of the current on
the jth wire is then

with the derivative taken toward the junction. For a further
discussion of inherent errors in this method, see Appendix A.

21
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Pocklington's Integral Equation

Computer programs using Pocklington's integral equation for the
current distributions on wire structures have been developed by,
among others, MB Associates, TCI, and Ohio State University. All
programs approximate a curved wire by a collection of straight
wire sections.

1) Collocation, Sinusoidal Interpolation Basis, Delta Weights,
(MB Associates, TCI, and Arens Applied Electromagnetics (AE))

The above programs each make use of sinusoidal interpolation
basis functions, i.e.,

I(s) = A; + B; cos k(s-si) + C; sin k(s—si)

over the interval S;i 5 <s<sit5 The constants Aj, B;, and
- C4 are determined by ma%cﬁ1ng thé cugrents at the center of the
1th segment as well as at the (i-1)th and (i+1)th in the MBA
program and by matching current at the center of the segment as
well as current and slope at the ends in the TCI and AE programs.
In each of these programs an N segment structure gives rise to
set of N unknown constants from which the current distribution
can be constructed. The weight functions used in each program
are a set of Dirac delta functions thereby leading to an
enforcement of the integral equation at a specific set of points
on the structure. The number of sample points and number of
segments are chosen equal. The functional form of the
equation is

~ '1kR
Finc - 1 f | 1y(. 9 0 2200 e
B gas = - gae {980 1N Gg gem + Kises') S s=s

The integrations required to fill the matrix [Z] in the matrix
representation can be very time consuming. However for a segment
aligned along the z axis in a cylindrical coordinate system, the
radial component of electric field can be evaluated analytically
for the constant, sine and cosine variations while the z

component of electric field can be evaluated analytically for the
sine and cosine variation. Hence only one of the six integrals
need by evaluated numerically - a distinct advantage in minimizing
computer time.
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The integration which cannot be performed analytically in

the MBA program is done by using an adaptive scheme, namely,
Romberg Variable Interval Width Integration (Miller, 1970).

In the TCI and AE programs, this same integration is performed by
either using a series expansion containing a zeroeth order Hankel
function, trigonometric terms and sine and cosine integrals

(when the radial distance from the source segment is much less
than the total distance) or by Simpson's rule integration (when
the radial distance is not much less than the total distance).

Multiple-wire junctions are treated in the MBA program by
extrapolating the current on a segment at the junction to the
average value of the currents at the centers of the other
segments at the junction. This is repeated for each segment
and in an approximate sense represents the satisfaction of
Kirchoff's condition at the junction. (See Appendix A).

In the TCI program, the multiple wire junction is treated

by assuming the wires at the junction are small-angle cones
and that a spherical wave representation which includes only
the TEM mode and the 1st order spherfcal TM wave is
sufficient (Andreasen, 1968). This representation is used in
determining the junction current for each wire thereby
allowing the sinusoidal interpolation scheme to be used near
the junction while not interpolatina across it (See App. A)

This technique is presently being used in the AE program.

Galerkin's Method, Piecewise Sinusoidal Bases, Piecewise
STnusoidal Weights (Ohio State University (0SU))

The OSU program for thin wire structures is based on the
reaction matching concept due to Richmond (1969) which he has,
for piecewise sinusoidal basis and weight functions, referred
to as the sinusoidal reaction technique. This technique can be

shown to be equivalent to Galerkin's method (Thiele, 1970). The
functional of interest is :

— =1 nc>

<p+E = - <IE>

where < > is the Tine integral over the axis, p is the test element,
EINC the exciting field, T the current on the wire, and E the field

due to the test element p. The actual form of the equation solved
is -

<Wm-finc> = "W}TJE <I(S')’S\'j"ds Wm-T"G> (43)
L
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where we have set p = wy, i.e., the set of test functions is
equal to the set of weight functions. In the OSU program the
weight functions and the basis functions for the expansion of
the current are both overlapping sinusoids and give rise to a
piecewise sinusoidal representation of the current. It should
be noted that a simple interchange of order of integration in
the right hand side of the above equation yields the Galerkin's
form of the moment of Pocklington's integral equation.

By virtue of the use of sinusoidal testing functions, the
integral

g-= {ds Wm(s)-’i"“e (44)

can be performed analytically. In the OSU program the integral

<I(s');'-g(s')> (45)

is evaluated by numerical integration when appropriate, or from
closed-form expressions in terms of exponential integrands
(Richmond, 1973).

Junctions of M dintersecting wires are handled by overlapping
M - 1V dipoles supporting the sinusoidal basis functions in
the immediate vicinity of the junction. The technique is

implicitly identical to that used in the SYR program. (See Appendix Aj.

Hallen's Integral Equation

Moment method solutions to Hallen's inteqral equation have been
applied to straight wire antennas and arrays of these elements

(Mei, 1965), to straight wire structures with simple junctions
(crossed dipoles) (Taylor and Crow, 1971), and to the conical spiral
antenna (Yeh and Mei, 1967). This particuiar intearal equation has
not been used extensfvely for arbitrary structures due to the
complexity of the intearand (see equation (25)). At present, it

does not appear that computer programs using this equation are avafl-
able for the electromagnetic analysis of arbitrary wire confiaurations.

The University of California program developea by K. K. Mei and
students uses collocation with sinusoidal interpolation. The
program has been applied to straight wires, arrays, loops, and
the conical spiral. There is no known junction treatment
capability.

The University of Mississippi and Mississippi State University have
computer programs based on Hallen's Integral equation. The programs
are based on collocation and are still in a developmental stage. A
technique involving the maintenance of scalar potential continuity
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VI.

allows multiple-wire junctions to be treated (Crow and Shumpert,
1972, Logan, 1973).

QVERVIEW

Table II is a tabulation of the known operational, wire configuration
computer programs which are in use. Also included in the list is the
Lawrence Livermore Laboratory (LLL) program which is a modified version
of the MBA program that includes several options to the user. The
Hallen formulation programs are indicated for information only since
they are not as yet generalized for arbitrary configuration.

ERROR ANALYSIS

Two questions of paramount importance face the user of a computer modeling
program in connection with the accuracy of the results which it produces:
1) to what degree is the computed result numerically convergent relative
to an "exact" numerical reference; and 2) how closely in agreement are

the numerical reference and the actual physical result of interest.

The implications of these two gquestions are obvious. In any numerical
application of the computer model, we must know that not only has our
calculation employed enough samples to meet some acceptable error
criterion in the numerical sense but that the computed result is also
meaningful in a physical sense. The latter does not necessarily follow
from the former.

An "exact" numerical solution, if possible to obtain, would mean only that
an approximate numerical representation for the problem of interest has been
obtained in the Timit of vanishing numerical error. But the approximations
inherent in the formulation which precedes the development of a

numerical algorithm 1imit the ultimate correlation which can be expected
between the actual physical results and the exact numerical solution.

We can characterize the latter as being due to a physical modeling

error (Ep) in contrast with the numerical modeling error (EN) of the
calculation itself. Note that a necessary, but not sufficient, condition
for minimizing Ep is the minimization of Ey. We consider each of these
errors in more detail below.

A.  The Numerical Modeling Error Ey

There are a variety of ways to quantitatively define Ey for a given
problem depending upon the particular physical observaE]e of greatest
interest. Almost invariably, whatever the specific method of definition,
the standard of comparison against which the result in question is to

be measured will be a solution obtained using the maximum feasible

number of sample points or unknowns (M) in the calcuiation. Let us
denote this reference answer by AM with Ay similarly denoting the

answer obtained using N unknowns, where M > N.

For a scalar measures of the solution accuracy such as provided by

the backscatter field amplitude, or the input admittance of an antenna,
a simple error definition is then

wlf-
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ES = |——K§—__4 . (46)

This particular method for assessing solution accuracy has been

employed for radar cross-section computations (Miller, Burke, and Se]den,
1971). For antenna applications, the more wsual approach has been

simply to plot Ay versus N to graphically demonstrate the rate of
numerical convergence (Pearson and Butler, 1973; Strait, Sakar and Kuo, .
1973; Thiele, 1973). In either case, the prob1em of error calculation
is relatively straight-forward because of the scalar solution measure.

When on the other hand, a vector or scalar function is to be
employed for the accuracy check, for example, the current or charge
distributions on the structure, the boundary conditions on the
total field, or the entire b1static far-field, then the above
definition must be generalized.

Since power flow and energy density, relevant physical quantities,

are products of two observables, a mean-square error deg1n1t10n appears
both physically and mathemat1ca11y meaningful. We thus define a
general vector error of the form

_x Y12
Ref(AM-A)A BN)Vds£ .
fy = . (47)
ReerMA 'EM Vds }

where A and V designate appropriate vector (or scalar) operations and
ds is a surface or line integral. If A and B are the electric and
magnetic fields, respectively, then A and v are vector cross and dot
products. Some particular, useful forms £y might take are

1. The far-field Poynting vector for the error field

Re f(f - E,) x (R -ﬁ)*-;dﬂl/z

EVF1 7 47 M N " N ) (48)

Re _[éh X FM* or do
4

*Note that a correlation function approach might also be used, 1i.e.,
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The far-field Poynting vector error

Re }}EM X Hy* - Ey X HN*)-F do r/z
4

EyF2 ©

Re JQEM X HM*)-r de [
4r

Current distribution

o TVT LT /2
[(IM - T+ (T, - T)* e
€ = L
VI jf‘
. *
TyeIy* de
. L ’

Surface tangential electric field

I I[(Finc + -E—N).E(Einc + EN)*‘EJ dl}]/z
L
®VE T

l J{(Eﬁnc.g)(tinc.z)* &
L

where 2 is a unit tangent vector and we use E'"C pather
than Ey since the exciting field is known exactly.

Normal Poynting vector at surface

Re[(f""c + ) (%) ae )72
Eys —

!
e [E0 T e )
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Of the various ey given above, version 4 (eyg) is perhaps the most
convincing because it directly demonstrates how well the boundary
conditions on the tangential field are satisfied. It suffers
however from the severe disadvantage that many near field calcu-
lations would be required for its evaluation. This can make its
routine application very expensive in termms of computer time,
although it should be noted that no numerical reference as such

is required. The same disadvantage holds for version 5(eys).

In terms of a near field check on the solution convergence, there
remains then only version 3, that for the current distribution.
This form is fairly straightforward to evaluate, and does provide
a quantitive estimate for the solution accuracy of a near field
observable (the current). For EMP applications, this should be
more meaningful than would a test of the far-field convergence

as given by version 1, since it is generally accepted that the
far-field solution is more accurate than the current from which

it is obtained. It would be interesting to test this by

comparing eyf and eyr as a function of N. It should be noted
that an error criterion based on charge would also be very useful.
In this report, attention will however be concentrated on currents.

If ey; is then to be selected as the error measure, rather than
EYE» Some consideration regarding its interpretaion is needed
since ey itself cannot directly demonstrate the solution accuracy
insofar as matching the boundary conditions are concerned. Any
implication concerning the latter must necessarily be inferred.
Observe however, that the field values which appear in eyp are

of course computed from integrals of the currents. It is
reasonable to expect that, as the current solution converges,
integrals of the current will also converge, though not
necessarily to the same number of places. It is this expectation
upon which our use of gy; as an indicator of the overall solution
accuracy is based. Evaluation of ¢, for comparison with ey as a
function of N for a test case or two would be useful.

Let us turn now to the numerical calculation of eyr. As written in
(50), this would require a piecewise integration o% current products
(in the numerator) whose bases are referred to different sets of
reference points (segment centers) along the structure. For
convenience, and with Tittle loss of generality, we rewrite (50) as

M
Io(1y(es) - L) (Ty(e0) - 1,.0%] 172

Ji=l
ey =y

where Iy(%2i) denotes the value of Ty at the center of segment i (of
coordinate ¢;) and Iyj is by definition the corresponding sample
vaiue of Iy on segment i. Note that in general Im{gi) will require
interpolation between two sampled values of Ip.
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Besides defining the numerical convergence error as above, it is
also useful to define some measure of the solution which will serve
in comparing answers obtained from two different methods. Following
the ideas already discussed, it appears natural to use for this

purpose
1 T T *

I, =
.

~

Upon approximating the integral by a segment oriented sum we obtain

- : N 1/2
In =(W,Z]IN1'IN1' *) (55)
1:

Values ofIN as a function of N obtained from different programs
should be adequate to show the relative agreement which exists
between the various numerical and formulational procedures. We
could of course also compare these different methods more directly
as in equation (53}, but that doesn't appear to offer any real
advantage over using IN.

The Physical Modeling Error, EP

Little purpose is served by any computation no matter how numerically
convergent, and thus accurate appearing, it might be if the computer
model does not truly represent the physical problem of interest.

We must ultimately be concerned with validating computer results
through their degree of correlation with experimental measurement.
While alternative analytic and numerical methods may prove useful to a
limited extent for checking a given calculation, we can not have

the confidence we would like in the numerical approach until

measured results actually demonstrate its validity. Of source, the
measurement itself is subject to an experimental uncertainty
(measurement error Ey), so its use as a standard of comparison

is not without its own difficulty.

This brings up a number of interesting questions, of which two are:

1) how can we rectify discrepancies between experiment and calculation
when they are significant; and 2) in view of question (1) what
numerical solution accuracy should we seek in the calculation? A
reasonable answer to (2) would appear to be that as a general rule the
computer model should be such as to make Ey <<Ep, for then at Jeast
any experimental-numerical difference whicm occurs will not be due to
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a removable calculation error. Thus, while check calculation errors
as small as the 10-4 value shown in the next section may at first
look numerically excessive, such values are important to establish
the trend of EpN well below the actual EN value which might

normally be sought.

In order to answer question (1), we must first observe that no better
agreement could be expected between measured and computed data than

+ Ep ~ Ep with no experimental error whatsoever. But any
measurement, no matter how careful]; performed, will of course result
in Eqy > 0. A discrepancy~ v E§ + E§ must then be anticipated. Since
a possible purpose of an expeFimen is to validate the computation, and
to thus estimate Ep, clearly information concerning Ey is pre-requisite
to accomplishing tﬁis.

Experiments designed to determine the overall value of Eym and its
separate sources must thus be considered. It may be possible to do
this by taking into account the individual contributions of the various
error sources. Somewhat more convincing would be measurements of

the observable in question (e.g., surface current) for test cases where
Ep can, in principle at least, be made zero. One example would be

tﬁe plane wave response of a perfectly conducting sphere, whose
solution is known as exactly as any real EM problem.

The sphere is routinely used tc calibrate radar scattering samples.
Both pulse and/or CW measurements of the surface currents over the
parameter range of interest could be used to experimentally evaluate

EM.

Provided that Ey can be reduced to acceptably small values, the
experimental arrangement can then be used to measure the actual
geometries of concern. Suppose that the observable in question has
the measured and calculated distributions (in frequency, time, space,

etc.) denoted by F,, and F¢, respectively. Let us propose that their
discrepancy D be defined in the same way as used for EN above, by,

(o 1/2
f[FM(S) - Fols - 2)1-[Fy(s) - Fels - 2)]*ds
D(s) = ( R (56)
Jr?M-?M* ds
R

with R the range of the variable s. The variable & permits the
measured and computed data to be shifted in s for the best match
to be obtained, and thus takes into account the frequency, angle
and time shifts which often occur between experiment and theory.
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Many other forms might also be considered for quantitatively
comparing Fy and Fc. Rather than the integral form above, we
might employ a differential form

| Re [Fy(s) - Fols - )1+[Fyls) - Fels - 1) 5

which weights the local difference by the measured mean squared
value. If the same approach is used to quantitatively estimate
Ey_for the rigorous (e.g., sphere) calibration case, then Dpj, - Ey
will provide a measure of Ep.

The above discussion is by no means complete in terms of assessing
the quality of computed and/or measured data. We have provided an
expression to be used below for testing both the numerical error of
a calculation and comparing answers obtained from different methods.
An expression for comparing computed and measured data has also been
given, but no calculations have been performed with it. However the
latter is accomplished, it is vitally important to have an adequate
quantitative understanding of measurement errors if such a
comparison is to ultimately prove meaningful.

VII.NUMERICAL RESULTS

Numerical results will be presented in this section in order that the various
techniques described earlier can be compared. This comparison will lead to
an objective judgment regarding the "best" program for use {n assessing

the vulnerability of aircraft structures to EMP,

A. Test Program

1) Test Philosophy

Amgng the techniques for which computer programs have either been
written by LLL or obtained from the originator and are presently
operational are:

Collocation, sinusoidal interpolation, Pocklington (BRACT)
Galerkin, piecewise Tinear, Rtential (SYR)

Galerkin, piecewise sinusoidal, Pocklington (0SU)
Collocation, pulses, Potential (Boeing) ++

Collocation, piecewise sinusoidal, Hallen (AFWL)

Do oo

tNote this form might be used to compare two different numerical results as well.
++This program is an LLL reconstitution of the program in use at Boeing.
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In addition, LLL has generated modifications of BRACT to
allow the testing of various schemes for program improvement.
These include:

f. Collocation, sinusoidal interpolation with edge matching,
Pocklington (MK3C).

g. Collocation, piecewise sinusoid, Pocklington.

h. Collocation, sine and constant, Pocklington.

i. Collocation, pulses, Pocklington.

In order to perform the evaluation of the different computer codes,
three test structures were chosen for which the computer programs
were to evaluate the current distribution for time harmonic
excitation. These structures, composed of straight wire portions
and shown in Figure 4, are capable of testing various features

and codes.. The straight wire, the simplest structure for EM
interaction problems, tests the fundamental capabilities of the
computer programs. A failure to adequately perform the calculations
required for a simple straight wire can only lead to a dismissal of
a given program since this function is fundamental to computations
for more complicated structures. The next structure in level of
difficulty is the L-wire. This structure tests the computer program's
ability to model interactions between orthogonal wires and its
ability to represent current distributions of possibly different
character on the distinct portions of the structure. Finally, a
test is performed to evaluate each program's ability to represent
the interaction involved when the structure includes an intersection
of more than two wires. A crossed wire structure is used for this
purpose. The test structures have been chosen with the increasing
level of difficulty described above in order to allow the

isolation and identification of shortcomings and strong noints of
each program. It is possible and perhaps likely that a

combination of portions of the tested programs will be assembled

in order to yield a "best" code.

Test Qutline

The test structures of Figure 4 have fixed dimensions given in
terms of meters. The excitation frequency is constant at 10 MHz
with the direction of incidence and polarization shown. Different

tests are conducted by keeping the wire diameter and excitation
constant and applying multipliers (X) to wire lengths. For

example, for the straight wire of radius 1.905 x 10-4m at broadside
incidence, parallel polarization and 10 MHz, computer generated
solutions would be obtained for L - 1.7526m (1X), 3.5052m (2X),
8.763m (5X), 15.6972m (10X), etc., with the dimension muitipiier

in parenthesis. For each case, i.e., a given class of structure
(straight, L, or crossed) and multiplier, each computer program is
used to generate solutions for the induced current distribution with
the number of current samples a variable. These distributions are
stored for later processing to obtain the scalar parameters used in
establishing convergence criteria.
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Available Evaluation Data

During a typical test run source data, i.e., the data that is the
direct numerical result of the computation (the current distribution),
is generated. One finds that the amount of source data generated

is overwhelming and even when presented in a visual format makes
program evaluation difficult. The following two subsections detail
the difficulties involved and will describe the use of summary data.

1) Typical Source Data

As an example of the source data available, a set of current
magnitude curves for a single structure (straight wire at 10X)
generated by BRACT are presented in Figures 5 through 12. The
curves for a given number of test segments NT are generated by
using the computed values of |I| at each sample point and
subsequently interpolating between these points using the
sinusoidal interpolation scheme. Since the interpolation scheme

is segment oriented (valid over only a given segment) and since

the scheme as used in BRACT does not enforce current continuity between
different segments, discontinuities at segment to segment

junctions are possible as seen clearly in Figure 5. The X's on the
curves represent the current magnitudes as obtained using 201
segments but with the current magnitude evaluated at the sample
points pertaining to a given Ny. Hence, regardless of Np, the
number of X's on a curve will always equal Ny and their locations
will always coincide with the sample points for that value of Ny.
The solution obtained with Ng = 201 is referred to as the

reference solution.

It should be kept in mind that the curves in Figure 5 represent
only one structure, one multiplier, and one program. The
proliferation of data can be easily appreciated. In addition to
this source data, other data regarding difference between the
computed current distribution for a given number of test segments
(NT) and the reference distribution are generated. For example,
the magnitude of current error with IR the reference current
distribution and I7 the test current distribution on a sample
point-by-sample point basis, i.e.,

e; = [Ipi = Iyl = T(1)N; (58)

for the same case as above, is shown in Figure 6. For this error
measure as well as for all those following, the value of the
reference solution current is interpolated using a piecewise

Tinear approximation (except BRACT) to provide a value at each

test point. The error involved in using a piecewise linear
approximation in the reference solution when a reference sample

point does not coincide with a test sample point is very small due

to the extreme denseness of sampling points in the reference solution.

-42-



Figure 7 is representative of the normalized square error
on a point-by-point basis, and is the ratio of the magnitude
of current error to the root mean square reference current, i.e.,

I Tgi = It

S : NR 1/2 T
I 11g: 2
R . J ,

j=1

€

zl—a

Without doubt, the reader can appreciate that the evaluation of
this volume of data can, when multiplied by the required number
of cases and programs, be a monumental task. Rather than proceed
in this manner, an auxiliary set of summary data is generated.

The method for generating the plotted data for BRACT has already
been described. For 0SU, the current magnitudes for the test
case are the current values at segment centers and are evaluated.
by using the computed current values at junctions and applying
the piecewise sinusoidal interpolation scheme of that program.
These values are consistent with the program interpolation scheme.
The test case curves are then generated by connecting the points
with straight Tines. Again, this latter operation has no bearing
on subsequent error analyses since only values directly obtained
i in the program are used. In the SYR program source data the curves
N— shown exhibit the actual behavior of the current magnitude as
generated by connecting the points with straight Tines. Again,
this latter operation has no bearing on subsequent error analyses
since only values directly obtained in the program are used. In the
SYR program source data the curves shown exhibit the actual
behavior of the current magnitude as generated and used internally
by the computer program since the interpolation scheme in that program
is piecewise 1inear. For the data due to programs using pulses,
the test case data is plotted using the pulses interpolation scheme.

2) Typical Summary Data

In order to alleviate the data proliferation, summary data is
generated for each structure. These data take the form of

RMS Current: Iou = (1—

N
[ . = ]_.
RMS Current Error:  epye (NT D RPPRE O (61)
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. Ri
“Ri=l . (62)
T
Ri

Normalized () =
RMS Error: S TRMS ‘

i=1

Examples of summary curves for the data exhibited in the
previous section are included in Figures 8 through 10,

From the RMS current plot one can assess the rapidity with which

a solution technique leads to a stable solution. One would

desire each curve to approach a constant as quickly as possible
thereby indicating that the solution has stabilized. A comparison
of several programs using the RMS current as a criterion would
allow a judgment to be made as to the efficiency of the programs
with respect to the number of segments needed to achieve stability
in the solution. It must be kept in mind that the different
programs being tested will not necessarily be converging to the
same RMS current value although the differences are expected to be
quite small. The "correct" value, to which all should converge if
they were exact, is not a known gquantity for the cases considered
here and absolute judgment concerning error cannot be made.

The RMS of current error plot in Figure 9 conveys information
regarding the difference between the reference and test solutions.
It is not used as widely as the normalized RMS current error
since it does not use a normalization. However, normalized

RMS error can be confidently used to evaluate programs insofar as
normalized errors are concerned and provides as well information
regarding rate of convergence to the reference value. Since both
the RMS error and normalized RMS error must approach zero as Ny
approaches Np, the curves in Figures 9 and 10 have inflection
points within the range plotted. The information relating to rate
of convergence and error level especially for values of Nt less
than the inflection point is nonetheless useful and important.

In fact, the RMS current and normalized RMS current error are the
two most important curves used in this evaluation. This is not
to say that the other data generated are not used. For example,
should it be noted that a particular program exhibits a Tow

rate of convergence or a high normalized error for a given
structure, the source data can be studied to provide reasons for
this poor performance. This procedure will arise in the forth-
coming evaluation and its usefulness will then be appreciated.
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3.

Program Evaluation

a)

Straight Wire Analysis

As mentioned previously, the ability of a program to accurately
compute the current distribution on a straight wire is funda-
mental. The first evaluation is therefore associated with the
straight wire. Judgments pertaining to convergence character-
istics will be made using summary data and reasons for any
deficiencies will be extracted from source data, if possible.
The analysis is begun using the plots of root mean square
current (IRMS) and the normalized root mean square error

( (e_)puc) versus the number of test segments (N.) for
diff§r§ﬁ§ multipliers as shown in Figures 1) thrgugh 18 .

The results for the 1X case (total wire length 6.58\) shown
in Figures 11 and 12 exhibit:

a) the similarity in convergence rates for BRACT (collocation,
sinusoidal interpolation, Pocklington), OSU (Galerkin,
piecewise sinsuoidal, Pocklington?, SYR (Galerkin, piecewise
linear, Potential).

b) the deficiency for collocation with pulse basis functions
in Pocklington's integral equation as seen in Ipyg and

(es)Rus -

c) the relatively slow ccnvergence of the Boeing program
(collocation, pulses, Potential)

d) the spread in the values of Ipyg for large values of N
as computed using BRACT, OSU, and SYR is about 4% to 5%.

The figures hiahlight the difficulties associated with pulse
basis function. Both the Boeing program and the Pulses

program suffer from slow convergence rates as might be expected
when one uses a staircase approximation to a smooth curve.

The advantage enjoyed by the Boeing program over the Pulse
program is attributed to the integral equation formulation

used in each program. It is expected that the pulse basis
functions, while relatively adequate when used in conjunction
with integrals having well behaved kernels (Potential, Hallen's),
do not suffice when used with a kernel having a theoretically
non-integrable singularity. For exam?1e, the Potential integral
equation has a kernel exhibiting a r-! singularity while the
Pocklington integral equation has a kernel exhibiting a r-3
singularity - a possible source of difficulty. On the basis

of these observations, the Pulse program using collocation

and Pocklington's integral equation is discarded at this

point in the program evaluations.
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For the 10X multiplier (total wire length 0.58)), the
observations made using Figures 13 and 14 are similar to

those for 1X. The spread in values of Ipys at large values of
Nt for all but the Boeing program is in tne 5% range. Limited
data are presented in Figure 13 for the LLL program called
GIANT which is similar to BRACT but used matching of current
amplitude and slope at segment ends (as in the TCI program).
It seems that GIANT converges faster than the other programs
but time limitations are precluding a detailed study of GIANT
at this time. The somewhat severe deficiency in the Boeing

- program insofar as the convergence rate is concerned is
clearly evident in Figure 14.

It is not until one encounters long straight wires that the

clear cut differences between BRACT, OSU, and SYR become

apparent. For the 100X multiplier in Figures 15 and 16 (total
wire length ~5.8)), it is noted that BRACT converges quite rapidly
to a stable solution while OSU and SYR converge at a slower

rate. A deficiency in the Boeing program again is noted.

Both Igpms and (eg)pmg support these assertions. The spread in
values o? Ipys for giACT, 0SU, and SYR for large values of

NT is only 6%. On the basis of the poor convergence
characteristics of the Boeing program it is excluded from

further detailed consideration even though its relative simplicity
made it a desirable program in view of anticipated changes
required for high frequency coverage. A portion of the Boeing
program, namely the wire junction treatment, should be retained
for possible use in other programs.

For the 200X multiplier (wire length about 11.6)) results shown
in Figures 17 and 18 the shortcoming of the SYR program becomes
apparent. The convergence rate is quite poor and investigations
to determine the reasons lead to the conclusion that the
piecewise linear approximation is incapable of approximating a
current distribution similar to a standing wave without a large
number of sample points. Figure 19a is a plot of current
distribution on a 200X straight wire computed using SYR with Nt =
201 and Np = 350 while by comparison, the similar OSU results

for NT = 500 and NgR = 400 is shown in Figure 19b. Clearly, the
sinusoidal representation is more efficient than a piecewise
Tinear representation for standing wave distributions. A

similar deficiency of the SYR program for 100X was also noted.
For these reasons, Galerkin's method with piecewise linear
interpolation and the Potential integral equation is eliminated from
further consideration for structures of arbitrary length though
this technique is still adequate for lengths no more than a few
wavelengths.
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b) L Wire Analysis

The summary data for the L wire structure lead to -
conclusions similar to those for the straight wire.
The data for Igms, (figures 20 to 22) for which the
Boeing results ﬂo not even fall within the same range,
indicate that

1) the Boeing program (collocation, pulses, Potential) is
" inadequate from a convergence viewpoint.

2)- the SYR program (Galerkin, piecewise linear, Potential)
suffers from a poor convergence rate for structures
large in terms of wavelength.

Based upon these observations, the Boeing and SYR programs
are: excluded from further consideration.

Once again, the summary data- illustrate the near similarity

" of the OSU and BRACT programs. However, the OSU program does
exhibit some advantages in convergence rate as evidenced by
the IgMs and (eg)pmMs vs Nt plots of Figures 20 and 25.

For the 1X case (total wirelength 0.366)), the OSU program
converges somewhat more rapidly and exhibits a lower
normalized root mean square error. For the 5X case (total
wirelength 12.8\), the differences are again small with

the 0SU program exhibiting the advantage. '

As. was mentioned previously, the plots of current magnitude
for the OSU . program were constructed by connecting the
current amplitudes at segment centers with straight lines.
This feature does not however enter into any of the summary
data computations since only data computed by the source -
program was used

Hence, in a plot of |I] vs. the computed values for the
- test case are located at po1nIs where the piecewise linear
curye exhibits slope discontinuities. On the other hand, the
.BRACT program plots were constructed using the computed data
"~ points and were interpolated.using the BRACT interpolation
~.formula. These source curves give a very accurate idea of
the actual current being used in the source program for
-~ evaluating interactions although it is reiterated that the
specific functional behavior does not enter into the
- summary data computations.

An investigation of the source data for the 1X and 5X cases
Teads to the discovery of a potential source of difficulty in the
- BRACT program. The scheme used for representing the current over
a given segment on the structure (sinusoidal interpolation) allows
for amplitude and derivative discontinuities in the current at
segment edges, i.e., at the point of connection of one segment to
another. Although this discontinuity is generally imperceptible,
cases do occur where the discontinuity is significant. As an
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- example, the 1X case current magnitude plots for NT = 12 and

24 are offered. Fig. 26 for NT = 12 shows a sizable discontinuity
in amplitude at the bend in the L wire and a smaller discontinuity
at the adjacent edge on the short arm of the L wire. A similar
phenomenon is observed for the NT = 24 case in Figure 27.
Obviously, the effects of the discontinuity can numerically
propagate through the interpolating scheme to locations away

from the point at which the discontinuity might be expected.
Although this type of behavior is very evident only at low
sampling densities, its effect on computations is probably felt
for all NT's. The OSU program also suffers from some difficulties
at the wire junction although not as severe as in BRACT. Figure
28 is a plot of the current magnitude for the 1X case, Nt = 12

for the OSU program with the piecewise sinusoidal interpolation
Scheme used to construct the entire curve as the program would
actually use it. In this particular case, only a derivative
discontinuity, which the scheme allows, is evident at and near

the bend. Also shown on this curve is the reference solution

for comparison. A somewhat more striking example of this type

of behavior is presented in Figure 29 for the 5X case. The
difficulties near the bend are evident. Even though such problems
can arise, the OSU program is superior to BRACT in this respect.

Cross-Wire Analysis

The cross wire analysis is meant to test a program's ability

to handle a multiple wire junction while the L wire analysis
merely tested the program's ability to model the interactions
associated with an orthogonal intersection of two wires. At
this point, the cross wire analysis is quite academic since the
advantages of the OSU program have already been realized.
Furthermore, the OSU program has, through its formulation, the
implicit enforcement of the Kirchoff current law at junctions,
while the BRACT program does not, in general, satisfy that law.
For a further discussion of this point, the reader is referred
to Appendix A.

Without making specific judgments regarding the capability of

a given program to adequately model a junction, one can nonetheless
form some opinions regarding the program's efficiency from the
summary data. Figures 30 through 35 indicate a sma]]l advantage

in favor of the OSU program. Since the source data for this case
is more difficult to interpret than for the other cases, it will
not be used here to support the summary data. Rather, it will
suffice to state that the effects of having an effective charge
accumulation at the junction in the BRACT program leads to a
deterioration in its ability to model electromagnetic interactions
for this type of structure.
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4)

Computer Time Requirements

The typical computation time required is an important quantity
in assessing the usefulness of a given program. To this end,
an attempt was made to determine the time requirements of each
program.

During the course of the numerical studies, average values of
the ccefficients A and B in the computer time expression

2

T(sec) = A N2 + B N3

where N is the total number of unknowns were determined. Using
this form, one can identify that portion of the time which is
characteristically associated with filling the coefficient matrix
containing N2 elements, and that portion associated with the matrix
equation solution. Although other operations are performed in the
program which might possess these behaviors, the ones above are
certainly dominant.

Average values for the coefficients for several of the programs
test evaluated using a CDC 7600 are given in the following table:

Program A B

0sU 3.5 x 107% 1.07 x 1070
SYR 2.6 x 1074 5.0 x 107
BOEING 3.0 x 107 5.36 x 10°°
BRACT 4.2 x 1074 3.4 x 1070

As is evident from the table, the B coefficients are quite different.
The reason for this is that some of the programs obtained a solution
through an inversion procedure (SYR, BOEING) while the others did
not obtain an inverse but merely solved the matrix equation. The

B coefficient for OSU is also small because the square root method
was used to solve the matrix equation for which the impedance matrix
was necessarily symmetric. Naturally, the Boeing and BRACT programs
could not use this technique because the impedance matrices in these
programs are generally not symmetric. The SYR program does not
explicitly make use of the matrix symmetry that arises in using
Galerkin's method. In fact, due to numerical inaccuracies involved
in calculating the entries, it is noted that the impedance matrix

is not quite symmetric.

Figure 36 is a plot of the computation time varying as the square
of the number of unknowns versus the number of unknowns. This time
is referred to as fill time. The BRACT program, which uses an
adaptive integration scheme guaranteeing a certain level of relative
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accuracy in the required integrations, is seen to be the slowest.
Not only does this program use a very accurate numerical
integration method, it must also evaluate six contributions

for each entry in the impedance matrix (E4 and E, for sine, cosine,
and constant portions of the segment current), a time consuming
operation even though five of the six terms are evaluated
analytically. On the other hand, the SYR program performs the
required integration by using the approximation scheme shown in
Figure 1, thereby allowing the indicated speed in the SYR
program. The OSU program makes use of the analytical

expressions for the fields due to the sinusoidal currents and
then integrates the weighted results using either a numerical
procedure or exponential integrals. This is also a time
consuming operation as seen in the large A value in spite of

the fact that only one half of the symmetric impedance matrix

is filled.

It is beyond the scope of this effort to delve deeply into the
fill schemes of the computer programs. Whether it is better to
perform extremely accurate integrations and pay the time penalty
or to perform cruder integrations for the sake of speed are
interesting questions although somewhat task related.

Since the number of unknowns in a given computation affects both
the solution accuracy and time requirement, it is useful to
consider the behavior of normalized root mean square error with
time. Figure 36b is a plot of normalized rms error versus time
for a straight wire with 10X multiplier. The curves indicate
the relative accuracy and efficiency with which each program

can solve a given problem and in this particular case leads to
"the conclusion that OSU has a definite advantage. However, this
conclusion cannot be drawn from similar plots for other cases
since individual peculiarities in the codes and the likelihood
that some programs are better suited to some problems and not
others may change the relative positions of the curves. However,
the overall consistency in the relative position of a particular
curve can and does lead to a useful judgment.
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VIII. Summary of Results and Recommendation

The results generated by the four computer proarams

1) Collocation, sinusoidal interpolation, Pockinaton (BRACT)

2) Collocation, pulses, Potential (Roeina)

3) Galerkin, piecewise linear, Potential (SYR)

4) Galerkin, piecewise sinusoidal, Pocklington (NSU)

have been carefully studied. Of prime usefulness have been summary
results relating a scalar oarameter obtained from a computed solution
to the number of unknowns. The most widely used summary results, viz.,
the RMS current and the normalized RMS error have been used to estimate
the overall quality of each computer program as well as to indicate
possible deficiencies. These data were thus used as the key element
with the indicated deficiencies subsequently studied in the source data,
i.e., the actual current distributions. In essence then, the summary
data relieved the evaluators of the burden of studyina each individual
piece of source data while at the same time allowina them the ontion

of considering that data when deemed necessary.

One of the first important observations made durina this study was
that interpolation functions involving sinusoids were superior. As

a result, later portions of the study were concentrated on oroarams
using sinusoidal functions even thouah these functions aenerally
increased the complexity of the proarams. Hence, even thouah pulse
and piecewise linear basis functions were simpler, their marked infe-
riority insofar as converaence rates were concerned led to their
dismissal.

After delving into the investigation it became clear to the evaluators
that as many questions were being uncovered as were beina answered.
For instance. the dismissal of the linear basis functions led to the
termination of the consideration of the SYR proaram (Galerkin, piece-
wise linear, Potential). But a scheme using Galerkin's method, the
Potential intearal equation, and piecewise sinusoidal interpolation
functions might be superior to the others tested.

Concerns of this type have plaaqued the investigators but due to time
limitations the study had to be concentrated on the specific nroarams
listed earlier, each proaram being treated as an entity unto itself
with no significant attempt at modification.

The question of program simplicity was also continually in the minds

of the evaluators. It was found that the simplest proaram (Roeingq)

could not however bhe considered to be of the quality of 0SI) or RRACT.

The next more complicated program (SYR) could also not match the per-
formance of OSU and BRACT with regard to converoence rates. Hence,

based on these observations these two programs were excluded from serious
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consideration at later staaes in the investiagation.

The 0OSU and BRACT programs exhibited a great deal of similarity

in treating straight wire structures. However, a deficiency aobeared
in BRACT when the wire had a sharp bend as in the L wire case. The
BRACT interpolation functions, which allow discontinuities in certain
cases for the L wire, The deficiency in the RRACT proaram bhecomes
even more pronounced when the currents near a multiple wire junction
is considered. Since Kirchoff's current law is not, in neneral,
satisfied at the junction, and since BRACT exhibited some difficulty
at wire bends, the proaram could lead to unacceptable errors near
junctions. On the other hand, the 0SU proaram had a better nerformance
record for these cases and possessed at worse a current slope discon-
tinuity in the L wire and cross wire cases. That program leads to an
inherent satisfaction of Kirchoff's current law by virtue of its
junction treatment.

As a result of the preceeding observations, the evaluators have
decided that among the proarams tested (without any modifications)
the 0OSU program was the most outstanding. However, certain qualifi-
cations ave appended to this recommendation. For instance, the
investigators fully anticipate the need for future modifications to
some of the fundamental modules in the 0OSU program. These might bhe
needed in order to allow the proaram to deal with thick wires or end
caps. As in the case of a lossy ground interaction where Sommerfield
integrals modify the kernel, the added complexities might enhance the
desirability of a collocation solution over a Galerkin's formulation.
The additional field evaluations and subsequent inteqration in the
latter case could be burdensome. Hence, the evaluators are and will
be studying methods of upgradina BRACT to the level of the NSU orogram
in order to permit a choice between the Galerkin and collocation
methods. At the present time, 0OSU is definitely superior.



Related Topics

1. Time Domain Formulation - Application to Aircraft

Electromagnetic transient responses of bodies may be obtained through trans-

- formation of frequency domain characteristics, the sinqularity expansion

method, or through solution of time dependent equations directly in the
time domain, Until recently, however, few time domain calculations hav
been performed for determining the electromagnetic characteristics of
thin wire structures. In 1968, Bennett and Weeks presented time-domain
solutions for several electromagnetic objects employing a time dependent
i{ntegral equation based on the magnetic field. About the same time, Sayre
and Harrinaton applied the thin wire approximation to a coupled set of
equations based on the magnetic vector and electric scalar

potentials and obtained results for the linear dipole and circular
ring. Miller, et al. (1973) and Poggio, et al. (1973) applied the thin
wire approximation to a time-dependent version ot the frequency domain
Pocklington electric field integral equation. While some aspects of
their analysis is similar to the previously listed efforts, they
included ir addition a 9-point Lagrangian interpolation scheme which
permitted efficient treatment of more complicated wire structures as
demonstrated by the analysis of the zig-zag antenna.

Here, we consider the applications of the time domain formulation to
calculate the current on aircraft when illuminated by EMP. The

first step in assessing the EMP survivability/vulnerability of an
aircraft system is to determine the electric current flowing on the
outer skin of the aircraft when illuminated by EMP. With present
state-of-the-art, however, it is not possible to calculate in detail
these currents due to the extreme complexity of the aircraft surface
geometry. Consequently, approximations are made of the surface geometry.
The numerical solution begins by approximating the aircraft geometry

by a set of cylinders, and subsequently calculating the currents of this
set of cylinders.

The theory and the numerical approach used were presented in the
Jatter two papers. A users manual, program listing, and sample output
is given in Van Blaricum and Miller, (1972). This program is based on
a moment method solution of the time dependent electric field integral
equation

~ H IA o
- r = 0 S.S a ] ]
SBinc(rst) = g {T—'a'fr Hs'at')

8 [ ]
+C?—§§TI(S ,t) (63)
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where Ejp, (r}t) is the incident field at observation po.n* rat time t,

s and s ar unit vectors paralle! to C(r) at r and r', ¢ is the ve10c1ty of
Tight, ugy the permeability of free space, I{s'.t'} and q(s’ ,t') are the
current _and charge at source point s', retarded bim@ ' o= {t - R/C) where
R= |vr-r'|, and C(r) is the structure conteur. The moment method solution
proceeds by approximating the object by a set 01 straight wire segments

and using a subsectiona® bases function expression in space and time in

the form of a 9-point Lagrangian interpolation scheme to describe the
current ¢n each segment. The integral equatlion s raduced to a matrix form

. +E. =71 (64)

where Einc is the value of h ine (ro, s abt time [, and for ry a wire radi.
away from C(r) at the observation point, and whn e LSC& is the electric
field tangent to the wire segmeni at r = r, and t = t,, due to earliar
charges and currents.

-

Y = 7" once (siice Z1s independent of

Tha ~(64)sequenitaily at each time step.
As a consequence of this time stopping GPOCMGUFQ“ the computation time
is controlied mainly by the ruaber S time steps desired v the solution for
a given number of segments. Oncs Lhe currents zre obtained, other aspects
of the electromagnetic behavior ure may be found.  The rediated
far fialds may be computed, ¥a‘sd1n4 radar cross-sects Near fieids
may aiso be ~omputed for use ! atersotion s:wdlps

The scoiution iz obtained by ftind: ng
time) and then calcul lating I by solv
W

she struct

wen i q and

For wide-and calculations, this time-domain method has several advantages
over moye commonly used frequency-domain aoﬁutions. In qeaﬂyaT{ the
time~doinain method is much more ~7ficient than freguercy-demain methods
for sbtaining the transient behavier for a aiven e it Further,
non-iinear iocading is mere tractable in this timm demain formulation which
permits evaluation of the transient hehavior of devices such 28 2 sperk
gar attached to an antenna. Finally, the dyrmamic eisctromagnetic behav o
¢’ e structure is generated directly in the time domain which permi s
vhe natural develcpment of the response to be followed and aliows real”
tdenti fication of peek currents »nd ctructure resonances.

A typical result is shown in Figures 37 and 38, For “his example, a »el
0.8m diameter cylinders ware avvenged to anproximate the geometry of a 74/

aircraft. The EMP wave used here is & 4 fawm evpenential with a rise time
of 20 Bsecq zero crossing at .f usec and with a peak i27d strength of

5x 107 V/m. The EMP wave arvives from the frort and Teff of the aircraft,
the angle away from nose-on incidence Wes chesen i
wing was iiluminated gimuitaneQUSzy5 and 3
wave was chosen parallel to the Teft wingﬂ F
on the fuselage immediately rd the wi“gsq
magn¥tadp of the currert af ra~tous positiong
times. Theze currents are pic’ted perpendi
shown in an isometric view taken from behing

“he entirg Mot
Cpf the EMP

- b

i
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BULK AXIAL CURRENT IN AMPS ( x 10

FIGURE 37:

1
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TIME IN SECONDS ( x 10'6)

CURRENT ON FUSELAGE BEHIND WINGS OF A 747 AIRCRAFT.
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2. Numerical Study of Segmentation and Junction Effects

Some of the junction treatments discussed above have been applied to a simple
structure whose segmentation was systematically varied to test their capability ~/
to handle segment length variations at or near a junction. Our interest in

this particular aspect of the junction treatment stems from experience with the

MB Associates approach which did appear to produce incorrect results primarily

when unequal length junction segments were employed. As demonstrated above,

that particular junction approach can be incorrect even when all segments at

the junction have the source length. In spite of that, it is useful to examine

the sensitivity of computed results to this particular factor. i

i) V-Dipole Antenna

Results obtained for vee-dipole antenna study are shown in Figures 39
and 40 and Table 2. The data summarized in the table are for the
antenna input properties at 100 kHz, a frequency slightly less than the
resonance frequency, and include both admittance and impedance values.
Plots of the impedance variation in the vicinity of the resonance are
shown in Figures 39 and 40. Again, generally good agreement {s exhibited
by these various methods. It should be ncted that in addition to the
programs mentioned above, data obtained for the vee-dipole prvoblem
from a time-domain calculation is also shown. It too agrees well with
the other calculations. Generally speaking, the divergence of the
numerical results for input impedance is less than 120%, indicating

the degree of reliability which these numerical procedures apparently
possess.

The effect of varying the structure numerical description in such a way <
as to determine the effects of unequal segment lengths at the vee-junction
are shown in Figure 41. There results for the input reactance as a

function of the number of current samples on the center of the antenna

are shown relative to the nominal configuration case, where all segments
which meet at the multiple junction are equal (or nearly so). The data
obtained from the MK-I program exhibits a considerable degree of

variation as the junction geometry varied, as does also that computed by

*AT1 vee-dipole results presented here except those labeled Boeing and

Arens were obtained at least partially from codes run on LLL computers.

The Boeing data was furnished through the courtesy of Mr. Walter Curtis

of Boeing, and the Arens data through the courtesy of Mr. Virgil Arens

of Arens Applied Electromagnetics, Gaithersburg, MD. Regarding the

Arens results on Figure 41, Mr. Arens feels the reactance variation

with M may be due to the use of too short segments. Some of the OSU

data was kindly supplied by Prof. Jack Richmond of Ohio State University,

and some of the Syracuse data by Prof. Bradley Strait of Syracuse University.
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Arens(+)However, the other results are stable with little sensitivity
to the structure geometry. It should be noted that the MK I results
can be shown to remain stable as well if the input admittance is
redefined in terms of the current at the antenna feed point divided
by the integrai of the tangentiai electric field along the antenna

in the vicinity of the source (the MK I' results).

Somewhat unexpectedly, the scattering results also were found to be
sensitive to the junction treatment. Computed results for the
transfer admittance of the V-dipole at 100 kHz are shown in Table 3.

We observe that the MK I iunction treatment yields transfer admittance
which are also dependent upon the junction segmentation. This is not
true of the other procedures used.

Aircraft Stick-Model Calculations

The comparisons presented above are useful in determining the relative
merits of the different computer codes. They are limited however,

to test cases which do not very closeily resembie the actual aircraft
geometry of immediate concern. Ever the crossed wire model, which may
be viewed as a crude attempt to model an aircraft, is not as accurate in
this sense as one might rea aonabWV expect of computer codes having

the f]ex1b111by nd generality of those considered. In order to
demonstrate the app]iuaf1ow of thzse codes to the aircraft problem, we
present some cemparative resui®s in this section for a2 stick model

of the 747 v 'ng the model parameters given by Boeing (1972).

a, Frequency Domatn kesulits

The 747 numericai model? has the dimensions shown on Figure 42,
While deteils of the specific segmentation used for the various
codes are slightly different, they invoived on the order of
unknowns .

Calculated currepl distributions from the Boeing, Syracuse,
and MBA codes are shown in Figures AR and 44 for the
excitation geometry indica sted and for frequencies of 1.8 and
6.0 MHz. Note *:;t the current magnitudes, plotted as lines
perpendicular to the (‘rucfuwe segment to which they apply,
are not spatially coincident for all codes due to the slight
differences in their segmentation as mentioned above. The
agreement hetween tne codes used is seen to be quite good,
within 10% or sc refervad to the maximum values.



# Segments
on Center

13

TABLE 3

MAGNITUDE OF TRANSFER ADMITTANCE (mi11imhos)

GIANT

11.5
1.7
11.6
11.5

MK IIIA

11.4
11.6
11.5
11.4
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BRACT

14.7
15.9
16.8
11.0

osu

11.5
11.5
11.5
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Recommendations for Future Work
Questions Originating During the Reported Effort

During the course of this study several questions arose which need
clarification. A number of these questions result from detailed
consideration of the junction problem. The suggested areas of
investigation are:

I) study of local phenomena at wire intersections

i; detailed local current distribution

ii) validity of assumptions in thin wire approximation
1ii§ effects of radii discontinuities

iv) effects of sharp angle bends

II) study of end effects

i) end cap corrections
ii) effects of different end cap shapes

Another area requiring investigation is the extension of the techniques
described in this report to cylinders of larger radii. This might
involve studies into the probable effects of introducing careful

surface integrations in the thin wire code, the use of higher order
modes of circumferential variation than the constant mode of the thin
wire approximation, and/or the extension of the thin wire approximation.
The study should also include investigations of non-circular cylinders.

Previously Recognized Extensions

The above studies have been suggested during the present, ongoing effort.
It is also felt that studies of wire grid modeling, and solid surface
modeling using their respective integral equations are required. Also,
the implementation of necessary high frequency techniques is deemed
advantageous.

In order to validate many of the results reported herein (and to be
generated in the future), an experimental investigation is needed.
This effort should involve the determination of the surface current
distribution (or bulk current distribution) on straight wires,

L wires, crossed wires, wire models of the Boeing 747, and on a scale
model of the Boeing 747. Naturally, these experiments should be
performed in the frequency regime where the thin wire approximation is
valid and perhaps slightly beyond where cross sectional diameters are
an appreciable portion of the wavelength.

The prinicpal investigators recognize that the OSU program employing
Galerkin's method, piecewise sinusoids, and Pocklington's integral
equation is superior to BRACT (collocation, sinusoidal interpolation,
Pocklingtonj in its present form. However, since BRACT does not
require a separate weight integral to be performed, and since
modifications and extensions as proposed previously would further
complicate field expressions, it is felt that the circumvention of the
weight integral may be important. To this end, it is recommended that
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some of the shortcomings of BRACT be studied so that the program can
be upgraded to perhaps provide the accuracy and efficiency of the
0SU program.

Assumptions, Approximations, and Recommendations for Wire Computer
Program Users

Mathematical Model

Perfect conductivity. L

Wire sections long compared to diameter (U-z 10).
Wire circumference less than 0.5x.
Circumferential current negligible.

No circumferential variation of axial current.
Thin wire approximation valid.

(o262 BN SN VS A O R

Physical Model

1. Model is a piecewise linear representation (e.g., polygon for circle).
2. An equivalent circular cylinder is used to model non-circular
cross-sections.

Computer Model

Segment length (4) : A/x < 1/6

Segment length (A) : A/D 2 3

Segment length (A) relationship to total structure length
is structure dependent.

Avoid abrupt diameter changes.

Avoid abrupt changes in segment length (not too
restrictive except perhaps at junctions).

Develop wire model to resemble physical body as much as
practicable.

(SR~ w Ny —

N

Validation of Results

1

As an initial step, check a program against test results, e.qg.,
those in this report.

Check reciprocity.

Check near fields at several points.

Check smoothness of results.

Check continuity of current at junctions.

Check convergence (run for several values of N).

Run two different programs for same problem, if possible.

Check for non-physical oscillations near wire ends or bends.

O~NOOT DWW

Troubleshooting

1. Check qgeometry definition - consistency.
2. Check excitation definition.
3. Check code dimension statements.
word size
routine functions
heirarchy of declarations
complex functions
variable initialization
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Appendix A - Junction Treatments andéRelated Topics

Introduction

Brief consideration has been devoted to the multiple junction problem, i.e.,
the treatment of intersections of more than two wires. Left unanswered
were questions concerning accuracy and adaptability.

One of the first and most fundamental questions associated with multiple
wire junctions is whether the thin wire approximation, with its attendant
assumptions regarding negligible circumferential currents and circumferential
invariance of axial current density, is valid near a junction. Clearly the
assumptions are quite well adapted to thin wires when interactions with
neighboring conducting elements are very weak or almost symmetrical with
respect to location on the wire cross section. For example, a straight
wire or a straight wire perpendicular to a conducting plane satisfied the
symmetry conditions. However, an intersection of two wires such that the
union is not a straight line certainly destroys the symmetry as would
intersections of more than two wires. The question that must be asked is
whether the assumptions relating to the thin wire approximation can Tead to
erroneous results when it is known that the current density does not
possess the required characteristics. At present there does not seem to
be a definitive answer to this question. Nonetheless, one might infer
from physical reasoning that although an overall solution might be quite
adequate, the Tocal behavior near junctions might be suspect. Indeed,

the fields very near junctions may not be reliable due to the non-uniform
distribution of current density imposed by the non-symmetrical nature of
the junction. Further investigation of phenomena near junctions is
required if one is interested in fields or currents close to that junction.
It has been found through experimental observations (though somewhat

gross) that the thin wire approximation with its concommitant assumptions
is adequate for most applications such as the investigation of bulk currents
induced by impinging fields although results very near junctions may be
questionable. Hence the thin wire approximation has been retained and
junctions have been treated as if the assumptions are valid. In the
following we therefore address ourselves to a determination of accuracies
available through different treatments, each of which uses the thin wire
approximation. In fact, we start immediately with a discussion of basis
functions and their effects on junction treatments.

The essential reason for whatever difficulty may be posed by the multiple
junction is that any numerical development which employs current derivatives
or multiterm current bases will ultimately involve a relationship between

the current on a given segment and those on its adjacent neighbors.

Consider for example using the potential integral equation, which contains an
explicit current derivative (or charge) term ?Harrington, 1968) for single
wire. If a pulse current basis is used, a finite difference approximation
for the derivative must then lead to a pulse charge basis which spans the
neighboring halves of two connected segments and which involves at a

minimum their associated current samples. The use instead of a 2-term linear
basis does not significantly alter this situation since upon requiring current
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continuity at segment junctions, the current and its slope within a
segment will be given in terms of the current values at its ends. These
cases are illustrated below.

A similar situation holds for other integral! equations which may not have
explicit current derivatives but which are used with multi-term bases. The
two-term sinusoidal basis is treated in precisely the manner as the two-
term linear basis illustrated above, with the important exception that

the former has a sinusoidal charge basis as well. This results in a more
efficient solution for long structures compared with that obtained from
pulse or linear bases. Note that two term bases guarantee a continuous
current but can result in discontinuous derivatives or charges.

Tnree term expansions (constant, sine, and cosine or constant, linear, and
cuadratic) have been handled in different ways. The most convenient to use,
sut least accurate, extrapolates the current from segment i to the centers
of segments i - 1 and i + 1 (Yeh and Mei, 1967). This permits the i'th
segment current to be expressed in terms of the center currents on the

i~ 1,1 and 1 + 1 segments, but does not guarantee either current

mnlitude or slope continuity at the junctions. An alternative approach

is to match both slope and aﬂp11tude at each junction. This gives rise to
the same total number of equations as the first method, and thus also
allows the final set of unknowns to be the center current values. However,
the eguations for a sequence of cornected segments are coupled.

Fyror Studies

Considering then tiat even simple junctions require handling in such a way as
tc relate the current amplitudes of adjacent segments, it is no surprise that
muat1p1e juncticns can make this procedure more involved. We will examine
here several muitiple junction treatments from the viewpoint of assessing
their pessiile errors and their compatability with the basis and weight
functions which are used. For simplicity,attention will be confined to a
junction at wnich the linearly varying current on the main branch will be
assumed % divide into M-1 equal branch currents. The geometry is sketched
below for (he M=3 case with all currents positive into the junction,

., //
\\\k ’///
i e
\\ ‘é‘ 1
o T = - R0 el - 0]
\\‘\,, P //
ii)\J
A IG( [1+ E(XJ - X) ]
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the distance x measured as positive along all wires from point o on main branch, I,

represents the secondary branch currents on segments of length A, and Ao ~
represents the segment length on main branch.

1) MB Associates

This treatment, developed for the three term expansion, (Maxum, et al.,
1969) uses

M-1 ~
PYIy = Lig(xy + 8472 + 4/2)
=0

where the subscript e denotes an extrapolated current, the prime on
the summation indicates the j=i term is not included, Ij is the current
at the segment center and

Evaluating the summation we have

I e = -1 - eA]/Z]

and
=[1+ eAO/Z] - [1 - €A /2]

But the actual extrapo]ated values of Ip and Iy ought to be (with a
sign change to convert an incoming current to an outgoing current)

Ioe = IO(Xb +80/2 + 8/2) = -[1 - eay/2] )
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and

I, =1

e (x, - 8,/2 - B/2) = ——LT [1 + eh/2]

le M -

= W_]-——T {1+ T :I_ [AO + A, (M-2)] %}

The error in the Iie values, Eie’ can be determined to be

and

A A
M-2 1 0
——————j?{—é-(M -2) + =M}

E 7

1e= ‘El (M_ 1)

For equai segment Tengths AO = A] = A

£ M- 2
E-Ie = Al M'—_T [2 - M]l = —"-_——'-I" IEIA

We see that although Epe is zero for the case considered, Eje is not,
approaching the value ?elA as M, The fractional error ey, is

- E /I - ‘M - ZEAE'A ~
]e ]e 9_(—:_! fOl" AO = A]

€
1
1+ 5

€
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2)

and grows without 1imit as M»~. Only when the current slope is zero,
i.e., € = 0, does this method work without error, or when M = 2

(a simple junction), with the latter strictly true only for a linear
current variation.

. Charge Redistribution

Curtis has devuslesed a junction treatment (Boeing, 1972) for use with a
pulse basi1s and the potential integral equation. It involves

computing the total charge on the junction wires from the sampled
current values and then assuming the charge divides among the

various segments according to the ratios of their individual surface
areas to the total surface area. Proceeding as above, we compute
from this procedure an approximate value for the junction current,
denoted by Iij’ for comparison with the actual junction currents I1J.
From Equation (39), we have for the total charge QM

]
W w I I
J=0

with Ij the inwardly directed sampled current values on the M
intersecting wires. The total charge on an individual wire
q;j which is given by

=1 -
4 = 35 (Ij - i)

is assumed to be related to QM as

q; = RyQy
where
M-1
Ry = a;4,/ [ a5,
§=0
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Thus

-~

ij = Ii - dwq, = Ii(] - Ri) - Rj ) Ij

Returning to our test case, we have

For the approximated values of IiJ we find,

~

Iog = (1 + eAO/Z)(1 - RO) - RO[-(1 - EA]/Z)]
and

Iy = = 1 (1 - ea/2)(1 - Ry) - Ry[T + en/2)

-2 0 - eay/2)]

Upon collecting terms, with all radii equal,

~ ANA
S B 1 M-2y  C00

2
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The absolute errors are thus

- - 1 IEIAOA](M - 2)

03 = g -

E = 1 M—ZIE, AOA]

while the fractional errors are

|
m

€0d T S04

=E-IJ(M"'])=E

€19 0J

In contrast to the previous case, the error in Eoy is zero only when
e =0or M= 2. However, contrary to the finding before that ejg »
as M > «, here we find instead that e;; ~ lelag

2

Segment Overlap

This approach, employed by Syracuse (Chao & Strait, 1970), and in an
equivalent form by Richmond (1969), essentially decomposes the bases
on a junction segment into two parts, one corresponding to the given
segment and another to a neighboring segment. This is done for every
segment pair so that there will be M-1 (or M, see below) such rela-
tionships for an M-wire junction. Note that M-2 of the wires will

be overlapped with two adjacent wires, while the other two will be

overlapped only once. (For a description see Logan (1973)).

In the context of our present test case we could have, using the overlap

scheme shown, and denoting the overlapped bases with primes

Iél) - Ié])' //

(2)
4

oo e\
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where the superscript refers to the wire number.

Now we have

where it overlaps the first side branch, noting that the overlap length
is Ay and Egking into account the current reference directions. Also,
for all 1{37, 0%=2, ..., u

1) o M—}—T-[1 + (X - 0]

thus
1(2)1 ) 1(2) i I(]) ) (M - Z)A] + (XJ -X)M -1 - EA])
] ] 0 M= T)4,
Continuing
(3)' _ (3) _ (2 _ ). MRk
h™ = h =Lt == )
so that
e (M= 2)Ay + (X, - X)(M =1 - gay)
(&) S f)A] ] IR N 7.
i+ _ Ao X % .
1 SR e AR ) P, ., W2 -



It may be seen that the actual (unprimed) currents are given exactly
by this decomposition into a two component (primed) basis on each
segment. The method would be essentially error free for the sample
current variation considered and a piece-wise linear basis. The
essential limitation on accuracy in this regard is the amenability
of the basis to represent the actual current. This factor also
applies to the other junction treatments of course. It does however
exnibit a characteristic that could degrade the solution accuracy
ultimately available, where, as in the present case, the total
current is given as the difference between two nearly equal
component currents.

Two questions deserve consideration regarding this particular
junction approach. They are: (1) can the method be implemented
without the artifice of using overlapping wires at the junction; and
(2) for what kinds of current bases is this junction treatment best
suited? We attempt to answer these in order below.

For the purpose of developing the discussion let us first consider
using a two term current basis applied to a simple V-dipole as
shown below. '

Segment 2

Segment 1

For simplicity and since there is no loss of generality, we employ only
two segments to model the dipole. This leads to 4 unknowns and a
requirement for a total of 4 equations for their determination. This
set of equations can involve almost any combination of field boundary
conditions and current conditions, the only constraint being that at
least one (in this case) field value is required for a non-trivial
solution. Two obvious current conditions are for zero current at each
open end of the V-dipole. An additional condition that the currents
on segments 1 and 2 match at their junction reduces to one the number
of unknowns and remaining equations required, which also equals the
number of junctions involved. It will be true in general that the
number of unknowns will equal the number of simple junctions when a
2-term basis is employed together with current amplitude matching at
the junctions.

It is thus natural when using a 2-term basis to view it as a junction-
oriented expansion with the unknowns being the current values at the
junctions. This is of course equivalent to using as the unknowns the
current values at the segment centers, a procedure more natural to
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pulse and 3-term expansion which may be viewed as segment-oriented
expansions. The essential difference which holds when using a 2-term
basis as a segment oriented expansion is that any one of the segment
center current samples can be eliminated in terms of the other unknown
current values. This leads to some ambiguity as to the current samples
which will be used as unknowns. The piecewise linear (triangle) and
piecewise sinusoidal 2-term bases have thus been used almost entirely
as junction-oriented expansions which span two segments and which
insure current continuity at their common junction.

To return to the V-dipole being considered, we now examine the boundary
condition treatment. One additional equation is required to complete the
development. Point matching, which is not suitable for 2-termm bases (see
above), could evidently be implemented by matching the field on either
arm of the V. There is again an ambiguity involved as to which arm

to use. Another possibility is to use the field at the junction, but

the field behavior near junctions is so erratic that this also is not
recommended. In order to sample the field on every segment it is

perhaps best to combine the individual field values from connected
segments a pair at a time, which amounts to using a junction oriented
weight function.

For Galerkin's method, weight functions are used having the same functional
form as the current expansion. The development of the explicit form for
a multi-term weight function foliows in exactly the same way used

for the current expansion, and can be used for either a segment or
junction oriented current basis. The weight functions can be matched

at junctions, etc., the principal difference from the current treatment
being that the values assigned tc the weight function at the match
points are arbitrary. As specific examples, the piecewise linear and
sinuscidal weight functions are employed with equal junction values
throughout although a variation of these values along the structure
could be incorporated if desired. For the V-dipole case, a 2-term
Galerkin's method would employ integration of the fields along the
lenath of the 2 segments to obtain one field equation. This would
complete the V-dipole equations.

kow let us examine the preblem encountered when a third wire is added
to the V-dipole. With & unknowns and 3 open-wire end conditions,

3 unknowns remain for a 2-term expansion. The equivalent of matching
the current amplitude at a 2-wire junction would be zero net current
flow (Kirkhoff's Law) into the multiple junction. This provides an
additional equation leaving then 2 unknowns and 2 required field
equations. In the general case of M wires, M-1 unknowns and M-1 field
equations would result, a situation analogous to M wires connected in
series.

By treating the 3-wire junction as described above, 2 unknowns might

be associated with the junction, and 2 field equations would be
encountered as shown below, using a junction oriented basis.
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M - 1 Overlaps

But an equivalent representation would be simply

a
/

/

|
|

using a segment oriented basis. In either case the total current at
the junction would be zero. As shown in the latter case, it is
unnecessary to use overlapped segments. Their employment comes from
using a junction oriented basis, a situation alleviated by using

the segment oriented expansion. In the latter case however, the
combination of field equations to be used is not unique, although the
same can be said of the former since the overlap geometry also has the
same degree of variability when M-1 overlaps are used. The essential
thing is that the fields of all segments are sampled and possibly
combined, if overlapping is used, in a non-redundant way. If M
overlaps are used for the current representation, there are still only
M-1 independent overlap field equations which can be generated. Further
the M junction currents are reduced to M-1 by the auxiliary condition
that their sum be zero. At any rate, we thus conclude that the use of
overlapped segments to model a multiple junction is brought about by
the use of a junction oriented basis.

As to the use of this junction treatment for other current bases, it is
clear that it can not be employed without modification with a basis
having more than 2 terms. This is due to the fact that ~M junction
conditions would be needed for a 3-term expansion compared with the

~ single condition necessary for the 2-term basis. The additional
conditions involved would require other, not necessarily
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obvious, current relationships to be established.
The TCI Treatment

A multiple junction approach for the 3-term sinusoidal basis and point
matching has been described by Andreason (1968). It involves the use
of current extrapolation at simple junctions and the derivation of an
end current value for a wire connected to a multiple junction. The
steps in this procedure are:

th

1) Express the current on the j~ junction wire as (the positive

current direction is inward)

I.(s) = Iie'iks + 19 cos ks + P Ig ks J

J J j (ks)

0

where the first term represents an outward propagating spherical
TEM wave, caused by an emf applied to one of the junction wires.
The sum

—

o~ =Z
[SEYRN

The second term represents a standing spherical TEM wave whose sum
is also zero, while the third term represents a standing spherical
T wave of order 1. It is associated with junction charge and is
described by a Bessel function of generally non-integer order j.
Note that the first two terms above are equivalent to the sine and
cosine terms in the 3-term expansion.

2 Solve for IQ in terms of the sampled current I. at the center of
the segmentJto obtain J

i -iks. ]
I, - I - P I ks, (ks
N T I L

J COS KS.
J

3} Form the sum jy] 19 which equals zero to obtain for P
=l J

cos ks, ;
J
i 7 ks J_{Egi)
Mo vy
"3 cos ks,



Introduce a scalar potential A; for each wire in the directions
»¢j which has a singularity %n the direction of the wire,

agsume AJ = uI /4n, and obtain for the potential V = rAyue 7
n " 2,9 2 ?j_ 9 El
V= -z ) Ij log [tan (EQ + tan“( 2) - 2 tan (§0 tan ( 2) cos (¢-¢j)]

J=1

Obtain a relationship between the junction currents and voltages as

n 2 cos (41)
Vig = o7 I35 109 ['“‘“;"‘““J
J

M 2 Vik

. sin (—%—)
-3 I Iy tog I ]

m o 8, Tkd
k=1 2 %, 2 %
cos“ ( 2) cos (—70
.th

with 6; the cone angle of the j~ wire and Vjx the angle between ~
the JtH and k'th wires. Note that if there are no source voltages,

the above expression provides a relationship between the junction

currents.

The TM-wave current is similarly handled by writing the magnetic
potential Am for a single wire

A = Jv(ks)[A1 PV (cos 8) + A, PU (-cos 8)]

which from Ay = 0 at 8 = 6 and finite at 6 = m gives for small
core angles 6

M

v,
I [0+ 2V log sin (48] Ti=05Kk=1,2, ..., M
j=1 |

and has a non-trivial solution for the individual mode amplitudes T;
only for discrete values of V, the smallest value of which will be used. -

2.
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Return now to the original current expression. Values for P and V
have been found and I¥ is given in terms of the sampled current

I and the TEM and TM currents Il and Il!. But the Junction current
relationship and extrapolations %o the Rext segment away from the
junction enable the latter two currents to be eliminated as
unknowns, arriving finally then at a single unknown I. for each
junction segment. J

The complexity of this approach make it difficult to analytically
assess as has been done with the previous cases. In addition,
numerical results are currently not available for comparison with
other approacihes. It may be worthwhile to examine this procedure
further to obtain a more definitive evaluation of its relative
advantages.
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