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Abstract

The problem of the penetration of a quasi-static electric field into
a hemisphérical indentation in an infinite conducfing plane is solved
exactly., The results are directly abp]icable to the study of a large class
of aircraft antennas; for example, the marker beacon antenﬁa. The
solution is obtaihe'd by an inversién transformation on the known solution
for the problem of a conducting right-angled wedge excited by an electric
dipole. »A closed form for the electrostatic potential is derived. The
value‘ of the potential, the electric surface charge density, the induced
dipole moment of the cavity, and the averaged electric field over the
length of a thin-wire stub antenna erected from the cévity bottom are

calculated. It is found that the penetration electric field strength at the

cavity bottom is about 10% of that of the external field, while

field on the symmetry axis varies from 10 to 28%, 18 AUg
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I. Introduction

For reasonsrof aerédyﬁa.mics, many aircraft receiving antennas are
located in cavities indented on the aircraft skin, with the openings covered
up by suitable dielectric materials. In designing such antennas it is im-
portant to understand the manner in which incoming eléctromagnetic sig-
nals enter such cavities, or how the incident field strengths attenuate with
increasing penetration depth. If the operating wavelengths of the antennas
are long compared to the cavity dimensions, a quasi-static analysis of the
situation is adequate, We are justified to formulate the problem as potential
problems for an infinite grbunded conducting pilane with a cavity, under the
excitation of an external static normal electric field and: a tangential mag-
netic field. The dielectric cover can be ignored. The electrostatic and
magnetostatic problems are independent, and can be studied separately.

In this work we present the exact solution of the electrostatic prob-
lem for the case of a hemispherical indentation. By an adroit inversion
transformation the problem is converted into that of a grounded right-
angled conducting wedge under the excitation 'of an electric dipole. Making
use of Mac Donald's s.olution of the wedge pfoblem,[ll we obtain upon re-
_inversion the exact solution of the eiectrostatic hemispherical cavity
problem in closed form. The associa’ced, magnetostatic problem cannot
be solved by invérsion, and will be studied by a different method in a
subsequent report. |

The two-dimensional problem of field penetration into a rectangular

[2]

trough has recently been solved by Marin*™",




1I. Formulation aﬁd Inversion Transformation
We consider a grounded perfect conductor occupying the half space
z > 0, except for a hemispherical indentation of radius a on the surface
(see Fig., 1). It is excited by a uniform statip electric source field

A
z
0

'Eo =F (1)

which can be derived from the source potential function

V :_EZ. . (2)
O o]

The problem cénSists in finding the total potential function V(x,y, z) such
j:hat it is 0 on the conductor surface and appfoaches Vo at great distances
from the indentation.

The geometry of the problem is greatly simplified if we perform an
inversion transformation with respect to a sphere of radius 2a center‘ecﬁ at
a point on the rim of the indentatioh. Undef inversion a point at a distance
r from the center is transformed into one at a new distance r! aiong the
same direction such that

rrt = (2a) (3)
The polar angles remain unchanged. It is easy to see from Fig. 2 that
the entire flange of the indentation is mapped by (3) into a half plane, while
the hemispherical surface goes over to an orthogonal half plané. The
original conductor is mapped into the interior of a right-angled wedge.

To describe the inversion mathematically it is convenient to choose
the cénter of inversion as the origin of our coordina’ce gystem. The x-axis

is aligne»d to pass through the center of the hemisphere (see Fig. 2). We
| .



x-y plane

Fig. 1.~--Geometry of the problem
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Fig. 2.--Inversion transformation with respect to a sphere
(broken line): (a) before inversion, (b) after
inversion '



shall denote quantities after the inversion by a prime, Thus, a point

(x,¥s2) is inverted into a point (x', y',2') such that according to (3) .
x' = f(r)x, y' = f{r)y, z' = f(r)z, (4)
where
2 2
i
f(r)=———~4a2 = -r—z-, r=/x2+y2+zz. r' f/x' +y'"T+z. (5)
r da

It can be shown that the law of inversion for the potential is

V(x, v,2) —~ VUx',y',z') = -2% VX, ¥ 2)s (8)

V! is a solution of the Laplace equation in the inverted coordinates (x',y',z'). |
To facilitate the solution of the wedge boundary value problem in the

inverted space we introduce a third coordinate system denoted by bars such

that

x =2z, ¥V =x'-2a, Z =y (7)

This coordiﬁa’ce transformation consists of a displacement and a rotation,
bringing the Z-axis along the edge of the wedge (see Fig. 2). We further-

more introduce cylindrical polar coordinates
X=pcos ¢, ¥ =psin ¢ (8)

so that the two faces of the wedge are given by ¢ = 0 and g‘n‘ . Since the

Laplace equation is invariant under (7) we have
Vi, y',2") - VX, ¥,2) = Vi, yth 2t (9) .

-6-




III, Inversion of the Source and the Boundary Condition
Under inversion the external source potential v, in (2) goes over

' 1
- to a new sourcg potential V, according to (6):

VO'(x',y'.z') = -ér; VO(X.y,Z) = -E0 % ' (10)

In terms of the primed coordinates in (4) this becomes

! 3 z!
VO (X',y',Z') = = 8a EO —3',,‘ (11)

!

Going furthér to the barred coordinates in (7) we have by (9)

-SaBEO?{
(12)

V (%,7.8) =V (x!, v, 21) =
V& 5,2) = V_(x',y', 2" [§ z (§+2a)2+':2 2} 3./2 .
This is the potential of an electric dipole of strength 327r€0a3E0 gituated
right on the wedge surface ¢ = -:2-3- 7 at a distance 2a from the edge, that is,
at the center of inversion, and pointing in thé negative X-direction.

Because the source dipole is right on the boundary s;xrface it is ad-
vantageous to lift it off the surface before attempting the solution., After
the solution we can then allow it to fall back to the surface., This limiting
process ig correct only if we consider the strength of the lifted dipole as
being reduced‘by one half, rl’.his is because when the dipole is on the wedge
surface, it is rea]ly half buried beneath the surface. ‘As soon as it is lifted,

the solid angle subtended to it by free space jumps from 27 to 47. Let the

coordinates of the lifted source dipole be



X' =2acos¢', y' =2asing', z! = 0, . (13)

(In the barred system we denote source coordinates by primes.) Then the
: X
effective source potential is
3 —
-4 E (X-X'")
o

52+ G-y)° + %

= eff — — —

vy (%,¥,2) = (14))

2] 3/2

as compared to (12), At the end of the calculations we must let ¢' in (13)
tend to 3 T
2
Furthermore, since a dipole is made up of two equal and opposite

charges, we need only solve the problem for one charge and then apply

superposition. Specifically we need only consider the source charge po-

tential
o —4a3Eo
V (Xy¥,2) = . (15)
° lg=?+ G022 2| M2
The solution of the problem for the source dipole potential can then be
obtained by differentiation since
- eff d
Vo T 3%’ ‘o (16)

We next consider the inversion of boundary conditions., From (6)

it is clear that the inversion image of a zero potential surface is again a

zero potential surface., Thus the original grounded plane with a hemispherical

indentation is inverted into a grounded right-angled wedge. In other words,
the homogeneous Dirichlet boundary value problem is inverted into another

homogeneous Dirichlet problem. We mention in passihg that the homo-
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geneous Neumann problem is not so fortunate, As can be easily seen
from (6), under inversion a homogeneous Neumann boundary condition in
general degrades to a mixed condition involving an oblique derivative.
Consequently the associated magnetostatic problem for our hemispherical

geometry is not tractable with the method of inversion,



IV. Solution of the Wedge Problem

By (15) we see that our original electrostatic problem has been
reduced t§ thg.t of a source phgrgeqf strength 4167reoa.3E0 é.t ;che co-
ordinates (13) over a grounded right-angled conducting Wedgederafinédﬂ
by the angles ¢ = 0 and -3-11’.» After the solution of the wedge prpb}em we
are to differentiate the solution with respect to the source coordinate
X' according to A(16), and then set the source angle ¢' equal to gn.
Finally we have to re-invert the solution according to (6).

The wedge problem is by no means trivial. Fortunately the solution
for any wedge angle ha's already been published by Mac Donald[ll. He
first obtained the solution as an infinité series and then summed it up in

closed form by an integral. For exterior wedge angle ¢ and a charge g

at (p', ¢',Z') his expression for the total potential reads

o]
e = 1
v (p, 4,2) = 41re f Ncosh fcosh n X
n -
sinh = ¢ sinh ~ ¢
X 2 - =
cosh = ¢ - cos & (¢-0') cosh —~ ¢- cos & (p+¢'") ,
a o o a
0<¢, ¢' <@ ' (17)
2, .2
where cosh n = 22 ptiz-2) (18)
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The same result can also be derived directly by Sommerfeld's generalized
method of images[sl.
To obtain the solution of our source dipole problem we substitute

in (17) and (18)

’ 3 3 - —
q=- 167e 2 Ep a=gm p'= 2a, z'=0, (19)
differentiate v with respect to X' = 2a cos ¢', and then put ¢' = -g’— 7, Thus

we obtain the total potential

8’ % sinh = ¢ sin 2 ¢
-\7 (E ¥ E) _ (o] d§ 3 3
) ;
ompa . Jeosh ¢ - cosh n cosh%t +cos -2— ¢ 2
(20)
where 9 i 9 . 9
coshn = £ 4;a z (21)
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V. Potential
By (6) and (9) the total potential of our original hemispherical cavity

,?
problem is

Vi y,2) = 22 V&, 7,7) (22)
We must re-express all coordinates (X,¥,z) in terms of (x,y,z) by using
(4) and (7); Furthermore, for reason of symmetry, we make a shift of
the coordinate origin to bring 1t from the rim to the center of the hemi-~
spherical cavify. This is achieved with the replacement

X>x+a (23)
The z -axis ﬁow coincides with the symmetry axis of the cavity.
The algebra of the coordinate back-transformation is lengthy but

gtraightforward. The final result is

2
asm—
v oz, 8 /7 x
%2 )+422 osh §{-coshn
sinhEE (24)
.3
X s
2 2 12
cosh§ ¢+ cos-gq’)]
where
2 2
r 4+ a

cosh 1 = e,
\/(rz-az) + 43222

-12-




¢=tan'1 f_:_ﬁ_ 0< ¢ < 3. (25)
2az ’ 2" N '

It is essentizl that we select the proper branches of the arc tangent. In

particular we have

. 1/2' = z=0,r<a
d)=< . ,(26)
s z<0, r=a
L 3/2 7 z=0,r>a .

Thus the factor sin % ¢> 1n (24) alone satisfies the boundary condition on
the conductor, |
Numerical values of the total pétential in the cavity are tabulated
in Table 1 and plotted in Fig. 3. It is found that for r greater than about
2, 3a the total potential V d'ifférs from the incident potential VO by less than

1%. The equipotential surfaces are sketched in Fig. 4.

-13-
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Table 1. Total potential in the cavity in units of an (p=vVx +y ).

pla |
z/a | 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.9 0.011 0.010 0.008 0.006 0.002
0.8 0.024 0.023 0.021 0.018 0.0613 0.007
0.7 0.040 0.039 0.036 0.032 0.027 0.019 0.011 0.001
0.6 0.059 0.058 0.055 0.050 0.043 0.035 0.024 0.013
0.5 0.082 0.081 0.078 0.072 0.064 0.0b4 0.041 0.027 0.011
0.4 0,110 0.109 0.105 0.098 0.089 0.077 0.062 0.045 0,025 0.004
0.3 0.143 0.142 0.137 0.130 0.119 0.106 0. 088 0.067 0.043 0.015
0.2 0.182 0.180 0.176 0.168 | 0.156 0. 141 0.122 0.097 0,067 0.031
0.1 0.227 0.225 0.220 0.212 0.200 0.184 0.163 0.137 0,102 0.056
0.0 0.278 0.276 0.271 0.263 0.251 0.236 0.215 0,188 0.104

Ol 153‘"1
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Fig. 3.--"Total potential inside the cavity. The curves are labelled

by pla (p = ’\/;2+y2). The broken line on the far left is
the incident potential VO = -Eoz.
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Fig. 4.-- Equipotential Surfaces



VI, Surface Charge Density
The surface charge density o on the conductor is proportional to

the normal electric field, Thus on the hemispherical surface we have

_ v 7
0(9)—60-5}- R 0<9<§-, 27
r=a v
1

where 6 = cos %. Since the factor sin %qb in (24) vanishes on the con-
ductor, it is clear that we need to differentiate it only. Working out the

derivative we obtain

0 . 2
o) =g A8 1 /‘ dg sioh ¢
3
o 27= cosS/ze 0 \E)sh’: - cosh n cosh—zs- §+1 2
(28)
‘'where
) - o1
o, = -€. B coshn = ——— (29)

cr‘o is the uniform surface charge density on the conducting plane if the
cavity were absent,

Similarly on the flange we have

2
. ag(p) = € ?zz , p = \/xz + y2 > a, ' (30)
z =0
or explicitly
00 ) 2 .
olp) = ¢ 32N2 a3 / ds 3 :
2 2
. 0 = (pz-a2)3/2 n Vveosht - cosh 7 [cosh% -1

(31)
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where

coshn = T2 (32)

The integrals (28) and (31) are evaluated numerically and o plotted
in Fig., 5. As is expected o diverges at the edge of the cavity. To find
out the nature of the divergence we note that the lower limits of the in-

tegrals go to infinity at the edge and that

o0 . 2
3/2 d¢ sinh 3 ¢
o ~ cosh 7 - 5 5 . (33)
veosh € - coshn [cosh =8+ 1!
N 3
Putting £ = £ + n and using
coshn ~ %en , cosh (E+n)~ ginh (§+n) ~ -;— e§+n (34)
ete, as n = « we find
N L
o~ed / € 35 (35)
0 e -1
Therefore near the edge
c @)~ —tr—s o~ ——rr (36)
cos '@ (p”-a™)
(4]

in agreement with the general result of Meixner'~",

~18~
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Fig, 4. --Surface charge density over O, = - EoEo'




VIIl. Asymptotic Expangion and Induced Dipole Moment

We want to show that at large distances from the cavity the total

potential (24) reduces to the incident source potential plus an induced po-

tential of a dipole form. Since our problem has axial symmetry, it is suf-
ficient to carry out the asymptotic expansion along the z-axis.

Forr = -z (z < 0),' n as defined in (25) is 0. We can write (24) as

s

4N2  a 9
V(O: 0: Z) = akk -y B a1 I(¢) s (37)
° _371- -\;z +a 8¢
where 9
* sinh = ¢
1) = /—iL— . (38)
0 veosh §-1 cosh 3 §+cos 3 ¢
Setting t = cosh% ¢ we obtain
o0 ‘ .
1($) =3f = - (39)
1 4t -3t -1 t ~sin §q§

The integration is elementary since

Jard -3t -1 = @t+vi-1 (40)

and we find

/3 1
I(¢)=1 —_— +
2 v 2 .1 .1
FA-smge i amge

(41)

1 ‘
¥ A T T
5 1+sm§¢+1+sm-§¢
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Let us take the limit z = -, Then the angle ¢ as defined in (25)

tends to 3 T and we put

2
¢=—2-7r-3€ R , , (42)
where
3¢ = sin 22a.iz!2 0. | (43)
z +a
Thus |
o1, i 12 1 4 8
-_sm3¢-81,n(,2”,’€)—1‘,2€ +24€.-0(€),’
e 1 | 5 1 2 NT_ 2 3
— ‘ = I N
\/E\/lﬂ-sin-1—¢+1"v-sin-l-¢ A © e
. 2 3 3
1 1 1 4 2 4
iy T Ty oy €0l
_ E\/l+sin—3-q$+1+sin§¢ -2 +NF (2+N3)
' (44)

Substituting (44) in (41) and noting from (42) that d¢ = -3de, we obtain

- 1
1+ = W3
V(O,O,z)-=aE0% = ——25---2-+~/3_i;--——%——2 et0 (e7) | .
: z%+a € (2+N3)
| ’ | (45)
From (43) we find that
. ‘
.2 a 2/a
€ = 3 'l;r 9 <T-Z—r> +‘0.. ° (46)

Substituting in (45) we finally obtain for z - -~

-921-



1 3 -
g (o 1737 BR o) -
ii-
The first term is the incident potential, The second term isrthe 1eading ni
contribution of the induced potentiél. Ag is generally expected, it is of a d:;w
pole form. There is a gap of two terms between them. The existence of this
gap attests to the correctness of our solution and the accuracy of our asymp-
totic expansion.

The dipole term in (47) defines an induced dipole moment p of the

hemispherical cavity which characterizes the far zone behavior of the

induced potential. We have

p=aE , «a =P€a3 ' (48)
. - e—o e (o]
where 1
1+ =n3%
P=-4w%“/—-;3--‘;—--——f*—-§— =~ -1,10., (49)
(2+n3)

This is to be compared with the finding in the more readiiy soluble problem

of a hemispherical boss, where P = 47,

-929-




-VIII, Averaged Electric Field along the Axis
We suppose that a thin-wire stub antenna of length L is erected from
the bottom of the ca,vit_y along the symmetry z-axis. Then the electrical
gignal it receives is proportional to the averaged electric field along its
length calculated in its absence. It is clear that the electric field along

the z-axis has only a z-component, Thus

=
g
u

E, (0, 0, z)dz,

9

52 V{0, 0, z)dz,

% v (0, 0, a-L) . | (50)

This expression is eagily evaluated from Table 1, and the results are
plotted in Fig. 6. Its value varies from about 0.1 E_ at the bottom to

about 0,28 E;) at the ‘cavlty opening.,
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Fig. 6.-~Averaged electric field along the symmetry
axis in the cavity.
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