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Abstract

In previous reports, a dipole over a ground plane and an
L-wire in free space have been analyzed by the singularity ex-
pansion method. In this report, an L-wire with one arm parallel
to a ground plane is investigated using the singularity expansion
method. Natural frequencies, modal current distributions, and
coupling coefficients for plane wave excitation are given.

Transient and sinusoidal steady state responses are con-
structed from the singularity expansion of the current and charge;

the time domain convergence of the solution is illustrated.

74-159




I. INTRODUCTION

A parametric study of a L-shaped wire in free space was carried
out in [1] using the singularity Expansion Method (SEM) to de-
termine the influence of the location of the bend and the wire radii
on the scattering characteristics of the object. In this study,
some of the effects of the introduction of a ground plane on the
scattering characteristics of the L-wire are considered.

A set of Hallén-type coupled integral equations are given and
using the singularity expansion method the complex natural resonant
frequencies, modal current and charge distributions, and the cor-
responding coupling coefficients are given for a particular L-wire
structure. A study is made to determine the influence of the distance
of the L-wire from the ground plane on the location of the complex
natural resonant frequencies. For a step function plane wave in-
cident on the structure the time domain solution for the current and
charge are given with the results compared to those obtained by the

direct Fourier inversion of frequency domain results.




II.  FORMULATION OF THE HALLéN-TYPE COUPLED
INTEGRAL EQUATIONS FOR THE L-WIRE STRUCTURE

OVER A PERFECTLY CONDUCTING GROUND PLANE

For an arbitrary incident field, Hallén-type coupled integral
equations for the induced current on a perfectly conducting L-wire
structure placed over a perfectly conducting ground plane are
formulated. The L-wire structure is in the xz-plane, Fig. la, with
lengths and radii r,h and a;,3, corresponding to the x and z directed
elements respectively. The ground plane is located at z = -d in the
Xy-plane and its effect on the distribution of the current induced
on the L-wire is accounted for by applying image theory principles
which allows the ground plane to be removed and an image L-wire
structure to be placed at a distance z = -2d. The currents iX and i,
reside on the surfaces of the perfectly conducting wire elements and
the corresponding image currents are given by -i, and 1, respectively
on the x and z directed wire elements (see Fig. 1b).

The Hallén-type coupled integral equations can be formulated
separately for the L-wire structure and for its image and then combined
using the image properties of the currents. This results in simply
a modification of the various kernel functions appearing in the
coupled integral equations for the L-wire structure in free space [1].

The following are the resultant coupled integral equations of

t
the Hallen-type for the currents induced on the L-wire structure
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Figure la. Geometry of the L-wire structure over a perfectly
conducting ground plane.
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Figure 1b. GCround plane replaced by image.
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where the various kernel functions are given by:
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located over a perfectly conducting ground plane.

In Equations (2.1) and (2.2), the inside integrals of the
double integral terms can be analytically evaluated as in [1] and
the resulting expressions are used in the further development of the
matrix equation.

We can conveniently write the above integral equations in terms

of the Laplace transform variable s = ¢ + jwo by substituting

k= -jg (2.5)

where k is the wave number of the medium and c¢ is the corresponding

velocity of light in the medium.




ITI.  APPLICATION OF THE SINGULARITY EXPANSION METHOD

The complete description of the method of numerical sclution to
Hallén—type coupled integral equations by using the so-called
method of moments [2] and further application of SEM to the matrix
equation to determine frequency and time response solutions is given
in [1]. First the currents ix(x) and iz(z) are represented in terms
of piecewise sinusoidal sub-domain expansion functions and the re-
sultant functional equations are ''tested" at various match points,
Fig. 2, on the structure which results in a partitioned matrix

equation for the unknown current coefficients I(s),

T()T(s) = V(s) (3.1)
where

Z(s) = [KE E] (3.2)

_ J

I(s) = %f' (3.3)

A contains elements of the x and z directed L-wire structure and its
image, and V(s) is a column vector corresponding to the incident field

terms

(3.4)

w
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match points used in the Hallen-type coupled
integral equations.




and Fg and Pz are given by the integrals

X
m .
_ 1 i inh >(x_-£)d
F§ = - §U'J Ex(g) sinh Z(x, g)de
g=0
)
z _ _ 1 10y cinh 3(z -2)d: (3.5)
Foo= - 35 | E (@) sinh z(z -t)de
=0

In the integrals (3.5), Ei(x) and Ei(z) are the components of the
incident field along the x and z directions respectively, evaluated
on the scattering structure.

Written in terms of E6 and E¢ polarization components, x and

z components of the plane wave incident field are given by

. O 1' %-Zd cos 8
Ei(x,s) = [?e(s) Ccos 6 cos ¢ - E¢(s) sin ?J 1-e

-2 sin 9§ cos b X (3.6)
.ec

and

Ol

. 2d cos 8 %cosez -—i—cosez
E;(z,s) = ~Ee(s) sin 8 |e e + e (3.7)

where 6 and ¢ are the angles of the incident field with respect to the

direction of propagation of the plane wave.
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The solution of the matrix Equation (3.1) is given by
T(s) = Z 1 (s) V(s) (3.8)
According to the singularity expansion method [3], the actual

induced current distribution given by the upper partition of the

column vector (expression 3.8) can be written as

(3.9)
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where s = s; are poles of Z"J(s) and are the complex natural re-
sonant frequencies of the structure and ?? denotes the corresponding
residue matrix

Y. = fim (s~si) 71

5>S.
1

(s) (3.10)

In the previous report [1] methods are described for numerically
calculating the natural resonant frequencies and the residue matrix.
The mathematical development given in [1] also leads one to rewrite

expression (3.9) as

T(s) = 8,3 .H; vis) (3.11)
1
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where 3& is the modal current distribution, ﬁi is the coupling
vector corresponding to s = S; and B is a normalization constant.
The frequency domain solution corresponding to a time harmonic in-
cident field can be obtained by substituting s = jw in the expression
(3.11).

To obtain the time domain solutiop, therLaplacg inverse transform 7

of expression (3.11) is found;

_ o o, THT
Tt) = 11 Ts) = -i*-J } L1 Gsy St oas (3.12)
1

-1 -1 7 sOH
o(t) =L 9(s) = 5= — V(s) e ds (3.13)
2nj é 1 ETE_EET
B
_ 4 .
where Q = —az-is the modal charge distribution at s = Sis and CB is the

Bromwich contour in the complex s-plane.
For a step function plane wave incident, the expression (3.12)
becomes

I(t) = ] 8T V() (3.14)
1

13



where

V(0 = [v; (®)]

1 Vh(s)eSt
= 77 | s(s-si) ds (3,15)
Cp
and in the above column vector
1 o
- . S o
Vo) = =5 [ E;(E,S) sinh Z(p, -£)dz (3.16)
g=0

where
X, m=1,2, ..., Q+1

P= 32, m=q+2, ..., N+Q+2

and
Py = XqoXgsee0Xgp1925 20000 0 Gqe

Hence, substituting (3.16) into (3.15), the element Vmi(t) of the

|

i N 1 1 . t
J E;(E,SJ sssT 5 sinh %{pm—g)es ds|de
C i i i _l
B

colum vector (3.15) reduces to the form

P

_-1gm (1

Vi (8 s—o‘J 77
£=0

(3.17)
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For Ee—polarization, the component E;(g,s) of the incident
electric field is given by the expressions (3.6) and (3.7), and is
rewritten below as

S S

- - 248 - <lv,£-D]
Eg(g,s) = ape © 1=, Age 2 (3.18)

where for p = x and m = 1,2,3,...,Q+1

=3
1}

-A2 =E. . Cos 6 cos ¢

1 80
Yl = YZ = sin 6§ CoSs ¢
D = 2d cos 6

and for p = z and m = Q+2,...,N+Q+2

A, = AZ = -E sin 8

1 80
Yl = -Yz = CO0S 9
D= 2d cos 8

The factor D/c in (3.18) represents the equivalent time delay due to
the distance of the L-wire structure over the ground plane.

Substituting (3.18) into the expression (3.17), we obtain

15
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Because of the presence of the unit step functions in (3.19) due to
causality conditions, integration is performed for TysTysTgsTy > 0

and whenever at least one of the limits of integration is positive.
Hence, the time domain solution is obtained by substituting the

expression (3.19) for vmi(t) into (3.14). Similar steps to those of

16
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[1] yield the time domain charge distribution when use is made of

Equations (3.13) and (3.17).
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IV.  NUMERICAL RESULTS

The results of the application of SEM to the L-wire structure
over a conducting ground plane are presented in this section for the
geometrical parameters r/L = 0.7, al/L = aZ/L = 0.001 and d/L = 0.5.
In addition, pole trajectories are presented to show the
influence of changes in radius and distance abtove the ground plane.
Most of the results found correspond closely with results one
would expect on the basis of the results obtained in the previous
studies on L-wire. [1] and the cylinder above a ground plane [4].

Table 1 gives the location of the complex natural frequencies,
which are shown in Figure 3. The figures also serves to identify
the indexing convention oftthe poles. The poles appear to be
located in layers parallel to the jw - axis, and those poles of
the layer closest to the jw - axis are slightly perturbed compared to
those of the isolated case considered in [1]. The poles located in
the remaining layers appear to be due to the interaction between
the L-wire and its image. The zigzag shift in the location of
successive poles in the layer close to je - axis is due to the
location of the bend which closely determines the coupling between
the two arms of the L-wire structure [1]. Figures 4 and 5, show the
trajectories of the S11 and slzxpoles for a fixed distanceover the

ground plane when the radius of the L-wire is increased gradually.
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1 1 -0.0748 1.5002
Z -0.1236 5.1431
3 -0.2303 4.6759
4 -0.3142 6.2497
5 -0.3006 7.8264
6 -0.3890 9.3958
7 -0.4033 10,8623
8 -0.3616 12.4642
9 -0.4005 14.0902
10 -0.4790 15.6514
2 1 -1.8601 0.0
2 -1.5249 3.0182
3 -1.4977 6.2753
4 -1.4430 9.4510
3 1 -2.4670 1.0290
2 -2.1678 3.0309
3 -1.9680 6.2191
4 1 -3.5845 0.0

Table 1. Natural frequencies of L-wire over ground plane, r/L = 0.7,

a,/L = a,/L = 0.001, d/L = 0.5,
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Figure 4. Trajectory of the pole Syi as a function of the
radius of L-wire, v/L = 0.7, d/L = 0.5.
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The trajectories tend to move away from the juw - axis, thus in-
troducing more damping into the system as the styucture gets

thicker. Figure 6 gives the trajectory of s,. with the radii of

11
the arms held constant and the distance d over the ground plane
gradually increased, A trajectory showing a similarity to those
observed for a circular cylinder parallel or’perpendicular to a
ground plape [4] is also apparent in the present case of the L-wire
over the ground plane. The trajectory apparently spirals around the
pole location correspanding to the isolated case until apother pole
from the next layer enters inte its path., In Rigure 7, the second
layer pole trajectories are traced and as the distance to the ground
plane is increased, they tend to move towards s = 0, Apparently,
for thin structures poles of the second layer pass close to and
interact with, but ultimately miss the spiral trajectory of the S1n
layer as d is increased, However, the closer the secondary layer
trajectories come to $11» S58Y, the more perturbed the 11 spirals
become. In Figure 8, the trajectory of $19 1s shown as the distance
over the ground plane is increased. The trajectories for the second
layer poles are shown in Figure 8 and are plotted with an alternative
normalization in Figure 9. The normalization to distance above the
ground plane in Figure 9 emphasizes the association of these poles
with L-wire to its image interactions, és seen by the relative
insensitivity of the imaginary part of the (normalized) resonant

frequency to changes in d.
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Figure 7. Trajectories of the second layer poles Sp1, Sp2 and
Sp3 as a function of the distance of L-wire from
the ground plane, r/. = 0.7, al/L = aZ/L = 0.001.
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Trajectories of the second layer poles Sp1, S22 and
Soz as a function of the distance of L-wire from

the ground plotted with distance d as the scale factor,
r/L = 0.7, al/L = aZ/L = 0.001.
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In Figures 10-12 are shown the real and imaginary parts of the
modal current distributions corresponding to the first layer poles.
Their distribution along the L-wire structure is not only influenced
by the location of the bend ag was found in [1], but also by the
distance of the structure from the ground plane. However, the numerical
results show that these influences are relatively minor.

The coupling coefficients Cuﬁn and C corresponding to the

gan
first eight poles close to the jw - axis are calculated for a delta
function plane wave incident which excites the bend at t = 0 and are
presented in Figures (13-15). Also Figures 16 and 17 show the Caﬁn

and CBK coupling coefficients of 11 and 15 poles as the distance

n
over the ground plane is increased. These coupling coefficients are
similar to those defined in [1] wherein the incident field is re-
solved into two linearly independent components one of which excites
the horizontal and the other excites the vertical arm, respectively,
of the structure. The reflection of the incident field from the
ground plane is ignored in the definition of the coupling coefficients
since the effect of the reflected wave may be simply treated by
superposition of thé appropriate plane wave.

The coupling coefficient Ci[S] is given by the expression

V(si) (4.1)
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Coupling coefficient C, in milliamperes of an L-wire
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r/L = 0.7, d/L = 0.5, al/L = az/L = 0.00%.
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Figure l4a. Coupling coefficient C; in milliamperes of an L-wire over
a ground plane for resonant frequencies S14,515 and Syg,
r/L = 0.7, d/L = 0.5, al/L = aZ/L = 0.001.
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Figure 14b.

Coupling coefficient Cg in milliamperes of an L-wire over
a ground plane for resonant frequencies Sy4,S15 and Sig,
r/L = 0.7, ¢/L = 0.5, a,/L = aZ/L = 0.001.
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Figure 15a. Coupling coefficient C, in milliamperes of an L-wire over
a ground plane for resonant frequencies Si7 and Sqg,
r/L = 0.7, d/L = 0.5, al/L = a,/L = 0.001.
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over a ground plane for resonant frequencies Sj7 and Spg,
r/L = 0.7, d/L = 0.5, al/L = aZ/L = 0.001.
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Figure 17a. Coupling coefficient C, in milliamperes of an L-wire over
a ground plane for resonant frequency Sy, for various
distances d, r/L = 0.7, al/L = a,/L = 0.801.
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Figure 17b. Coupling coefficient Cg in milliamperes of an L-wire over
a ground plane for resonant frequency Sj2 for various
distances d, r/L = 0.7, al/L = aZ/L = 0.001.
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and resolving V{si) into two components

Cl - al * C81 (4.2)
where
Cai = BiHi Va(s.) {4.3)
and
= _'i‘_
CBi BiHi Vs(si) 4.4y

where V;(si) and Vé(s) are calculated according to (3.4) and (3.5)

with the terms

. - = X
i _ C
EXa(S) EOX e
-1 <o < +] (4.5)
i _
EZa(s) =0
from which Cai are determined and
i _
EXB(S) =0
-1 < g < +] (4.6)
s
_E.BZ

i -
EZB(SJ =E,_ e

from which C_. are determined. EOX and E,_ are the magnitude scale

Bi 0z
factors determined by the polarizaticn of the incident electric field



and o and g are the direction cosines with respect to the x and y
axes of the ficticious incident field which excites only one of the
wire arms.

Neglecting the reflected parts of the field terms due to the

ground plane, for E6 - polarization

EOX = EO Cos 8Cos ¢
EOZ = - EO sin 6
@ = sin €& cos ¢
B = cos © 4.7

Hence the coupling coefficients presented in Figures 13,14 and 15
show only the effect of the shift in the location of the pole due to
the ground plane as compared to the isolated case. The actual
coupling coefficients i and cBi for the L-wire structure over the
ground plane can be constructed corresponding to the incident and

reflected fields of Equations (3.6) and (3.7) exciting the structure

according to

= S5
. ET'Zd cos 6
Cui = Cui(a)L% - € (4.8)
S.
E£ 2d cos 8
ch = Csi(-B) e + CBi(B) (4.9
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The resultant coupling coefficient cs is obtained by the
superposition of the individual coupling coefficients s and Cose
In terms of coupling coefficients the expression (3.11) may

be written as [3]

(4.10)

In Figure 18, the frequency domain solution cbtained from SEM
calculations at three peints on the structure is given corresponding
to a time harmonic plane wave incident and the results are compared
at the junction point by solving the coupled integral equations (2.1)
and (2.2) by direct moment method solutions in the frequency domain.
In Figures 19 and 20 are given the time domain current and charge
distributions as obtained by SEM for Ee-polarization with a step
function plane wave incident and these results are checked at the
junction point by direct Fourier inversion of the frequency domain data
obtained by solving the coupled integral equations. Figure 21 shows
the convergence of the time domain current as the number of poles

closest to jw - axis is increased.
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Variation of current on the L-wire as a function of frequency
for a plane wave incident, r/L = 0.7, d/L = 0.5, a,/L =

aZ/L = 0.001, o = 135°, ¢ = 45°, Eg - polarization.
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Figure 19. Time domain current, step function plane wave incident,
6 = 135°, ¢ = 45°, Eq - polarization, t = 0 at x = -T;
r/L = 0.7, d/L = 0.5, al/L = a,/L = 0.001.
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Figure 20. Time domain charge, step function plane wave incident,
6 = 135°, ¢ = 45°, Ej - polarization, t = 0 at x = -T;
r/L = 0.7, d/L = 0.5, al/L = aZ/L = 0.001.
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Figure 21.

Convergence of time domain current, 6 = 135°, ¢ = 45°,
Eg - polarization, step function plane wave incident,
t=0atx=-r; r/L=0.7, d/L = 0.5, al/L = az/L = 0.001.




V. CONCLUSIONS

A structure with coupled elements in the form of a L-wire
and L-wire over a conducting ground plane can be characterized by
SEM. However, in the latter case the results are neither so easily
displayed graphically nor so submissive to physical interpretation.
This is partially true because of the introduction of another
parameter, the distance d above the ground plane, but the primary
difficulty is in the complex interactions and trajectories of the
poles and the problem of classifying the various pole types which
appear. Possibly ground plane effects might be better handled using
a multiple scattering approach to account for the interaction of an
isolated L-wire and its image.

The pole patterns obtained for the L-wire and the L-wire over
the conducting ground plane follow closely those obtained for the
circular cylinder and the circular cylinder parallel or perpendicular
te the ground plane. The zigzag nature of the location of the poles
closest to juw - axis is mainly due to the location of the bend on
the L-wire structure. It was observed that the bend and the ground
plane have minor effects on the distribution of the modal currents.
The coupling vector obtained according to Hallén's formulation can no
longer be compared to those in the E-field formulation, but the
coupling coefficients are the same. The time domain solution is

mainly contributed from the poles closest to the jw - axis.
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