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ABSTRACT

An analysis of the shielding effectiveness of braided-wire shields -
is made using the parameters of the woven wire and the theory of electro- __
magnetic coupling through small irises, The coupling through the rhombic-
shaped holes in the braid is approximated by using the electric and mag-
netic polarizabilities of elliptical holes of the same width and length
as the rhombus. The analysis is concentrated on the transfer impedance
and the mutual capacitance of the shield., The transfer impedance is
calculated and plotted for several shields of different optical coverages.

The variation of mutual capacitance and mutual inductance with the weave
angle of the braid are examined, and the transfer characteristics of two-
layer shields is analyzed.




I INTRODUCTION

This note is concerned with tﬁe analysis of braided-wire shields
of the 1lype commonly used in RF transmission lines and in shielded
multiconductor cables for electronic systems. Tﬁe analysis is based on
the theory of coupling through electrically small irises and follows the

L]

procedures developed by Marcuvitz and Kaden. The small-iris fheory
is then adapted to the single-layer braided shield so that the transfer
impedance of the braided shield can be expressed in terms of physical
parameteré of the braid such as wire size, number of wires per carrier,
number of carriers, and weave angle (or picks). Finally, this analysis
is carried further to develop the transfer impedance and admittance for
double-braided shields. These transfer characteristics of a typical

high-coverage braided shield and of a double-braided shield, each layer

of which has the same coverage, are calculated for comparison. The ex-

pressions for the transfer impedance and admittance and shield parameters .
are arranged in such a manner that the effect of varying such parameters
as shield transparency (or coverage), wire size, weave angle, etc., can

be assessed.

The transfer impedance of a shield is one measure of the effectiveness
of the shield, It is a property of the shield alone,land is therefore
independent of the type of core conductors inside the shield and of the
. type of 1oads‘bethen fhe ends of these core conductors and the shield.

In its most general form, the transfer impedance is defined as
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N
[t}
B




where I is the total current flowipg in the shield, and dvV/dx is the
change in voltage genergted by this current along the transmission line
formed by the shield and in imaginary perfectly conducting filament en-
closed by the shield., (For a cylindrical shield of circular cross section
the perfectly conducting filament may be visualized as lying along the
axis of the cylinder.) For solid-walled metal shields in which the only
fields that avpear inside the shield are those that diffuse through the
metal, dV/dx = E, where E is the longitudinal electric field along the

inside surface of the shield, and the transfer impedance can be written
(2)

Shields that permit the exterior fields to penetrate through holes,
'cracks, etc., in the metal wall are charaéterized'by mutual-coupling
components as well as the diffusion components, so that the more general

definition of transfer impedance given in Eq. (1) is required.

The transfer impedance of a shield can be measured in the laboratory
by producing a knqwn current in the shield (with external fields). and
measuring the voltage developed along 1 meter .of shield between a small
wire inside the shield and the wall of the shield. This experiment is
shown schematically in Figure 1, where‘the shield current is developed
by making the shield the center conductor of a coaxial transmission line.
The voltage developed along an electrically short length £ inside the
shield is measured by connecting a wire to one end of "the shield, running
it through the shield, and measuring the voliage developed between the
wire and the shield at the opposite end of the shield. The transfer

impedance is then

7 ===, - . (3)
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FIGURE 1  SCHEMATIC DIAGRAM OF TRANSFER IMPEDANCE MEASUREMENT CIRCUIT

To apply the transfer impedance to cable analysis in which the
currents and voltages developed on conductors inside the shields are to
be determined, given the shield current I, the transfer impedance and
shield current are treated as a distributed source in what is otherwise
a classical transﬁissioq—line analysis. An element of the transmission
line of length dx is illustratéd in Figure 2(a) with the element of dis—
tributed voltage source ZT Iodx. The differential equations for the

common-mode current and voltage on the internal conductors are

Vv
3= + Z I = ZTI 7 (4)
o1
— + YV =0 (5)
ax

These can be combined and written as second-order differential equations

in the current and voltage as

2
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FIGURE 2 TRANSMISSION LINE MODELS INCORPORATING THE TRANSFER
IMPEDANCE AND THE TRANSFER ADMITTANCE
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where ¥ = YZ. These equations are identical 1o the classical trans-

mission-line equations except for the terms on the right containing

7Z and I. These equations can be solved, subject to the applicabie
boundary conditions for the common-mode voltage V and current Ii at any
point along the cable. (If the cable is to be modeled as a chain of
lumped-element sections, the infinitesimal length dx in Figure 2(a) 1is
replaced by a finite length £, and classical circuit analysis techniques

are applied.)

In addition io the coupling produced by penetration of the magnetic
field through the openings in the shield, there may also be electric
coupling produced by an electric field, which would otherwise terminate
on the outer surface of the shield, penetrating through the holes in the
shield and terminating on the inner conductors, Coupling of this form
can He represented by a transfer admittance YT between the return path
for the shield current and the inner conductors as illustrated in Figure
2(b). This transfer admittance is the susceptance per unit length between
the inner conductor and tﬁe shield return-current path. As implied in
Figure 2(b), an analysis of the effects of electric coupling (and, indeed,
the specification of YT) requires that the external circuit of the shield
current be considered, as well as the internal circuit of the shielded
conductors. The transfer admittance can be measured in the circuit of
Figure 1 if the outer structure is open-circuited at the right end (so
that no current flows in the shield) and the shori-circuit current,

instead of the open-circuit voltage, is measured.

The derivation of the transfer admittance of a hole in a shield with

a concentric return is also given by Kaden. This derivation develops
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the equivai;ﬂffelectric—dipole moment associated with an electrically
‘small iris and the ch%rge ihddé%d on the internal conductors by this
dipole moment. The analysis yields a mgtual capacitance 012 between
the internal conductors and the shiéld return path associated with the
hole (iris) inrthe shield. The trans;ér admittgnce gs§qciated with
holes is then YT = jwclzf
When the transfer admittafice YT is included the increment of trans-
mission line contains a shunt current source Vo YT as well as a series

voltage source I ZT. The equivalent circuit of the increment of trans-
o

mission line containing both sources is shown in Figure 3. Notice in

Z~I _dx
; To Zdx I+%£—dx
e -
A v Y +a—v dx
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FIGURE 3 EQUIVALENT CIRCUIT FOR THE INTERNAL CIRCUIT WHEN BOTH
THE TRANSFER IMPEDANCE AND THE TRANSFER ADMITTANCE
ARE INCLUDED

Figure 2(b) that a positive voltage VO causes current to flow out of the
internal conductor through YT, so that the distributed current source is
J = - Vo YT‘iH Figure 3. When only the current source VO Y in Figure 3
is considered, the differential equations for the internal current and

voltage become

—— + ZI =0 h (8)
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Y V=ZY Voo (1

This expression is also similar to the classical transmission line

equation except for the source term VO YT.

II PERFORATED TUBULAR SHIELD

A, Transfer Impedance

The properties of leaky shields can be ascertained by studying the
perforafed tubular shield illustfated in Figure 4. The éylindrical tube
with uniformly distributed circular holes is amenabie to precise analy-
tical treatment which can be used to study the coupling mechanisms and
to clearly define the effect of‘shield coverage and hole size on shield-
ding effectiveneés.l’z The trends established for the perforated cylinder
can then be used in the evaluation of more practical leaky shields such
as braided or knitted shields, which do not\&ield to rigorous analytical

freatment.

The transfer impedance of a perforated thin-walled shield consists
of two parts--that due to diffusion through the metal, and that due to
mutual coupling fhrough the holes. The contribution of the diffusion is

YT /
Z =
d JA sinh YT - B (11}




V holes/m

- TA-1404-21

FIGURE 4 |LLUSTRATION OF A PERFORATED TUBULAR SHIELD
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where A is the cross-section area of ‘the metal in the tube, ¢ is the

conductivity of the shield, T is its thickness, and Yy is the propagation
factor in the shield material. For a solid shield, A = 2naT, but for a
perforated shield containing v uniformly distributed circular holes per

unit length, each of radius r , the average cross-section area is
o}

2
A = 2maT = Uﬁro T

2naT(l - T) (12)

i}

where T is the transparency of the shield as defined by the ratio of the

hole area to the total area of the surface of the shield:

2 2
vnYrY ur
o o
T = =

2na 2a

(13)



The diffusion component of ihe shield transfer impedance is thus

Y 1
= B B ’ . 4
Zd 2xac(l - T) sinh VYT : (14

The mutual-coupling component of ihe transfer impedance is produced by
magnetic-field penetration through the holes in the shield and can be

written
Z = jwuM (15)
m 1

where‘M1 is the mutual coupling for one hole. The mutual coupling
through a.hole in a cylindrical shield of radius a depends on the size
and shape of the hole and its orientation with respect to the éurrent or
magnetic fieid. The voltage induced inside a cylindrical shield by a

magnetic field penetrating the hole is

:u Hm
- o]
V = jw

2na (16)

¥

where H is the uédistﬁrbéd magnetic field aﬁ the'outside'surfacéréf ther
shield and m is the magnetic polarizability of the hole. The polériza—
bility of a hole is the ratio of the effective dipole moment of the mag-
netic field penétrating the hole to-the undisturbed magnetic field at

the surface (i.e., m = M /i H, where M is the effective dipole
eff o eff

£

moment of the magnetic field pemnetrating the hole). The polarizabilities

of small holes have heen derived for circles, ellipsés, and narrow slifé,

.
,4,5

and they héve been measured for various other shapeé.

10
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In terms of the current in the shield,

the induced voltage is

Vo= j ml (17
= L
Ju o )
4 a _
since
.
T 2na
and the mutual inductance of one hole is thus
Bom
-0
M = - 18
1 2 2 (18)
4 a
The mutual-coupling term of the transfer impedance is. thus
b om
7 = juu — (19)
=) 2 2 :
4 a
and the total transfer impedance is
Y Yol
Q
7 = — — -+ v B 20
T 7 27ac(1 - T) _sinh yT = 9 2.2 (20)
i

The first term is identical to the transfer
except for the scalar factor (1 - T), which

pedance in proportion to the inverse of the

impedance of a solid shield
increases the transfer im-

shield coverage. The second

term is a mutual-inductance term that depends on the number of openings

v in the shield and the polarizability m of each opening. The effect of

fhe number and size of the openings can be made more apparent if a

11



particular hole shape, such as a circle, is assumed and the polarizability

" is evaluated. For a circle of radius ro, the polarizability is

3
4xr .
o
= 21
m 3 (21)
and
3
b r 2u r T
: o o o
Jwo, = juu 202 = jw (22)
37 a 31 a

Thus it is seen that the mutual-coupling term depends not only on the
transparency T of the shield, but also on the size of the holes (ré) by
which this transparency is achieved. Thus a shield having a given trans-
parency T will be a more leaky shield if this transparencyvis caused by

a few large holes than if it is caused by many small holes,

B. Transfer Admittance

By a similar analysis the transfer admittance relating the induced
current per unit length J to the external voltage between the shield
and its return path can be determined. The current per unit length
induced in the internal conductor by the external electric field pen-

. . L~ 1
etrating through the holes and terminating on the inner conductor is™’

J=-V Y =-V juc
o T o J 12
pC C
12
=~V jwy———om 23
o SV TS : (23)
41 a ¢

12



where p is the electric polarizability of the hole, Cl is the capacitance
per unit length between the inner conductor and the shield, and 02 is

the capacitance per unit length between the shield and its current re-
turn path, The voltage Vo is the voltage betwéen the internal conductor
and the shield current-return path [see Figureiz(b)]; for cable shields
having no apparent current return path, the product C2 V can be replaced

o
by an external charge per unit length QO.

For the circular hole of radius r , the electric polarizability is
o

2r B
o
— N - . * 24
P =3 (24)
and the transfer admittance is
3
Cchr Tr .
0 o
Y = jwu = jwC C K 25
T T 2 2 I e (25)
6 a € 3t ae
o

The transfer admittancé is thus also proportional to the product of the
coverage and the hole size. 1In addition, however, the transfer admittance

depends on the external and internal characteristic impedances of the

; . . i 3 1
shield, as can be seen by substituting Cl,f 7 -and C2 =37 :
o e oe
1 Tr
o
Y = Jjw - 26
r T w2 (26)

2
e o0 oe 3t ae

Therefore low-impedance cables tend to have larger transfer admittances,
but the effect of the transfer admittance on terminal voltage tends to
be greatest for cables terminated in high impedances because Jﬂzl is

proportional to the terminating impedance Z1

13



III BRAIDED SHIELDS

A, Transfer Characteristics , N . . _

The characteristics of a braided shield can be defined in terms of
the radius a of the shield,* the number of carriers C, (belts of wires)
in the braid; the picks, P (number of carrier crossings per unit length);
the ends, N (number of wires in each carrier); and the wire diameter, d.
A typical braid pattern is shown in Figure 5(a) and an enlarged illustra-
tion of one diamond-shaped section of the braid is shown in Figure 5(b).

The pitch angle & of the weave is -

- ~aP )
® = tan 1 [%gz—} (27)

and the coverage of one carrier of the braid is

The transparency of the crossed carriers [as shown in Figure 5(b)] is
determined from the area of the diamond-shaped holes between the wires
and the total area of the shield. From Figure 5(b) the area of the

diamond formed by the crossed carriers is

W2
= - : 29
c sin 2« (29)

&
Throughout this note it is assumed that the shields are ihin and the

holes are small so that a > d and a >> r
o’

14




BRAID PATTERN DEVELOPED ON A PLANE

(a)

ONE DIAMOND OF BRAID

)

b

(
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PROPERTIES OF A TYPICAL BRAIDED SHIELD

FIGURE 5~
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There is one diamond-shaped hole associated with each carrier-crossing.

The area of each hole is

2
3 (W - Nd)

A —
h sin 2¢

The shield transparency T is then

A 2
_— _h (W - Nd)
AT 2
c W
and the shield coverage is
A
h 2Nd Nd
K=1-— =—-[—
A W W
c
i 2
= 2F ~ F

The volume of-metal in the braid is

The number of holes per unit length in the braid is

4na sin ¢ cos « F2

22
N d

and each hole is a diamond whose longitudinal axis is

16

(30)

(31)

(32)

(83)

(34)




W ~ Nd _ l, Nd _ (1 - F) §d (35)
sin ¢ P sin¢ F sin o
and whose transverse axis is
W - Nd'_ tan « Nd ~77(1 - F)rNd (36)
cos & P cos @ F cos & ‘ )

If the pitch angle ¢ is less than 45°, the major axis of the diamond-

shaped  -holes is perpendicular to the magnetic field, and the diamond is
oriented for minimum magnetic coupling through the hole, If the pitch
angle o is greater than 45°, the major axis is parallel to the magnetic

field, and the hole is oriented for maximum magnetic coupling.

The transfer impedance of the braided shield can now be approximated
with the guidance of the perforated-tube results. The transfer impedance
will consist of two components, one representing diffusion of electro-
magnetic energy through the metal and one representingApenetrétion of

. the magnetic field through the diamond-shaped holes, "~ The diffusion term
may be approximated by assuming that each conductor of diameter d is
essentially isblated from all other conductors.(i.e., that the contact
resistance between wires is large compared to the wire resistance) so

that the dc resistance per unit length of each conductor is

c 4 1
R =~ = R = 3 - L e - (37
o N 2 2 2 (37)
nd NC o cos & 7 ad ¢ F cos &
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The variation of this low-frequency diffusion term with frequency may be
approximated by assuming that it behaves in the same manner as the dif-
fusion term for thé perforated shield of wall thickness d. Thus the

approximate diffusion term for the braided shield will be

4 d
7 Y . (38)

2 sinh vd
wd NC U cos @&

By analogy with the perforated shield we determine that the mutual

inductance term for U holes/m will be

(39)

where wn is the magnetic polérizability of the diamond-shaped holeiand

' 1s the hoie density given in Eq, (34) above. Although the polariza-
bility of a diamond-shaped hole is not readily available from the litera-
ture, it can be determined experimentally using electrolytic-tank tech-
niques.4 "Data for similarrshapes, éuchrasréllipses and Slots with semi~-
circular ends (see Figpre §) suggest that the polarizability of the
diamond-shaped hole can be represented by the polarizability of énr
equivalentrelliptical hole.5 The magnetic polarizability of the ellip-
tical hole has been derived in closed form for the magnetic field paral-
lel to either axis of the ellipse. For an ellipse of eccentricity

2 2
¢ = [1 - (w/) ]l/

, where 4 is the major axis and w is the minor axis,

4
the magnetic polarizability is

I .2
, b8 :
My = 24 K(e) - E(e) (40)

18
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FIGURE 6 MAGNETIC POLARIZABILITIES OF RECTANGULAR,
ROUNDED-END, AND ELLIPTICAL SLOTS (magnetic
field parallel to major axis)

for the magnetic field parallel to the major axis, and

3 2 2
n - wd (1 - e ) e
w24

> : (41)
E(e) - (1 -~ e ) K(e)

for the magnetic field parallel to the minor axis. K(e) and E(e) are

the complete elliptic integrals of the first and second kind, respec-

tively, defined by

19



n/2 do
K(e) = (42)
/\/ 1—e25in2co -
o .

/2

E(e) i/r\/l_ e2 sin2 v dy . (43)

Q

Similarly the mutual capacitance between the internal conductor and the

shield current-return conductor outside the shield is

pC C
12
= U“—z—-é— oy (44)

ClZ
. 4dn a e
o

where the electric polarizability of the ellipse is

ik 1 - e
= » 5
P =% TEG (45)

Using the premise that the rhombic holes in a braided-shield
pattern can be simulated by ellipses having similar major and minor axes,

we obtain, for the mutual coupling associated with the holés,

e 2
M, EC—O a-0% < . o < 45°
' E(e) - (1-e ) K(e)
(46)
T 2 2
o 3/2 e / l-e
~y —— - > o
~ 5T (1-K) k(o) = E(o) o > 45

and

20
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-2 (1-x) . < 450
12 N’6€ (o} E(e) ¢
(47)
nC_C 2
) 12 (1 K)B/Z\’l—e 7 , q > 450
6 C E(e)
€
0
where K is the optical coverage, C is the nﬁmber of carriers, and
2
e =¢Yl-tan « o < 45°
(48)

2
=V1-co’c o o > 45°

The complete'transfer impedance for the braided wire shield can then be

written

d v
Z =~R —%i—~—- +  JuM (49)
T o sinh vd 12

and the transfer admittance is YT = juclz., The high-frequency properties
of the braided wire shield are thus determined by the coverage K, weave
angle ¢ (or excentricity e), and the number of carriers in the weave

from Eqgs, (46) and (47), and the low-frequency shielding properties are

determined by the weave angle and shield material conductivity.

The variation of MIZ and Clz with weave angle for constant coverage
is shown in Figure 7. The mutual inductance per unit length increases
rapidly with increasing weave angle, but the mutual capacitance C12
changes very little with weave angle. This is apparent in Figure 7 where
shield radius, wire size, and number of ends has been fixed and the

number of carriers is allowed to vary in such a manner that the coverage

is constant.
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FIGURE 7 VARIATION OF MUTUAL iNDUCTANCE AND MUTUAL
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To illustrate the effect of M12 on the transfer impedance of a
éhield, the magnitude of the transfer function of Eq. (49) is plotted in
Figure 8 as a function of frequency for a braided wire shield of 1 cm
radius woven from 6.3 mil diameter copper wire. For comparison, the
transfer impedaﬁce of a tubular shield 6.3 mils thick is shown as a
dashed curve in Figure 8., As is often the case with braided shields, the
leakage term juMlz dominates the transfer impedance at frequencies above
about 1 MHz, while the diffusion term dominates below about 100 kHz, Note
that this is true even with a tight weave (98 percent coverage). For a
loose weave, the leakage may be observed to dominate the transfer im-
pedance at frequencies below that at which the knee in the diffusion

curve occurs,

B. Directional Effects in the Induced Signal

A comparison of the relative importance of the electric coupling
associated with the transfer admittance and the magnetic coupling
associated with the transfer impedance can be made by comparing the re-
sults for the short, lossless line terminated in its characteristic
impedance Zo.. The total currént from both coupling mechanisms for this

case is, at z = O (the left end),

14 ZT
o
I(0) = — — 4+ Y Z 50
(0 2 Z T oe (50
o
and at z = £ (the right end) it is
14 ZT
o
I(4) = — —_— - Y Z 51
%), 2 Z T oe (51)
o
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FIGURE 8 TRANSFER IMPEDANCE OF A BRAIDED-WIRE SHIELD
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where £ is the length of the line, Io'is the shield current, and Zoe
is the characteristic impedance of the external shield curcuit. Because

the electric and magnetic coupling are in phase for the negatively pro-

pagating components, the total coupled signal is greater for the matched

load on one end (z = 0) than it is for the matched load at the other . -
end. As is illustrated in Figure 9 for a short line, this directional

effect is caused by the combination of a ciréulating current induced by

the magnetic coupling with the shared current induced by the electric

coupling. (This directional effect of coupling through small apertures,

such as longitudinal slits, is the basis of some directional couplers.)

<
VO
§ Zoe
— ]
o
L.
12
T
(EE B é;) z
2 2 °
+
| o ! o
(a} MAGNETIC COUPLING {b} ELECTRIC COUPLING
TA-7995-291

FIGURE 9 COUPLING THROUGH A SHORT SEGMENT OF SHIELD THAT IS TERMINATED
IN ITS CHARACTERISTIC IMPEDANCE INTERNALLY AND EXTERNALLY

The terms unique to magnetic and electric coupling in Egs.(50) and
(51) are ZT/Z and YTzoe, respectively. If we take the ratio of these
o

terms, we get

25



zZ_ M
T _ 12 7 L (sg
a4 =" = , , 7 - (52)

Y Z 7 C
o oe T o oe 12

at high frequencies where the transfer impedance is dominated by the

mutual inductance Mlz. From Egs. (39) and (44),
e m B
) o
M 2 2
12 47 a uosm
c T pcc T cec (53)
12 Pty 172P

45 a ¢

where m and p are the magnetic and electric polarizabilities of the

shield apertures, and C1 and C2 are the capacitance per unit length of

the internal transmission 1iné and the external transmission line,
Because uoe = 1/v2, Cl = l/vZo and C2 = 1/vZoe, when the

dielectric constant is the same inside and outside the shield the ratio

of the magnetically induced current to the electrically induced current is

Y12
m
q = ===, S ()
P

zZ Z C
o oe 12

the ratio of the magnetic and electric polarizabilities of the apertures
in the shield. A plot of this ratio for the elliptic holes used to
approximate the apertures in the braided wire shield is shown in Figure 10.
From this plot, it is apparent that the magnetic coupling is larger than

the electric cdupiing for all practical weave angles.

The ratio of the internal currents at the ends of the line'is,

from Eqs. (50), (51) and (54),
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FIGURE 10 RATIO OF MAGNETIC POLARIZABILITY TO ELECTRIC POLARIZABILITY
FOR ELLIPTICAL HOLES

I(0) — m+p ‘ ' (65)

This ratio is plotted in Figure 11 as a function of weave angle for the
braided wire shield. As is apparent in Figure 11, this ratio is less
than 0.1 for weave angles less than 20 degrees. This directional effect
could, therefore, be very important in evaluating shielding effectiveness

data measured under matched conditions,
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IV DOUBLE-BRAIDED SHIELDS

A. Transfer Impedance

When two or more shields are used and the shields are connected
together at eiectrically shorf intervals, the equivalent transfer im-
pedance of the multiple-shield structure can be obtained by using an
equivalent circuit model such as that shown in Figure 12, For two

shields, this equivalent transfer impedance is

b
[N

Z
2 T1 T2
ZT = T— = Z + Z + WL ' (56)
1 s1 " fg2 T Ie
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FIGURE 12 CIRCUIT MODEL FOR ANALYZING
DOUBLE SHIELD

where ; -
ZT1 = Transfer impedance of the first shield
ZT2 = Transfer impedance of the second shield
ZSl = Internal impedance of the first shield
ZSZ = Internal impedance of the second shield
le = External inductance of gap between the shields.

The external inductance le between the shields is*given'by

o}
=— log | — : ; (57)
27 a

. %,
where a is the radius to the inside surface of the outer shield and

a_ is the radius to the outside surface of the inner shield. For thin

tubular shields, the internal impedance is

o

a2 T
< PraTo YT coth VT (58)
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and by the same analogy used in arriving at Eq. (38), the internal im-

pedance of a braided shield is approximately

4
A , vd coth vd . (59)

s 2
nd NCO cos ¢

Normalizing the internal and transfer impedances to the dc resistance

of the shield, we obtain

I z
Ei = vd coth vd (60)
(o]
and
o vd WM
—e Ty = (61)
R sinh vd R
(8] [s]

The equivalent transfer impedance of two braided shields is thus

v d M v d M
11 .
RoPoz\sinn v o YR - i i - g T R'Z
[e] (e}
sint v, 4y o1/ \ZH% Yoly 02
T R ~v.d th v.d. + R d th e
CRopYpdy coth v dy TR Lypdy coth y,d,y o Jul (62)

This expression may be considerably simplified in two frequency ranges,
When le] << 1 (low frequencies) for both shields, vyd/sinh vyd =~
vd coth vd ~ 1, and in this frequency range both jwM and jwL are usually

small compared to RO (unless the braid is extremely transparent), so that

R R
ol o2
T R _ +R
ol 02

N
4

(low frequencies) , (63)
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At high frequencies, such that wM and wL are much larger than the dif-

fusion terms and L >> 7 Z
12 81’ Ts2’

M_M

Z =~ jw

- (high frequencies) . (64)

12

The frequency ranges where these approximations are valid are apparent
from an examination of Figure 8. The low-frequency approximation applies
in the region where the normalized transfer impedance of both shields

is constant at a value of approximately 1.0, and the high-frequency
approximation applies to the region where the transfer impedance is
proportional to frequency. Because the gap inductance L12 is much greater
than the mutual ihductance M1 = Mé,'the high—frequency transfer impédance
of the double-braided shield is much smaller than that of the single-
braided shield, Thevlow—frequéncy transfer impedance of the double

braid differs by only a factor of 2 from that”df the single braid, since

‘ the dc resistance of the double braid is roughly % that of the single braid,

The analytical results for the double braid may be somewhat op-
timistic, Since it is assumed that there is no direct coupling between
the current in the outer shield and the interior conductors. This is
tantamount to assuming that none of the magnetic field that penetrates
the holes in the outer shield also penetrates holes in the inner éhield.
There will, or course, be some direct penetration through the holes in
both shields, butithe magnetic field penetrating both shields is ex-
pected to be a small fraction of the field penetrating the outer shield,

particularly if there is significant space between the shields.

The improvement in high—frequency shielding effectiveness as

measured by the ratio of the transfer impedances is
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z T M

T 12 1 N

Z = i =1 . (65)
T2 I8, 12

Thus the greatest improvement is achieved (smallest value of Ml/le)

when M1 is small (low transparency, small weave angle) and le is large
(large spacing between shields). Because a dielectric gap between the
shields leads to resonant shield-to-shield transmission lines, which may

be undesirable, an improved double-~braided shield might be one that usés

a layer of semiconducting plastic between the shieldéAsoﬁthat the in-
ductance term L12 can be increased without introducing high-Q transmission-
line resonances.

B. Mutual Capacitance

The effective mutual capacitance of the double shield can also be
expressed in terms of the mutual capacitance between the shield return
and the inner shield, the mutual capacitance between the outer shield
and the core, the inductance le, and the number of places per unit
length that the shields are connected together. To demonstrate this,
let us break ithe problem inté two parts, as suggested by Figure 13.
First considerrthe two shields and the shield return path as illustrgted
in Figure 13(a). The shields are periodically shorted at Us points per
unit length, and the mutual capacitance per unit length between the
shield return (coﬁductor 0) and the inner shield (conductor 2) £§ C02'
The current injected on the inner shield (conductor 2) by the external

voltage Ve is jw Vecoz/us. This current produces a voltage Vi between

the shields ,at the injection point x1 given by

Juv 002 LRLL
e
vV, = ——— j —_— 66
i U JW L '+ L (66)
s R L
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FIGURE .13 THE TWO PARTS OF THE ELECTRIC COUPLING PROBLEM
FOR DOUBLE SHIELDS

where LR is the inductance of the shorted section of transmission line
to the right of the injection point Xl and LL is the inductance of the
shorted line to the left. Since the inductance per unit length of the

shield-to-shield transmission line is L12, we have

1
L. =1L i - 67
R 12l T 1 (67
S
=L 68
LL 12(X1) (68)
and
L L
BL L. u X 2 x (69)
L.+ L ~ T12 "s1{v 1 :
R - s

The shield-to-shield voltage thus becdmes

= juwv C jw L — - x ) 7
Vi = 3W Cs |39 R X [T 1 (70)
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A hole in thg inner shield located a random distance, xz, from the hole

in the outer shield [see Figure 13(b) ] will be subjected to an excitation
voltage Vi(xz). Because Xl’ the location of the hole in the outer shield,
is also assumed to be random, however, we will average Vi over all values

of Xl' Thus we have

=
[t}

jwv C
J e O

(jw)2 C L v
= - BN CSY

Referring now to Figure 13(b), the current per unit length injected

on the core (conductor 3) by the voltage Vi is, on the average,

J = ju—= V_u ) (72)

When the average shield-to-shield voltage from Eq. (71) is substituted

in Eq. (72), we obtain

3
J = (jw) - Vv ‘ (73)

Thus, the double shield can be replaced by a single shield whose mutual

capacitance, COB’

is given by
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2 C C L
C..=(w _13 02 12 . (74)
03 ————2——— : : :

6 v
s

By eXpressihg the mutual inductances and capééitanceé in terms of
the polarizabilities of the holes in the shields, and assuming uniform

dielectric throughout, we obtain

2 .
M12 6 v mlmz
= S , (75)
C : S\ 2 p.p
03  (jw) C1C2 172

where C_ is the capacitance per unit length between the outer shield and
. )

the return path and C2 is the capacitance per unit length between the

core and the inner shield. If the coefficient

2
6 U
S
('w)2 Cc.C
AR R
is less than 1, the ratio M/C for the double shield (i.e., the ratio of
magnetic coupiing to electric coupling) will be smaller than M/C for the
: 4 -1
single shield, Since Us 2 Ua 1.5 X10 n for the l-cm-radius double-
braided shield, and since,/Clcz =~ 100 pF/m is a representative geometric
mean capacitance, the coefficient will be less than 1 for radian fre-

quencies

14
S 3.7 X 10 . (76)
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1Lus for all radio frequeﬁcies normally of interest, the equivalent
mutual inductance of the double braid is the only important leakage
term for shielded cables near a ground plane serving as the shield-

current return path.

As was the case in the analysis of the mutual inductance, this
analysis of the mutual capacitance neglects the direct coupling between
the core conductors and the shield return that is represented by field
iines that originate on the shield return and penetrate through the holes
in both shields to terminate on the core conductors. The analysis above
also presumes a randomness in the location of the holes and short cir-
cuits that does not really exist in braided wire shields. The location
of the shorts relative to each other and the location of holes relative
to each other in one shield is not random in these shiglds. The location
of the holes in the inner shield relative to the location of the holes
@n the outer shield may be quite random, however, and some holes in both
shieclds may be eliminated entirely by being covgred by a patch of braid
that acts as 2 short circuit between the shields. It should also be
apparent that for the hole densities and short densifies typical of two-
layer braided-wire shields, the assumption that the inductance of the
shorted segments of shield-to-shield transmission line can be accurately
represented by Egs., (67) and (68) must be made with some skepticism.

The intent of the anélysis leading to Egq. (74) however, was to obtain
an order-of-magnitude estimate of the effec? bf electric coupliqg through
the two-layered shield so that it could be evaluated in relation to the

magnetic coupling; this has been done.

V  CONCLUSIONS

The analysis of braided shields presenfed here illustrates the nature

of electromagneétic penetration of the shields and permiis the effects of
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various shield parameters on the shielding effectiveness to be assessed.
Although the analytical approach used here utilized some simplifying
approximations in both the diffusion and direct penetration analyses, it
is doubtful that a more rigoroué approach that takes into account the
circular cross section of the wires and the rhombic shabe of the holes
would be justified for cable—shielding analysis, The trends of the
shield behavior demonstrated here will not be altered by the more rigor-
oﬁs analysis, and it will usually be more economical and more accurate
to meésure the transfer impedance of a shield than to calculate it from
basic parameters. Only measurements of the shielding effectiveness can
be relied on to properly account for all of the details of braided wire

shield design and manufacture,

The trends evolving from the analysis of braided shields indicafe
that the high-frequency shielding effectiveness depends not only on the
shield coverage, but also on the size of the holes contributing to the
coverage (or transparency). Thus, a shield with a given coverage is
more effective if it contains many small holes than if it contains a
few large holes, In terms of the fabric of the braid, the shield woven
of fine wire with a small angle of weavevprovides the most effective
shield for a given amount of copper per unit length of shield., The
shielding effectiveness of the douple—braided shield is much better at
high frequencies than is the single-braided shield of the same coverage
if fhe inductance of the gap between the shields is large compared to the
mutual inductance of either shield, However, if the gap inductance is S@
very small, or if the mutual inductance is very large, the additional
copper invested in: the secqnd shield might better be used in a tighter

and less transparent single braid,
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