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Abstract

The penetration of quasi-static electric and magnetic fields into an
indentation (a two-dimensional well) in a ground plane is studied with the

aid of the Schwarz—Christoffei conformal mapping technique,
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I. Introduction

For aerodynamical reasons many aircraft antennas are housed inside
depressions in.the aircraft exterior skin. The depressions can have many
different shapes and will, of course, affect the antennas responses. It is
the purpose of this note to study the effects of a depression on the antenna
responses. The presence of these depressions will also spmewhat modify the
EMP coupling of the overall aircraft str;cture and this pérturbation effeéf
will be estimated.

In many cases the depression plays an important role in the way in which
the antenna works within "in-band frequencies'", e.g., a horn in the gigahertz
region. For our present EMP calculations, however, all depressions are
assumed electrically small, i.e., their linear dimensions are small in terms
of important wavelengths. When calculating the EMP response of these antennas
a quasi-static analysis is therefore sufficient.

The general problem of calculating the quasi-static electromagnetic
fields inside an arbitrary-shaped depression is difficult. The present note
is the first attempt addressing the depression problem and to make the problem
more tractable we will solve a two-dimensional indentation problem. Some |
three-dimensional depressions of special shapes are now being studied and the
results will be reported in a future Interaction Note. It should also be
mentioned that the complementary problem, i.e., an ellipsoidal boss resting
on a ground plane, has been investigated extensively in [13.

Both the electrostatic and the magnetostatic problems-of a rectangular
trough (or well) in a ground plane are formulated and solved in Section Il
with the aid of conformal mapping techniques. The conformal mapping is then
used in Section III to calculate (1) the magnetic and electric field penetration
into the indentation and (2) the electric and magnetic polarizability of the

trough.



II. The Geometry and the Conformal Mapping ’

In this section we will use the method of conformal mapping to calculate
the static electric and magnetic field penetration into an indentation in a
ground plane. The shape of the indentation is that of anlinfinitely long trough
with a recﬁangular cross section (see Fig. 1). The width of the trough is a
and the depth is b. The incident fields are such that far away from the
. indentation the magnetic field H is homogeneous and parzllel to the ground
plane whereas the electric field E 1is taken to be homogeneous and normal to
the ground plane, Since the problem under consideration is two dimensional

there exist two potentials, U(x,y) and V(x,y) such that

B(x,y) = B IUG,Y), VU =0
(1)
2
E(x,y) = E_VV(x,y), vv=20
in the region inside and above the trough. The boundary conditions are
U _ -
i 0, V=20 (2)

on the‘ground plane and on the wall; of the trough.

To find the functions U(x,y) and V(x,y) we make use of the following
result from complex &ariable theory (a direct consequence of the Cauchy-Riemann
relationships): since U(x,y) and V(x,y) are both harmonic functions of x
and y there exists a complex-valued, holomorphic function ¢(z), z = x + iy,

such that
$(z) = U(x,y) + iv(x,y). (3)
For large values of le and Im{z} > 0 we have asymptotically

¢(z) ~ z. (%) :

The method of conformal mapping can then be invoked to find ¢(z). The region

of interest can be mapped into the upper half plane of the complex w-plane by using
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Figure 1. 'The geometry of the problem.



the Schwarz-Christoffel transformation £2,3],

dz wz-k_2
= = °\|53 s k real and k =1, (5)

w -1

Integration of (5) gives

(6)

This transformation, with suitable choices of k, Wys C and Cl’ maps the
boundary of the region under consideration in the z-plane to the real axis
in the w-plane, and vice versa. To determine the unknown constants we require

that the following mapping among points holds true:

z-plane ‘ w-plane
0 -1/k
-ib ~1
a~ib 1
a 1/k

N
. where k and C are determined from the equations
~1 2 =2
—-ib = C I tz—k dt
-1/kyt -1
(8)
1/x ’ 2 -2
a=¢C J t2~k dt
-1/k Y t™-1

and since a, b are positive we define -Vtz - k“2 = -in-z - t2 for

]tl < 1/k. The integrals in (6) can be expressed in terms of the elliptic




* integrals E(k), K(k)[al
a _ b,, Yy ' )
2 = 250, < = K(k') - E(k") (9

where
¢c=c/k, k'=+/1-%x

The constant k can therefore be determined from the transcendental equation

R(k")-E(k") | (10)

b _
a 2E(k)

and the constant ¢ i1s then given by

a : . ‘
cr= SEG (1)

Let us now see how to use the transformation (7) to determine ¢(z).
Since the Laplacian equation and the boundary conditions remain invariant

under the conformal mapping the potential y(w) = ¢(z(w)) is given by
vw) =y w , (12)

where wo is a constant., To determine the constant wo we observe that for

}arge values of w we have from (4) and (7)
z ~ Cw = kew ' (13)
and
$(2) ~ 2z~ kew, ' ' (145
- Comparing (12) and (14) we see that

Y = ke (15)



so that
w = pw)/(ke) = ¢$(z)/(ke). (16)

Thus, from (7) and (16) we have the following implicit equation for ¢(z),

o/ (ke) [, 2.2
z=c I kg-l

- 2

dz. (17)
-1/k g -1 .

In the next section we will use (17) to calculate the electric and magnetic
fields inside the trough.




ITI. The Magnetic and Electric Fields

In this section we will use the conformal transformation derived in the
previous section to calculate the electrostatic and magnetostatic fields inside

the trough., From (1) we get

E=Ho[§p-i+-§£§,]

ox oy
(18)
V A , 3V a1l _ _ U ~ , 83U &
E EO[QXX+8yY]—Eo[ 3yx+3xx]
and from complex variable theory we have
U _ 33V, 3V _de
9x i 3y 3y t1 ox dz ° (19)
Differentiation of (17) gives us d¢/dz,
2 .22
ag .y [¢o-k"e”
dz 2 2 (20)
¢ -c

and from (17) through (20) we can determine the electric and magnetic fields as
a function of position.

Of special interest is the y-component of the electric field and the
x-component of the magnetic field on the symmetry line x = a/2, y > -b, the
reason being that inside the trough there may be a loop for picking up the
H-field perpendicular to the symmetry line or a probe for picking up the E-field
along the symmetry line. From the symmetry of the problem it follows that we
can choose U(a/2, y) = 0 so that

= 90 _ V2+k2c2 % =
= - H
9x V2+c2

A. The Field at the Bottom of the Trough

= s ¥ > =b. (21)

H
=3
H

IS

(o]

omkm

Let us first calculate H and Ey at x = af2, y = -b, From (7)
it follows that the point z = a/2 - ib conformally maps to w = 0. It then
follows from (16) that ¢(a/2 - ib) = 0 so that V(a/2, -b) = 0, and (21)

8



gives

—g-;l & ,-b) = k. (22)

The normalized fields Hx/Ho and Ey/Eo at x = a/2, y = -b are graphed
versus b/a in Fig. 2. For large values of b/a (a deep trough) we have

the following approximate solution of (10),
k~ 4e—lexp(—ﬂb/a) (23)

and this approximate form is plotted with dashed line in Fig. 2. For small
values of b/a (a shallow trough) equation (10) has the following approximate

solution -
o~ VE L a2 (24)
ma Ta
and this asymptotic form which has a more limited validity, is also graphed in .
Fig. 2. The asymptotic form (24) for k is valid with an accuracy of 17 for
b/a 20.5.

In passing let us note that the field inside the well can also be obtained

by using the method of separation of variables which gives

U(x,y) = nzl An cos[nn(ﬁ-— %9]cosh[nw(§-+‘g)], 0<x<a, =b<y<0, (25

The results from the conformal mapping technique show that, when calculating

the field at bottom of the trough, only the first term in the series (25)

has to be included for the case where b/a =2 0.5, The constant An can be
determined from the potential distribution in the opening of the trough. To

find this distribution one can either use the conformal mapping method of this
note or an integral equation technique., To see how an assumed field distributdion
in the mouth of the well affects the field at the bottom of the well we assume
that 3U/3y =1 for y =0, 0 < x < a. For the electric field this means

Ex 0 and Ey = Eo and for the magnetic field it means HX = H and ‘

)
Hy 0 for y=0, 0<x<a. With this assumption we get Al = Ai

]

9

“



01

1.0

x _00.8

T
i
™~ O

o

- g 0.6

| ©
"

04

0.2

Figure 2.

I.2

. . | :
02 04 06 08 10y,

The normalized magnetic and electric fields at the bottom of the trough.



Ai = 4aﬂ_2/sinh(ﬂb/a),
and for b/a > 0.5 we have approximately

Ai" 8aw-zexp(-wb/a).

On the other hand, an exact analysis shows (see (23)) that

Al'v San—le“lexp(-ﬁb/a), b/a > 0.5
so that
A=Al
L l.orex~o.16, b/a> 0.5.
Al i

(26)

(27)

(28)

(29)

This result means that when estimating the field at the bottom of the trough

the exact field distribution in the mouth is not vety important.
of the field with the depth-to-width ratio is more important (the "Kamin-

The attenuation

Lé]

dgmpfung"[sl). A result similar to (29) was obtained for a cylindrical hole .

B, The Field Along the Center Line

The x-component of the magnetic field and the y-component of the electric

field along the center line can be calculated from the expression (c.f. (21));

U - V2+k2c2

s
x| v2e?

x=%:y'>"b
where V is determined from (c.f. (17))

iv/ (ke)
%-+ iy = ¢ J

-1/k

which can be reduced to the transcendental equation

; ’ L 22
2B = P\ - E@\a) + © |/3’—§+—°2—5
Vi+ck

where ¢ = arctan(V/kc), o = arcsin k' and F(@\a), E(p\e) are the incomplete

11
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elliptic integrals[7]. For b/a 2 0.5 equation (31) can be replaced by the
following somewhat simpler but approximate equation which yields an accuracy

of about 2% for V,

V = af/n (32)

where £ 1is the solution of
Ty _ 2 1
o= 1 + & + arcsinh T (33)

For a shallow hole (31) has the following approximate solution
V~y+b. (34)

The normalized electric and magnetic fields obtained from (21) and (31) are

graphed in Fig. 3.for 0 = y/b S 1 with different values of a/b.

C. The Integral of the Field Along the Axis

Two common devices for picking up an electromagnetic signal are the loop
and the stub., The output voltage from the loop is proportional to the magnetic
flux passing through the loop whereas the output voltage from the stub is
proportional to the voltage drop along the stub. The magnetic flux per unit
length between the Bottom of the trough and an arbitrary point on the center

line is

y

o _ y _ U _ a
(y) = Hdy = H 7 = H VG .y, (35)

-b -b

In the electric-field case the potential distribution along the center line
is E_V(a/2, y). The quantity of interest is therefore V(a/2, y) which can
be found from (31). In Fig. & we graph the normalized quantity

- V(a/Z,L) - @(Y) ‘
viy) = Ea/2.  Hal2 . (36)

12
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Figure 3. The normalized magnetic and electric fields along
the center line of the trough.
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for -bsys<o0 with different values of b/a.

A stub antenna with its base located at the bottom of the trough is
exposed to an averaged electric field E given by

E__¥(a/2,y) _ av(y)
E, y+b 2(y+b) @D

vhereas the averaged magnetic field H paséiﬁé through a loop with one side
at the bottom of the trough is '

H _ o) _ av(y)
H ~ y 2(y+b) °

(38)

V-

In Fig. 4c we have graphed ﬁYHo and EUEO versus y/b for different values
of b/a.

D. The Total Magnetic and Electric Flux Penetrating into the Trough

A quantity measuring the overall effect of the indentation on the magnetic

field is the total magnetic flux per unit length ¢ penetrating into the trough

a/?2 a/2
¢=—Hf -a—g--dx=H[ A
o y o

a
. 3 . v dx = HOV(2 »0). (39)
In Fig. 5 we plot the normalized quantity
? - 40
Y v(0) (40)
o

for different values of b/a.

We also, in this figure, graph two approximate
forms of v(0); one is obtained from the solution of the approximate equation
(33) and the other from the limiting form (34).

The total electric flux per unit length V¥ penetrating into the trough is

al2 a/2
¥ = -2 f D ax = 2E J U 4x = 28 @ ,0) = aE_/E(K). (41)
o 0 dy 0 ax () o
In Fig. 5 we graph the normalized quantity
Yy 1 )
aE_ " E® (42)
17
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for different values of b/a. We also include in this figure the approximate

form of ¥ for a deep hole,

v .2
- . (43)
(o]

For a shallow hole we can approximate the elliptic function to get -

¥ L 1lr, _2b., 2ma
a5 sl -= 1], (44)

E. The Dipole Moments

Certain electromagnetic interaction problems of interest involve a structure

whose surface can be approximated as a smooth one except for some surface
anomalies such as indentations or protrusions. When solving these problems one
can characterize the influences of these anamolies by their electric or magnetic

dipole moments.,

The electric line dipole moment p of the trough is[s:l
a/2 { al/ 2
= v = v 45
p=¢kE7T JO V(x,0)dx = ¢ Ey Im IO ¢(z)dz} (45)

el

-and the magnetic line dipole moment m is

a/2

. 3 . { a/2
m = Hox j X -3—}-’- dx = Hox Im J ¢(z)dz} (46)
0 » 0
where
a/2 a/2 0 2 2
J $(z)dz = ke I wdz = ko2 J w\ & ‘; i R (47)
0 0 -1/k w -1
from which it immediately follows that
) . p(1-k%)
p = -&E ay, m = -H ox, 0 = 5=, (48)
° 8E“ (k)

The quantity o can be interpreted as the normalized electric and magnetic

dipole moment per unit length of the trough. For a deep hole we have approximateiy m

o~ 1/(2m) (49)
19




‘ and for a shallow hole (b << a) we have
. &~ b/a. (50)

In Fig. 6 we plot the normalized dipble moment o as a function of b/4
together with the asymptotic forms (49) and (50).

L7

20



1T

O.161 Eq.(50) L Txo===s

a L p Eq.(49) _
. I | | |
7 | |
O.12} / ~
/
- I —t
] .
oos- |/ : | -
| ,
ol | ~
/

o041 | » | \ 1

O L | 1 | | | | | L l | |

0O .. 02 04 06 0.8 0, 12

Figure 6. The normalized magnetic and electric line dipole moment.




Acknowledgment

We wish to thank Drs. K.S.H. Lee and C.E, Baum for their valuable

comments,

bt
L7

22



[

2]
£3]
L4]

L5]

Lé]

(7

L8]

References

K.S.H. Lee, "Electrically-Small Ellipsoidal Antennas,' Sensor and

Simulation Note 193, February 1974.
\

W.R., Smythe, Static and Dynamic Electricity, McGraw Hill, New York, 1968.

R.V. Churchill, Complex Variables and Applications, McGraw Hill, New
York, 1960. ’

E. Jahnke and F. Emde, Tables of Functions, Dover, New York, 1945,

H. Kaden, Wirbelstrome und Schirmung in der Nachrichtentechnik, Springer
Verlag, Berlin, 1959,

R.W. Latham and K.S.H. Lee, "A Study of Some Factors Affecting the
Interior Field of a Semi-Infinite Pipe Exposed to a Low-Frequency
Magnetic Field," Interaction Note 10, August 1967.

M. Abramowitz and I.A. Stegun, Editors, Handbook of Mathematical

Functions, National Bureau of Standards, AMS-55, 1964.

K.S.H. Lee and C.E. Baum, "Application of Modal Analysis to Braided-
Shield Cables," Interaction Note 132, January 1973.

23




