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ABSTRACT: We present 1in this report the formal derivation of two
sets of palrs of coupled integral equations. These arise in the
scattering of an incident plane wave by a perfectly conducting
sphere with an annular slot defined by means of two angles. The
incident radiation is assumed for simplicity to be along the
symmetry axls of the slotted sphere. Simple but quite

remarkable relations between the sets of coupled equations are
indicated. We further present the formal solution for the comple~
mentary geometry, namely the perfectly conducting spherical ribbon.
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INTRODUCTION

This paper is a continuation of a series of reports on
investigations into the effect of apertures on the scattering
of electromagnetic radiation by perfectly conducting shields.
The previous papers in the series were concerned with a slot aperture
in an infinite conducting plane,l:2 or with an axial slot in an
infinite conducting cylinder3,4 or with a slot agerture in a general
open, infinite, two dimensional perfect conductor. We present here
the first of a series of reports on scattering by finite conducting
shilelds containing apertures. For this we have chosen to study
the thin perfectly conducting sphere containing an annular aperture
or, in other words, an aperture formed by cutting the sphere with
two parallel planes and removing the enclosed conducting spherical
surface area. Here we limit the discussion to the formal derivation
of the coupled integral equations that must be solved. In papers
that will appear subsequently we shall present the results of
solution of these equations by means of numerical approximations
and some further analytic studies we have made for the slotted
sphere. It should be noted before continuing the discussion that
we shall also consider the scattering by the spherical ribbon,
which is merely the portion of the sphere we removed initially to
form the annular aperture.

We consider here only the case of incldence along the symmetry-
axls which simplifies the analyses somewhat. The geometry of the
problem is 1llustrated in Figure 1. As we note, and develop in
detall, as follows in thils paper we shall approach the scattering
problem via the Debye potentials,treating the scattering contribution
from the aperture essentially as a perturbation contribution added
to the standard solution for the closed conducting sphere. The
incldent linearly polarized plane wave 1s assumed to propagate
in the negative Z-direction and for convenience we take the direction
of polarization along the Y-axls. Thus for the incident fields
we have
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->

EX(F,t) = Ei('f’,’c)gy (1)

-

B (F,6) = 1L F,6)8, (2)
1wt

where of course the time dependence, e
usual and,consequently

s 1s suppressed as

B (F) = g et 00 g 7 1"(2n+1)y, (kr)P (cos8) (3)

n=o
Hi(?) = Hoeikr cos® (1)
and also
By = /S, (5)
We define the annular aperture in the sphere via the two colatitude ‘

angles 85 and 62 which specify respectively the upper and lower edges
of the aperture. Alternatively these angles will define the spherical
ribbon which we shall hereafter refer to as the complement to the
slotted sphere.

At this point we note that 1f we take 67 = 0 we have the specilal
case of a spherical shell with a capping hole or circular apgrture
in 1t. This problem has been consldered by Chang and Senior
assuming arbitrary size holes and arbitrary frequency. Thelr method
was essentlially to approximate the scattered field by a finite
number of terms from a general infinlte series expression for the
field. By applying the boundary conditions together with the method
of least square error they computed the_backscattering from spheres
with large holes. Sancer and Varvatsis! also worked on this problem.
They followed basically the game method but used the Debye
potential approach. Enander¥ considered the case when the cilrcular
aperture 1s small, Thelr method _of approximation 1is equivalent
to one used by Morse and Feshbachd in a similar acoustic scattering
problem by a sphere with a small hole. We shall compare our results
for the speclal case of the sphere with a cap removed to those of
all of these researchers in subsequent reports.
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' Further discussion of the results for the various asymptotic
. cases that arise in our geometry will also be deferred to the
reports that shall be published shortly.
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THE FIELDS AND DEBYE POTENTIALS FOR THE SLOTTED SPHERE
External to the spherical surface r = a we shall assume .
the form of the Debye potentials to be simply the sum of the Debye

potential in the absence of the aperture, which we denote by

wo(r,6,¢) or vo(r,6,¢), and a potential due to the presence

of the aperture. This latter potential function we denote by

us(r,8,¢) or v8(r,8,$). We thus have outside the sphere

wo(r,0,4) + u®(r,8,4)

u(r,8,%)
r > a (6)

vO(r,0,4) + vo(r,8,¢)

v(r,9,9)

10

The Debye potentials u® and v° are well known. They are preclsely

the following.

E sing o« .n, dlry_(kr)]
w(r,0,4) = = o ¥ i_n.%.i_?%])i {jn(kr) - hr(12)(kr) —%—- l/
n=1 =3,
(2)
d[rhn (kr) | ‘Pl(cose) ( ‘
ar n 72)
r=a
and
E_ cos¢ € © .n 3. (ka)
v(r,0,0) = 2p—V — ] i—é%g;%}--{an<kr>-hg?><kr> £T§§——-fa§(cos@
n=1 n (ka)
(7b)

Within the sphere the Debye potentials will be denoted by

ut(r,9,¢)

1

u(r,6,¢) (8)
r < a

v(r,6,¢) Vt(rse,¢)

S
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. It should be quite evident that the interlor potentials arise
solely from the presence of the aperture in the conducting sphere.

In the absence of the aperturé the fields are expressed, of
course, in terms of the corresponding Debye potentials of
Equations (7) and are

Eo(?) = -\; X -5 x[; uo(;)] - 1 wu -V* x[; vo(g)j (9)
HO(E) = 1 we V x[® wO(H)T + ¥ x ¥ x[® vO(&)] (10)

Outslde the spherical surface r = a the flelds are

-+ > -
E(F) =V x V x[F u(r)] - 1 ep Vv x[T v(z)] (11)
-+ -+ .
H(Z) = 1 we V x[P u(®)] + VxV x[? v(¥)] (12)
' where the external Debye potentials are those of Equation (6).
. Inside the sphere r = g the fields hereafter referred to

as the transmitted fields Et and Ht are similarly found from the
internal Debye potentials of Equation (8) 1i.e.

BE) =T x v xFuf )] -1 on v x (3 vTE)] (13)
5V (7)) = > Tt A U Tt
r) =1 we V x[r u'(r)] +VxV x[r v’ (r)] (14)
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BOUNDARY CONDITIONS ON THE FIELDS AT THE SLOTTED SPHERE '
Next we conslder the boundary conditions at the spherical ;

surface r = a. Clearly we must still have the normal component

of the magnetic field %b and the tangentlal component of

identically zero everywhere over the sphere r = a, 1l.e. .

Ho(a,0,9) = Eg(a,0,0) = Eg(a,e,cp) = 0 for all 6 and ¢  (15)

Now the normal component of the total external magnetic field and
the tangentlial component of the total external electric fleld go
identically to zero everywhere on sphere r = a except over the
aperture. Thus

Hr(a,6,¢) = Ee(a,e,¢) = E¢(a,9,¢) =0 for 6, < 8 < 8,

0<¢ < 2m (16)

The same requirement holds for the transmitted flelds:

Hg(a,e,¢) = Eg(a,6,¢) = Eg(a,e,¢) =0 } 6, < 8 <8

In addition to the boundary conditions at the conductor itself
we further have the requirement at r = a that all field components
must be continuous across the aperture, l.e.

t

r 8 ¢(a 8,0) = e,¢<a’e’¢) 0 < el < 8 <8

Er,9,¢(a’e’¢) = E e’¢(a9e,¢) 0 _<_ ¢ iZTT (18)

The flelds exterlior to the sphere r = _a must satisfy the radiation
condition as r + ®, The potentials u®(?) and vO(¥) generate
flelds that satisfy this requirement. Symmetry conditions require
that the polar and azimuthal dependence for u® and v8 should be
the same as for u® and v© respectively. We therefore assume the
Debye potentials to be of the form
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E sin¢ = (2)
w(r,0,0) = Sqp— 1 aj hy?) (k)P eose)/( S By (er)]
n=1
dr
r=a
(19)
and
(2)
E_cos¢ ® (kr)
vs(r,e,¢) = 2 ‘[€1 b3 pl (cos8) -%LT-——- (20)
1k H nZ non hn2 (ka)

The expanslon coefficients an and b wlll be determined by satisfying
the boundary conditions at r a.

For the interior fields we note first that the same symmetry
requirements on ut and vt will establish their dependence on
& and ¢. Next from the requirement that the interior fields be
well behaved at the origin we take the interior Debye potentials
to be of the form

® dlrj (kr)]
uwirye,0) = 2222 ] 8l g (er)Pp(cose) /[ —A: (21)
n=1
r=a
and
E_cosse ® Jn (kr)
t _ o ‘] t .1
v(r,8,¢) = —gp— ﬁ nzl b/ P (cose) 3—7——7 (22)
t t

where the interlor expansion coefficlents ap and bp will be
determined by the boundary conditions at the spherical surface r = a.

As we shall see below it is convenlent to introduce some new
notation for the normal component of the magnetic fleld and the
tangential components of the electric field at the aperture 1n
the boundary sphere » = a . Let us then denote the radial
magnetic aperture fleld as
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H,(8,0) for 8, < 8 < 68,, 0<¢ < 2m

and the 6 and ¢ components of the electric aperture fleld as
respectively

Eg(0,0) and E (8,9) for 6; <8 <8y, 0<¢ < 2m

Now let us consider the radial component of the magnetic
fleld at r = a. We have for the exterior region as r + a

H,(0,¢) 0 <8

<8 <6,<T|0< ¢ < 2T
Hy(2,8,0) = . 2 ‘
0 el > 8 > 62
(23)
and similarly for the interior region as r » a
H(8,0) 0 <8, <8 <H8,<T})0< ¢ < 2T
H;(a,e:‘i’) & } T -1 2= ! - -
0 el > 8 > 62
(24)
Thus we observe
H3(2,0,4) = H'(a,0,9) for all 6 and ¢ . (25)
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We then obtain from the radial components of Equations (12)
and (14), and Equation (25)

z b n=1,2, 3, «u0 (26)

where we drop the superscript for convenlence.

Next we conslder the 6-~component of the electric field
at r = a, The exterior 6-component of the electric field as r + a
is given by

E,(8,¢9) 0 <8, <86 <8 <
a0y = | P9 1 2 [

0<¢ coem
0 62,< 6 < 61
(27)
similarly for the interilior electric fileld as r + a
E (6,4) 0 <86, <6 <8 <
t _ g - 1 2
Ee@,9,¢)- 0-<_¢i21T
0 02 < 8 < el
(28)
Since
s ; _ ot P
Ee(ase’¢) = Ee(a’e’¢) ( 9)

we find from the 6-component of Eguation (11)

1 1
E sin¢g = dP-(cos8) o P~ (cos8)

s _ o s n s n
Bg(a:0,0) = =gz~ L& —gg—— * B sind ﬁzl Pn TsTme

(30)
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and %he)e-component of the interlor electric field as given by
Eq. (13

o 1
Et ) Eosin¢ at dPn(qose)
ika i n de

o & P%(cose)
+ EO sine¢ i§=l bn —-?m—- (31)

Using Equation (26) we find then that
t 8

a, =a, =a, n=1,2, 3, «.. (32)

where again for convenlence we have dropped the superscript.

The results embodied in Equations (26) and (32) are consistent over
the aperture wlth

Eo(0,0)  @<o<e, | O<ocom
Ez(a,e,d;) = Eg(a,e,cb) = E¢(a,9,¢) =

0 62<e<el
(33)
where at r = a we have more explicitly
o Ecosy = .P%(cose) w dPi(cose)
By(2,8,0) = gz~ 1o, —smme— * B 0% I by —aqg—
(34)

10
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DETERMINATION OF THE EXPANSION COEFFICIENTS a, AND bn

At this point all that remalns essentlally is to determine the
two infinite sets of expansion coefficients, i.e. the a, and b
for n=1, 2, .... These unknowns can be expressed in terms o?
integrals of the theta and phl components of the aperture electric
field. We now proceed to do this. First let us construct the follow-
ing integrations from Equations (30) and (34)

1 1
T dP (cos®) E sin¢ =« dP_(cos8) 4P_ (cosH)
_ _o us m n
48 Eg(2,0,¢)——x5 sind = ”‘Tk_a_nglanfo 48 —"=x 5 s1ind
1
dP_(cos6)
+ E_ sing Z bn [T 4 P (coss) —Fr— (35)
n=1 o
and
- 1 E, cos¢ < Pi(cose)Pi(cose)
[ ase E,(2,8,0)P (cos8) = —p= la, f de siné 5
o m sin~9
n=1l
T dPi(cose) (36)
+ E, cosé Z b, f P (cos8) ———gp——

n=1

Clearly Equations (35) and (36) render the ¢-dependence of the
aperture fields E, and E, quite transparent. Thus we can write

0 ¢
Ee(e,¢) = fe(e) sing el < 8 < 92, 0 <¢ < 2r
(37)
E¢(e,¢) = Eof¢(e) cos¢ (38)

11

e e e e e - . . o . R .- . .
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With the aid of Equations (37) and (38) we can remove the ¢-dependence
in Equations (35) and (36). Adding the resulting expressions
we obtain

dP (cosb)
____5___ + fe2 ds f¢(6)Pi(cose) =

1 1

/%2 a8 sine £,(e)
8

1 1 1 1

® dP-(cos®) dP-(cos®) P_(cosB)P_(cosé)
[1/(1ka)] § ap " d6 sine[—Ts i + D n
n=1 © sin"

apl(cose) aP; (cos0) (39)

o n m
+-g;fn L}de[P (cos8)——gg—— + P, (cos8)——x7

Since P (cosm) = Pm(coso) = 0 the integral in the second serles on
the right hand side vanilishes for all n. Furthermore, we can use
the orthogonality relationtl

dPl(cose) dPi(cose) P;(cose)Pi(cosB)

2m(m+1l) (m+1)!

I“de sine[ n + -T—IT(——)-T(S nm
° a9 ae s1n°6 m+l)(m-1

(40)
Using these results we obtain from Equation (39)

dP (cosb)
1 2m(m+l) (m+l)! _ 82 m 8 1
2 TThaY Y [72 a8 sine £, (8)——g5— *+ jgz 49 £56)F (cosh)
61 1
(41)

1z
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Now just as we did for Equations (35) and (36) we can also
form the integrations

sing = dPn(cose)

[Tae Ee(a,e,cb)Pi(cose) = "‘EF‘Z 2, f“ d6P (c0s8) ——gp—— +
o

- Pé(cose)Pi(cose)
+ Ej sincpz b, f de siné - (42a)
n=1l sin™6
and
1
4P~ (cosb) E cos¢ = dP (cos8)
[Tde sine E (a,6,¢) —2 = 2 ! an J’ e P (cose)—-—m——-——
o g 227 a6 TR GE
1 1
® dP_(cos8) dP_(cos®)
™ m n
+ E, coscbnzlbn fo 36 sind - 5 (42p)

Using Equations (37) and (38) to suppress the phi dependence and
proceeding as before we obtailn

- 1 T dP (cos®)
fo de £, (8)P_(cos8) + jo d6 sind f (e)——d———

- 1 v T 4 _Q_ 1 1
" Tka z 2n [T ab g5 P (cos8)P (cos8)]
n=1 e}
dP (cos®) dP (cos®) P;(cose)Pi(cose)
+Z b, f 46 sind[— de + 2
n=l sin~6

(43)

13
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as before

d

™
J’o dé 55 P

Then using the orthogonality relation Equation (UL0) we get
the remaining set of expansion coefficients

1
8 ) dP (cos8)
b, 2{“2(;“:11))((11’1‘_?%’ = [72 48 £,(0)P>(cos8) + 162 a8 sine f,(8)—tm—
6 1
1
' (44)

Since examination of Equations (41) and (44) reveals the fact that
the expansion coefficlents are given in terms of integrations of the
tangentlial electric flelds over the aperture we see that our problem
becomes one of finding these aperture fields expliciltly.

We shall present in a subsequent report methods of approximately
solving for these fields and consequently solving in turn for the
flelds everywhere. Integral equations for the tangentlal component ‘
of the aperture electric field will next be derived.

14
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INTEGRAL EQUATIONS FOR THE APERTURE FIELDS Ee AND ?Q

At the aperture in the boundary sphere r = a we must have the
tangential components of the magnetic field continuous across. Thus
we have for the 6-component

Hg(a’e:¢’) = Hg<a:es¢) + Hg(a,9,¢); el <9 < 62: 0<¢<ar
or rearranging to a more useful form
Hg(a,6,0) - Hg(2,8,6) = -HJ(a,0,9)

In the absence of the aperture the surface current on the whole
sphere 1s given by the relation

%°(a,8,4) = Er(e,¢) x 8°(a,0,6) for all 6 and ¢

Extracting the ¢-component of this equation:

Ky(2,8,4) = 8 ()8, (6,0) x B(a,0,¢)

e, (o) 3, (e,0) x B (0,0)1H](a,0,0)

Kg(a,0,9) = Hy(2,0,9) (46)

From this result we see that continulty of the 6-component of the
magnetlec field across the aperture can be expressed in terms of the
¢p~component of the current density in the absence of the aperture.
Thus

HS (2,6,0) - Ho(2,6,0) = ~K9(2,8,0)5 6 < 6 < 85, 8 < ¢ < 2m

(47)

15
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The magnetic field components in Equation 47)
Substituting from Equations (19),

Equations (I2) ang (14)
(with the help

can be found by
(20), (21) and (22) into
+ Dolng this we obtain

finally at p» =
of'Equations (26) angd (32))
5 Eo cose = @ d[rhég)(kr)] dPi(cose) (2)
Hy(a,0,¢) = T ika ¥ E'ngl bn dr —ds [ b, " (ka)
r=a

(2)
® dlrh “/(kr)]
+ E_ cos¢ J::T ) an[Pi(cose)/sinejhrgz)(ka) 4

na1 dr
r=3
andg
1
E_ cos¢ o dlry (kr)] dP(cos8)
t . © € n m
f9(2,0.8) = g \C—;gl o\ & Tas [Inka)

r=a

r

AR 1 E_ﬂl"J (kr)]
+ Eg COS¢"§ ngl an[Pn(cose)/sine}jn(ka) d n
r=g

Substituting these into the a
obtain an éxpression which cg

perture equation,i.e.
using the Wronskian for Jn

Equation (47), we
n be made somewhat more compact by
and hr(l2>, that is

(2)
a hn (kr)

(2) d = _1
Inler)gg T g dplm) =

’ o
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From this Wronskian we can construct the helpful identity

d

1l (2) 1 ol 1
— [rh (kr)] = —=—— =[rj (kr)] =
T (kr)  ar 3 G) e P 1kr § (kr)n 2 (kr)
(48)
In precisely the same manner we can derive from the Wronskian the
additional relation
(2)
(2) dlrhy ™ (k)] d(rin(kr)] _
hn (kr)/ T -jn(kr)/dr £ =
= (49)
dlry (kr)]  dlrn{?) (k)]
ikr ar ir
The more compact expression for Eq. (47) using the results of
Eq. (48) and (49) is then
1
b dP-(coss)
o COSOY { — oy . *
(ka) lj (ka)h (ka) de
(2) 1
.1 § R EE?jn(kr)J §£?hn (kr)] ) P~ (cos8)
ika n=1 n dr dr sine
r=a =

= Kg(e,w = B cos¢ {% Igce> 8y <8 <8, 0<¢ < 2r

(50)

17
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Note that we have defined on the right hand side of Eq. (50) the
phi-independent curtent Ig(e). Substituting into Eq. (50) the
expressions for ap and b, as given by Egs. (41) and (44) we find
the resulting relation

1
8 " dP_(cos8)
2 (2n+l) (n-1)! 1 n 1
de' £.(8") [ P>-(cose"')
él 6 ﬁlél 2n(n+l) (n+1)! (ka)z,jn(ka)h£2T(ka) dse n
1 1l
P-(cos8) dP_(coso!')
1 n n t
+ sind] +
d[rjn(kr)]) d[rhlgz)(kr) sin® de’ }
dr dr
r=a r=3
1
8 ® dP - (cos®) 4P (cosd)
+ 2 4ot £ (6'){ (2n+1l)(n-1)! [ gin¢ n n 0
1
P (cos8)
1 n 1 o
+ P~ (cos8t') = I7(0)
(d[ranckm (dcrh‘nz%km sinf - 'n ] } ¢
dr dr
r=a r=a

for el<6<62, 0<¢ < 2n

(51)

18
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A more convenient form of the ¢-component of the current on the
righthand side of Eg. (51) can be obtalned in a straight forward
manner. From Eqs. (46) and (10) we obtain

© .7 dfr3. (kr)]
_ 1 (2n+1)
Ig(e) - ika nrz-l 1 n(zr;+l) [( . ) -

ar
r=a
Jn(ka) d[rhéz)(kr)] dP%(cose)
- —_ o+
n'%? (ka) (dr ) de

r=g

d[rhé2)(kr)]

- (2n+1) (2) alry, (kr) 7Y
+ nzl i n—-(—)-gﬂ [Jn(ka) - hy (ka)(a? < ] o

r=a

1
. Pn(cose)
sine

This can be simplified somewhat with the ald of Egs. (48) and (49).
From Eq. (48) we get after multiplying through by Jn(kr) and
evaluating at r = a:

(dﬂ[rjn(kr_)v]) 3 (ka) (d[rhée)(kr)) i N

dr hi® () \dr ika h\?’ (ka)
r=a r=3

19

)

H
1}

L T
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dlry, (kr)]
Similarly from Eq. (49) multiplying by = and evaluating
at r=a gives

(2) (ipy
(2) dalrd (kr)] dlrh,” " (kr)] =
J,(ka) - hy (ka)(aF n =

r=a r=a

1
afrn'?) (kr)]
ika a;

Thus the ¢é-component of current Iz(e) can be writtén

o 1 n (2n+l1) 1 dPi(COSS)
I¢(9) i (ka)E nzl * n(n+l) h(z)(ka) de +
n
1
+ 1 E 40 (2n+l) 1 Pn(cose)
Zika5n=l n{n+l) (d[rhéz)(kr)] —=ind .
dr
e (52)

At this point in the format development we pause momentarily to
note that Eqs. (51) and (52) constitute in essence one integral
equation containing the two unknown functions fg, f 4. These we recall
are the tangential components of the aperture electric field. This
integral equation was obtained from the requirement that Hg be
continuous across the aperture. In precisely the same
fashion a second integral equation in fg(e) and f4(6) can be derived
via the requirement that the azimuthal component of the magnetic
field must also be continuous across the aperture. We next proceed
to effect this derivation.

20

S L it e s w = S —w e [,
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| Over the aperture we must have
Hg(a,e,¢) =‘H§(a,e,¢) + Hg(a,e,¢) ;e
which 1s readily rearranged to
Hg(a,e,¢) - H:(a,e,¢) = Hg(a,e,¢)

Now the 6-component of the current on the conducting sphere in the
absence of the aperture 1s as usual

KO(8,0) = 3,(0,0)° 8,,(8,8) x 5°(2,0,4))

= 8g00,4) [3,(0,4) x 8, ($)IH (a,0,4)

then we have

. K9 (8,6) = = HO(a,6,0) (53)

Using this we write

Hg(a,e,cb) - E3(2,0,4) = - K3(0,6) 8y < 8.< 6y,

We can then find Ht and HS as we found the f-components and obtain
with the help of Eqs. (48? and (49)
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1
© b P (cos8)
1 n n
E_ sin¢ £ +
° M {(ke.)z ngl 3, (ka)ni®’ (ka)  sine
L ozo alrd, (kr)] d[rhéz)(kr)] dPi(cose)}
+ = a (| — — e
ika - n/ dr dr as
r=a
= Kg(8,6) = Eo@ sing Iy (@) 8, <8 <8y, 022w

(55)

where we have defined the 6-dependent part of the 8-component of

current on the sphere in the absence of the aperture. Upon substitution
from Egs. (41) and (44) into Eq. (55) we obtain the second integral
equation in the aperture fields fe(e) and f¢(e):

162 aor £ ()] S2ntli(n-L)t 1 P, (cos8) B (cose ')
6 8" "n=1 2n(n+l)(n+l)!L(ka)zjn(ka)héz)(ka) siné
1 1
dP-(cos8) dP-(cosé')
t 3l (ke ] : alrn'?? (kr)] 26 " sine’l
n ) n )
I (a;
r=a r=a
¢ [ 2000 2 8 ] <2n+1>(n-1>:{ 1 Pp(c0s9 dP eost)
8, $°" “p2p n(ndl)(ntl)l (ka)zin(ka)hr(,z)(ka) siné dgr_ sine!
1
atrs (ko) alrhé?) (xp)3 dp;(cosd) 4
+Q/ & & —g5—— Fp(cose’) =
r=a r=3
= Ig(e) 6, <0 <8y, O0<¢z2m (56)
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The 6-component of current on the right hand side is found from
Kg(8,6) = - Hy(2,0,6)

Cancelling off Eo‘/-%T sin¢ gives us the desired relatlion

1
1°(8) = —= T %(on+1) 1 Pp(cosé) N
6 (ka)z ne1 n(n+l) hé2)(ka) siné
L1 E 1P (on+1) d[rhéz)(kr)] -1 dPi(cose) (57)
ika n=l n{n+l) dr do

r=a

To solve these coupled integral equations analytically is

a formidable task. We shall discuss the results of our

analytic attempts in subsequent reports. An alternative approach
to resolving this problem is via numerical methods of
approximation. One such technique whose results we will

report on in a later publication is basically a modified

version of the method of moments. In this modified approach

the edge effects are glven specilal emphasis.

23

R —— B hE e e mmm o mrmeme e e e - .- -




NOLTR 73-84

INTEGRAL EQUATION FOR THE COMPONENTS OF SURFACE CURRENT ON
THE PERFECT CONDUCTQR

We next shall show that there exists a formulation of the
problem we are treating which involves only the components of the
surface current on the perfect conductor at r=a. This is in &
sense complementary to the above formulation which involved only the
tangential aperture electric fields Eg and Egy. From the requirement
that at the perfect conductor at r=a the tangential components of the
electric fleld must vanish we can construct a palr of coupled integral
equations for the 6~ and ¢- components of the surface current.
This will now be demonstrated. On the conducting portion of the
spherical surface at r=a the surface current is given by

R(0,0) = 8,(0,0) x ([E5(a,8,0) + H%(2,0,4)] = H'(2,8,0))

for 8, < 0 < 8y, 0262 2m (58)

Extracting the phi-component directly from this we have

Ky(0,8) = H(a,0,0) + [Hi(2,0,0) - Hg(a,8,0)] (59) .
Equations (7) and (19) through (22) enable us to write Eq. (59)
as
: 1l 1
_ fE; o Pn(cose) dPn(cose)
K¢(e,¢) = EO E‘; cosd nzl {Cn —~—=ins + dn 30 } (60)

where the expansion coefficlents are

(2) (2)
1P (ontl) alrh'®? (kr)] [d[r,j (xr)]  d[rh (kr)}]]
h T ika{ n(nzl) / ndr ) -2,/ gr )« ndr )
r=a r=a r=a
(61)

and
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n . b
qd = [l/(ka)2]{i (2n+l) 1 - n }
n nin+l) hée)(ka) Jn(ka)hée)(ka) (62)

where a_ and b_ are the expansion coefficients introduced earliler 1n
the Deb?e poteRtials.

Similarly we can extract the 6-component of current from
Eq. (59) and rearrange to obtain

= t
Ko (6,8) = = Hy(2,0,6) + [Hy(2,8,0) - Hy(2,6,9)] (63)

and by Egs. (7) and (19) through (22) this becomes

1l 1
[E“ @ P (cosH) dP (cosf)
Ke(e,db) = EO ﬁ sinqb n-_z:l {dn —r-lgm—— + Cn —_n_d-é-_— } (614)

For additional convenience we introduce the notation K6 ¢(e,q:)
for the surface currents on the metallic conductor. ?
We then can write

0 6, < 6 < 8,
K¢(9,¢) = 0 <¢ <2m
K (es¢> e < 6 <89
¢ 2 1 (65)
‘ 0 6, < 8 <8,
Ke(es¢) = 0 < ¢ f_ 2T
Ko (€,9) by < 86 <8 (66)
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Tt will be further convenient to introduce, analogous to Egs. (37)
and (38), the definitions

Ky(8,0) = Eg E% cos¢ g,(8); 6, < 8 < 8y, 0<¢<2m (67)
and
EO .
Kg(8,6) = E;Y 5= sind g8,(8); 8, <0 <8y, 0209 < 2w (68)

We will next proceed to derive expressions for cy and 4, in terms of
gg, and gy analogous to those for ap and by in Egs. (413 and (44)
above. Note that 1f in Egs. (31), ?34), (37), and (38) we make the
following replacements

an/(ika) -+ c

n
bn M dn
£q(8) - gq(8)
£,(8) > g¢(6)

020, <8 <8, <m>8, <08 <8

we find Egs. (64), (60), (68) and (67 ) are essentially obtained,
This enables us to write down immediately from Eqs. (41) and (4L)

1
dP_(cosé"')
2m(m+l)(m+l)! _ m 1
Chn D (me) T i ds! sinevge(eq — + i de'g¢(99Pm(cosG')

(69)
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1
de(cose')
de’?

a, FmLI ML =  agg, (8')PL(cose") + £ ao! s1nd'g, (8)

(70)

where by f we mean integrate over the conducting portion of the
sphere r=a, l.e. 6' from 0 to 67 and then from 65 to 7.

At this point we observe that Egs. (69) and (70) tell us that
these expansion coefficlents are given in terms of the
current density on the conductor. Consequently our problem
is also equivalent to solving for the current densities
go(6) and gy(8) everywhere on the conductor. The same method for
approximate solution referred to in the previous section with
regard to solving for the aperture tangential electric fields
also can be used here., Thus we have two alternative but equivalent
approaches to the solution of the slotted sphere scattering problem.

Next we shall derive a pair of coupled integral equations for
gp and g4, the components of current density on the conductor.
. This 1s gxactly analgous to the palr of coupled equations for the
tangential components of the aperture electric field of the previous
section.

On the conductor the 6-component of the electric field must
vanish. Then Eq. (31) becomes

1 1
a ) dP>(cos8) b P-(cose) ]= ;

2]
_ n
Egla, 6, < 6 < 6,, ¢) = E_ sin¢ ngJK;ka 36 + sino

from this we conclude that

= [ (% dPé(cose) Pi(cose)
L \ika) 3o Fhy Emme | S0 for gy <h <y

(71)
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Substituting for a_ and b_ in Eq. (71) from Egs. (61), (62), I
(69) and (70) we obtaifl one of the integral equatlons for the
surface currents, namely:

1 1
© - P (cos6 )P _(cosb"')
favreyen | T AERREL T2y, Gen® e BT

alry, (kr)] ) (d[rh§2)(kr)] ) dPi(cosB) dPi(cosev
* (E‘f Ir R 35 Sine'] } +
r=3 =3

1 1
w _ P-(cos8) dP_ (cosb!')
+¥ de'gd)(e'){néléi?gﬂg?n}r}).)!! [(ka)zjn(ka)hQZ)(ka) s1me UM ’

(2) 1
af (kr)] dlrn “’ (kr) dp )
. sind' + (-—?jn i ) ( “n r) ) (._Jigiii——Pi(cose‘)z”=‘Vé(@

dar dr de
r=a r=a
(72)
where we have defined
i I §
V5(8) = Ej(a,0,9)/E, sin¢ (73)
The remalning coupled integral equation is obtalned the
same way. Since the ¢=-component of the electric field must also
vanish on the perfect conductor we obtaln from Eq. (34)
o (an P (cos6) dP} (cos0)
ngl ifka sind * b, —35 =0, for 8, < & < 8,
(74)
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Again substituting for an and by in terms of c¢p and d, and then
using Eqs. (69) and (70) we obtain

dP (cos8)

. . S (2n+l)(n-1)! (2) 1
f ae g¢(8 ){ nzl EACTSRICTIDN [(ka) j (ka)h (ka)————————-P (cosB') +

(2) 1 1 '
+(d[rjn(kr‘)]> (dcrhn (kr)]) P.(cose) dP-(cost') sine'] } ,

dr dr siné as
r=a r=a
. . < (2 +l)( -l)! . (2> d.P1<COSG) dPl(COSQ'
+ £ 46 g¢(6 ){ ’ 2n(r;+l)(r;+l>!Eka)2.jn(ka)hn (ka) 5 I3 ﬁ,ine'
n=1
(2) 1 1
dlrj_(kr)] dlrn (kr)] P> (cosB8)P-(cosd!')
S (& e ]} " V() 75)
r=2 r=a
where this time we defined
i R
V¢(e) = E¢(a,e,¢)4;0 cos?] (76)

In Eq. (68) we used as the notation for the 6-component of the incident
electrlic fleld at the conductor

1
) © in(2n+l) 1 d[rjn(kr)] dPn(cose)
E (a,8 <e<el’¢) = Eg sin¢ nzl n{n+l) {ika ( dr ae *

r=a

1
Pn(cose) } (77

+ Jn(ka) siné
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Likewlise in Eq. (75) we used as notation for the ¢~component of the .
incident electric fleld at the conductor

\ 1
N _ ”'in62n+l) 1 .d[rjn(xr)]) dPn(cose)
By(a,0508¢8154) = Bg cosé ) SiiiT) {ika ( T —a

r=a

+ J,(ka)

1
Pn(cose)
sine :

Before continulng we pause momentarily at this point to
emphasize that solution of the coupled integral Equations (72) and
(75) for the tangential aperture dlectric fields is completely
equivalent to solution of the coupled integral Equations (51) and
(56) for the surface currents on the perfect conductor.

Elther set of quantities may be considered the sources of scattered
and transmitted fields.
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THE "COMPLEMENTARY" SCATTERING PROBLEM

Examination of the two pairs of coupled integral Equations, (51)
and (56) for the 6-dependent part of the tangential aperture
electric fields, and (72) and (75) for the 6-dependent part of the
current density components on the perfect conductor, leads to an
extremely interesting and very important observation. Note that
the explicit functional dependence on ka in each term of the infinite
sums that constitute the kernels in Equation (56) is simply the
reciprocal of the corresponding term in the kernels in Equation (72).
An identical relationship holds for the pair of Equations (51) and
(75). Note further that in Equations (51) and (56) the integration
ranges over the aperture. In addition the right hand side of the
equations contains, in the first case, the ¢-component of the current
that would be present in the aperture region if it were filled with
the perfect conductor and in the second case, the 6-component
of the current under the same condition. On the other hand in
Equations (75) and (72) the integration ranges over the perfect
conductor. Now however the right hand sides of the respective
equations contain the ¢-component and 6-component of the incldent
field at the perfect conductor. As a consequence of these relations
we observe that from either palr of the coupled integral equations
derived for the annularly slotted sphere we can immediately deduce
the other pair of coupled integral equations by simply making the
appropriate substitutions.

Clearly the corresponding pairs of coupled integral equations
to be solved for the "complementary" problem (cf. figure 1(b)),
namely, the scattering by a perfectly conducting sphereical ribbon,
have identically the same form as those for the "direct" problem
discussed here (cf. figure 1(a)). The only change necessary is
to merely adjust the ranges of integration.
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DISCUSSION OF RESULTS

The results exhibited in Equations (51), (56) and Equations
(72), (75) can be readily shown to reduce properly in the limit
as 81 + 0 and 62 + m. We have omitted this demonstration from this
report for the sake of brevity. In the former palr of coupled
equations we find the tangential aperture filelds reduce correctly
to the Incident fleld at the aperture region. In a sequence of
reports that follow this one we shall discuss these coupled integral
equations and their solution. 1In the course of these discussions
we shall have occasion to compare the solutions we obtain to
those obtained by others in a number of special cases. We shall
also present the solution for the more general situation and discuss
a number of lnteresting results obtained, for example, those for
the wide spherical ribbon which corresponds to the sphere with small
circular apertures atthe top and at the bottom.
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Incident
Radiation

Incident
Radiation

1b) THE COMPLEMENTARY PROBLEM = THE SPHERICAL RIBBON
. FIGURE 1. THE SLOTTED SPHERE AND ITS COMPLEMENT
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