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ABSTRACT

We find an expression for the axial conduction current induced in
an infinitely long circular cylinder with small resistivity in free
space by an incident electromagnetic plane wave. We study in partic-
ular the gqualitative change in the late-time behavior of the response
to a pulse and the limiting case for small angles between the axis of
the cylinder and the direction of propagation of the wave when com-
pared to the case of a perfectly conducting cylinder.
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1. INTRODUCTION

A physical gquantity of interest in the interaction of long antennas
or cables with electromagnetic waves is the current induced in the con-
ductors. It is straightforward to calculate this current for an infin-
itely long, perfectly conducting cylinder when it scatters a plane,
monochromatic incident wave. This result is then used to find the cur-
rent induced by an arbitrary plane-wave pulse by integrating the re-
sponse due to the freguency spectrum of the incident pulse. This has
been done by Barnes®' in some specific cases, including a pulse that
starts at t = 0 and decays exponentially with time.

A remarkable property of the solution to this problem is the late-
time behavior of the induced current which tends to zero as 1/log t as
t tends to infinity. This temporal behavior is a property of the
transfer function and is essentially independent of the precise shape
of the incident pulse. The slow rate of decay can be understood by
noting that currents travel unattenuated on a perfect conductor, and
that the current at a fixed point for a late time arises from that in-
duced far away by the front of the wave.

This late-time behavior is conseguently not expected when the re-
sistivity does not vanish, and the transfer function in the case of a
cylinder with a finite conductivity leads to a different result. The
current induced far away from the point of observation no longer de-
termines the late-time behavior of the induced current pulse, but the
latter is a local response to the incident wave and they both decay
in the same manner.

Another result that is affected by the presence of a small re-
sistivity is the limiting case of a small angle between the axis of
the cylinder and the direction of propagation of the incident wave.
For a perfectly conducting cylinder, the current tends to infinity as
the angle tends to zero. This is clearly impossible in the presence of
resistivity. Actually, the opposite occurs and the current tends to
zero; this is a consequence of the attenuation of the current in the
cylinder while the wave propagates parallel to it.

We use a notation close to that in Reference (1), but there are
some differences that can be found in Section 2, where we present the
functions that are needed to describe in cylindrical coordinates the
propagation of waves in a conducting medium. In Section 3 we treat
in detail the case of an incident plane wave propagating in a direc-
tion perpendicular to the axis of a finitely conducting cylinder. We
find the current induced by monochromatic wave and we uUse this result
to discuss the late-time behavior of an induced current pulse. In
Section 4 we consider the more general case of an incident wave that
propagates in an arbitrary direction. It is sufficient to consider
separately the cases in which the incident wave is polarized either
with the electric or the magnetic field perpendicular to the axis of
the cylinder. Although the scattered wave is no longer linearly po-
larized, we retain the result, obtained for the perfect conductor, of
no induced current in the case of the incident electric field perpen-
dicular to the axis of the cylinder. 1In the other case, the properties
of the induced current do not differ qualitatively from those found for
perpendicular incidence. We use the general formulas to find the lim-
iting case of a small angle between the direction of propagation and
the cylinder. We state our conclusions in Section 5.

t Barnes, P.R., EMP Interaction Notes, Note 64, March 1971, Air Force

Weapons Laboratory, Kirtland AFB, New Mexico.



2. MONOCHROMATIC WAVES IN CONDUCTING MEDIA

The solution of our problem is based on Maxwell's eguations in a
homogeneous, isotropic medium. They are (+~ denotes vector product)

VeD = p (2.1)
- -

VAE = - 3B/dt (2.2)

7B = 0 (2.3)

v o= ] + 3D/3t C(2.8)

For a conducting medium, we assume that the permittivity and permea-
bility do not differ significantly from that for free space, that

there is no free net charge and that the current density is proportional
to the electric field. Hence

D=c, (2.5)
Ho= B/ (2.6)
s =0 2.7
Ta6T . (2.8)

In free space, the conductivity and, consequently, also the current
density vanish. In the usual manner, we obtain from these equations
the wave {(or telegrapher's) eguation

= >
S 3E
CF e e e - o= 0 (2»9)
! o7 3e2 Mo 3t

for the electric field, and the magnetic field obeys the same egquation.
It is simpler to solve this equation for the Fourier transform of the
field,

<

E G, =3 | T e expl-tut] du, (2.10)

The wave equation now reduces to the Helmholtz equation
(v + k%) E (x,0) = 0, (2.11)
where K is the complex wave number given by

2
K2=w—-(1+i—°--)=k2 L1 2. (2.12)
2 £, €W

This is eguivalent to the consideration of a monochrematic wave, for
which the electric field and all related quantities have a simple sinu-~
soidal time dependence, that is

®
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£ (x,t) = E () expl-iut] , (2.13)

where E (;) can be complex and it is understood that we take the only
real part of the right-~hand side of the eguation. Egquations (2.2) and
(2.4) reduce to

=<1t (2.14)
w
R LR S U S (2.15)
m(l+io/eow) K2

The solution of the vector Helmholtz equation can be generated from
that of the scalar equation. This equation is separable in cylindrical
coordinates. These are convenient in our case because of the presence
of the infinite cylinder. The general solution then is a linear com-
bination of functions of the form '

T(l)(K, ks, m; r, 6, z) = Féz)(nr) exp[i(m¢+kaz)], (2.16)

where
€2 = K2 - k§ . (2.17)

and Féz) is one of the cylindrical Bessel functions, with ¢ = 1,2,3,4,
corresponding to J, Y, H{}) and Héz), respectively. Three indepen-
dent solutions to the vector eqguation then are

T = (/K VT , (2.18)
M= (1/k) Va (TZ) (2.19)
- >

¥ o= (1/k) Va M (2.20)

We include the factor 1/k only for dimensional reasons, and other
authors have chosen 1/K. In the present problem m is an integer and,
as the fields are solenoidal, we use only M and N. Their components
are

Ho= (1/k) [(in/r) Fyler) T - kEg (k8]  explil(mi+k,z)] (2.21)

¥ o= (D) ik k, Fo(kr) 4 (mky/r) Fkr) @

+ k2 Fm(nr)il exp[i(m¢+ksz)] . (2.22)
We also need the relations

> >
VaM = kN (2.23)
Al = (R2/K) M (2.24)

A plane wave in free space linearly polarized in the y-direction
can be expanded in terms of these solutions by means of the equation



§explikex] = (/e 1 1™ ¥ ekgms r,4,2), (2.25)

ma—-s

where

Kg = k2 - k% (2.26)

At the boundary between media we have to satisfy the usual boundary
conditions. For a perfect conductor, the normal component of B and the
tangential component of must vanish, while the tangential component
of determines the surface current density. If the conductivity is
finite, the normal component of 3 and the tangential component of
have to be continuous. In addition, as no surface currents can exist
in such a conductor, the tangential component of also must be con-
tinuous. This gives us five scalar continuity conditions. These are
reduced to four independent ones by equation (2.14), which can be used
to show that the continuity of the tangential component of E implies
that the normal component of B is continuous. The discontinuity of
the normal component B gives the surface charge density.

3. NORMAL INCIDENCE

We first consider a plane wave whose direction of propagation is
normal to the axis of a cylinder with finite conductivity.

If the wave is linearly polarized with the electric field perpen-
dicular to the axis, by symmetry the field in the cylinder has no com-
ponent along the axis and there is no induced axial current. This is
also verified from the more general case in the next Section.

We thus need to consider only the plane monochromatic wave linearly
polarized with the electric field parallel to the axis of the cylinder,
and all electric fields have only a z-component, where the z-axis is
the axis of the cylinder. The incident field is given by

=3

ine E, explikrcos¢] = E, 2 i Jm(kr) explimé] . (3.1)

E,

m==—x

Similarly, we can expand the scattered field according to

Egc =E, Z a, Hél)(kr) explim$] , (3.2)

s =

where 3y are coeff1c1ents to be determined. We have chosen the
Hankel function )(kr) because it corresponds to an outgoing wave,
that at large distances behaves as expﬁ(krwu)]/ /r and satisfies the
radiation condition. We drop the superscrlpt from the Hankel func-
tion in most of the following expressions and we assume it is (1)
unless otherwise specified. 1Inside the cylinder, the field is ex-
panded in terms of the Bessel functions that are regular at the
origin, and we set

EV! = E, mag., by J(Kr) explim¢] . 3.3

The continuity of the total electric field at the surface of a
cylinder of radius a gives \)

10
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Einc(a) +E3%a) = EM(a)

and, as the functions of the angle are independent, we obtain
1™ 3, (ka) + ay Hy(ka) = b J (Ka).
The continuity of the tangential component of i implies that

inc s¢ = pCyl
By (a) + B¢ (a) B, (a),

and, as by equation (2.14)

3E
=12z,
B¢ w 9r

we obtain

m » » s
i"k3/(ka) + a kH;(ka) = b KJ"(Ka) .

(3.4)

(3.5)

(3.6)

(3.7)

(3.8

The axial conduction current is obtained by integrating the cur-
rent density over a cross section of the cylinder, and, by equation

(2.8), we have

2n a 1
I=f d¢ [ rdro g,
o

(3.9

The field is given by equation (3.3), and, as the integral over the

angle vanishes for m # 0, we derive

- a
I=2n0Epb, { Jo(Kr) rdr

As the recursion relations for Bessel functions give

(d/dz) [z 3;(5) 1 = ¢ J (),
we can perform the integration over the radius to obtain
I= ZROEoboaJ}(Ka)/K R

where b

to be °

kHé(ka)Jo(ka) - kH (ka)J(ka)
©  kHS(ks)J (Ka) - KH_(ka)J](Ka)

The Wronskian of J, and Hél) is

Jo(8) By(R) = J5(8) H(z) = 24/(x7),

is determined from equations (3.5) and (3.8), for m=o0,

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

11



and we use it to simplify the numerator in equation (3.13). The axial
current in equation (3.12}) can then be written in the form

UE f ki (ka)J_(Ka) -1
i = n - ———— .
..L)UO(COU/C} + 1)Ho(ka) i KHO(ka)Jl(Ka) ] (3 15)
(™9
as
do = omdy L HG = - Hy (3.16)

Equation (2.12) shows that, when 0 * =, the real and imaginary
parts of x tend to infinity and the argument of K tends to 7/4. The
asymptotic forms of the Hankel functions for large ¢ are

O I L P TN I (3.17)
¢ A
R(LD () 2 axplxi(e-3n/0)] (3.18)
Ly
and, because
Gl = 2 gD () + ufD @1, (3.19)

the contribution of H§27ﬂm) dominates and

lim RS
oo, (Ea) : (3.20)

The additional factor K in the denominator of the second term in the
bracket in equation (3.15) causes this term to tend to zerc, and

SEo , (3.21)

R G . M.
e mucﬂo(ka)

gre

which 1s precisely the exXpression obtained in a direct approach such
as Barnes' for the perfectly conducting cylinder.

The current induced by an arbitrary pulse can then be represented

by

L(t) = %; §7 I(w) expl-iut] du (3.22)
or

I(t) = %; [T E () T () exp(-iwt] du , (3.23)

where the transfer function is .

ki) (ka)J, (Ka) (3.26)

T = 41 _
KHo(ka)Jl(Ka)

wuo(som/c+i)H°(ka)

T

12
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By the convolution theorem,

1(t) = (T E (e-t°) F (t*) at” , (3.25)

pe- 5

where the transfer function in time is

F(t) = 3 |7 T(u) expl-iut]dw (3.26)

-t

The integrand in equations (3.23) and (3.26) has a singular point at
the origin in the w-plane, where the Hankel function has a logarithmic
branch point. As for sufficiently large negative times we can close
the contour around the upper-half plane without changing the value of
the integral, we have to deform the contour along the real axis and
pass above the origin to obtain a zero current for these times, as
demanded by causality. For the same reason, or from the properties of
the Hankel functions, we find that

F(¢) =0 for t<- alc , (3.27)

the time when the pulse reaches the cylinder (assuming it reaches

the axis at £t = 0). Thus, equation (3.25) becomes
I(e) = |7 Eg(e=t”) F (v7) dt” (3.28)
-alc

and, changing the variable of integration to

1" =ct/at 1 , . (3.29)

we find, as E (t) wvanishes for t ¢ 0,
I(t) - C .I.T
a o]

Ejft =a(r"-1)/c]Fla(r’=1) /c) dt~ (3.30)

r

where
T =ct/a+ 1. (3.31)

The behavior of I(t) for large t depends on the properties of
F(t") for large t” when E_(t) goes to zero sufficiently rapidly with
increasing t. If this is so, the main contribution to the integral
in equation (3.28) comes from values of t - t° that are small com-
pared to t, that is, for relatively large t°“. These considerations
can be made more precise in a given case, such as that of the expo-
nentially decaying incident pulse, analyzed by Barnes for a perfect
conductor.

Furthermore, the values of F(t°) for large t” depend on those
of T(w) for small w. This is made plausible and can be seen if we
change the variable in equation (3.26) to

u = wt, (3.32)

so that
() = 5 '_:T(%) exp[-iuldu . (3.33)
13



In the case of a perfect conductor, we obtain T(s) f£rom equation
(3.21), and Barnes shows that the late-time behavior of the induced
current is proportional to 1/log t.

When the conductivity is finite, the second term in the bracket
in equation (3.24), which vanished for a perfect conductor, has a
modulus large compared to 1 for sufficiently small «. When

w << c/go . (3.34)

equation (2.12) reduces to

K2 ~ 1 u,o0uw , (3.35)
whence, for

a << l/(uocaz), (3.36)

iKaf <<, (3.37)
and also

/K] ? gqulc <o q . (3.38)

Consequently, we need the expansions of the Bessel functions for
small arguments,

Il ~ 1, (3.39)
NOES ¥ (3.40)
Y,(2) ~ (2/m)[log (z/2) + ] (3.41)
Y, (z) ~ = 2/(ng) , (3.42)

where Y is Euler's constant

Y = 0.577... (3.43)
Thus,
ki (ka)Jo(Ka) 41 (3.44)
KHq(ka)J, (Ka) n(Ka) 2l (ka)
and, as
lim¢{ log g =0, (3.43)
Lo

equations (3.35) and (3.41) show that the modulus of this term becomes
large compared to 1. We neglect the | in the bracket and equation
(3.15) becomes

[(v) ~ a2 o E (@) . (3.46)
This result means that, for sufficiently low fregquency, the axial

current induced in the cylinder is produced directly by the incident

14
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field; that is, the scattered field becomes negligible. Because the
field inside a perfect conductor must vanish, the scattered field can
never be negligible in that limit. As a conseguence of equation
(3.39), the induced current at large times is proportional to the
incident field at those times, a more reasonable result than a 1l/log t
‘dependence.

In order to get some idea of the order of magnitude of the quan-
tities involved, we can choose a cylinder with ¢ = 108 ohm™! m~! and
a = 3x10~3 p, Then

1/(u0 a?) ~ 103 571 (3.47)

ofe, 1011 s~} (3.48)
- and, for w =10 s-1,

K?%a? ~ 10721 (3.49)

ka = 10710 (3.50)

Ho(ka) ~ 1 - 151 (3.51)

There is another region of the frequency spectrum where
[Ra| >> 1 (3.52)

and
ka << 1, (3.53)

or, in this example, a freguency range such that
103 << @ << 101! (3.54)
In such a region, equations (3.20) and (3.42) show that

KH  (ka)J,(Ka) 2 ) (3.55)

K (ka)J,(Ka) mKaH(Ka)

The modulus of this term is small compared to 1, and in this region
we find the same behavior as that of the current induced in a perfect
conductor in the small w limit. This corresponds to the 1/log t be-
havior of the current induced by a pulse.

The current induced by a pulse in a goed, but not perfect, con-
ductor should initially be very close to that of a perfect conductor,
including the 1/log t behavior for moderately late times. For still
later times, large compared to uo a%, the resistivity attenuates the
currents induced in the wire far away from the observation point and
the only effect we still notice is the current set up in the cylinder
by the late-time part of the incident wave.

4, OBLIQUE INCIDENCE

In order to formulate this problem in a compact manner, we use
expansions of the field in the vector cylindrical harmonics discussed
in Section 2.

/15



It is sufficient to consider two cases of linearly polarized
incident waves, although in the problem at hand the, scattered and
interior fields are no longer restricted, and both M and N should be
used in the expansions.

-

The wave vector k of an incident, plane, monochromatic wave forms

an angle 8 with the axis of the cylinder, chosen as the z-axis of the

coordinate system (in 1, it forms an angle €& with the negative z-axis,

whence we show some discrepancies in signs), and equations (2.17) and
(2.26) become

k2 = k2 (sin2e + ic/eom), (4.1)
Kg = k% sinls , (4.2)

->
We furthermore choose the x-axis in the plane defined by k and the
axis of the cylinder.

We first consider the case of the incident electric field polar-
ized in a direction perpendicular to the axis of the cylinder, that
is,

> > >
ginc E, expliker] v, (4.3)
which can be expanded in the series

BN g (ke D 4™ M) (k,ky,m (4.4)
W—&

The scattered and interior fields must have the same frequency to
match boundary conditions at all times, and they must have the same
k3 in order to match boundary conditions along the whole cylinder.
Thus, we expand these fields in

Tse =5, mi&[am UK,k ,m)  + by N3 (ke ,,m T, (4.5)
EVl by T e HOD (Ryky,m) + dy RO (K, ,m) 1 (4.6)
m:-m

-+ -+

From the continuity of the tangential components of E and H we obtain
four linear equations for the coefficients with the same m. In matrix
form, they are

by X = Yy .7
where, using equations (2.14) and (2.21) to (2.24),we find

\
( 2 3 2
0 ke iy (k ja) 9 - k% J (ka)
-a k kg Hp(x,a) m ksHm(Koa) akeg J&(Ka) - mk, Jm(Ka)
Am = (4-8)
Kg Hm(Koa) 0 - «? Jm(Ka) 0 s
mk ks k3 Hm(noa) -a k2 gi H&(goa) -mk K°k3 Jm(na) a KZKOK Jé(KI) J
\

16
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fa' ( 0
m
b a k2 JZ(k_a)
X, = n , ¥ =™l mee (4.9)

Cm “k x I (x a)

d_ - mk? kj Jp(eoa)
J \ /

For normal incidence, k; vanishes and these equations show that
in this case b, and ¢, also vanish, which verifies our symmetry
arguments in Section 3. For a perfect conductor, terms in the third
and fourth columns of A, diverge, which indicates that ¢, and d, , and
consequently the interior field vanish, as expected; the first egua-
tion then shows that the b, also vanish, and the scattered field is
dependent only on one set of parameters, as found by Barnes.

The axial current is found from the field inside the cylinder as
in Section 3, and, corresponding to equation (3.12), we obtain the
current atz=g0,

I = 210 E,d, xa Jy(ka)/k2. (4.10)

We only have to determined,, and from equation (4.7) for m= 0 we find

k2 H(ka) by = k% J(ka) d, =0, (4.11)

~k2 k HZ(xga) by + K%k Ji(ka) dy =0, (4.12)
whence

do = 0, (4.13)

I1=0, (4.14)

the same result that was obtained for a perfect conductor.

We now consider the case of the incident magnetic field polarized
in the y-direction, and set

BInC = - B exp[ik-r) ¥ , (4.15)
which is expanded as

BINC o B (k/kgy) ] i™? E(l)(k,ka,m) (4.16)

m= =

The scattered and interior fields are expanded as

o«

BSCw By T [a H((k,ky,m) + b N (k,kgum) ] (6.17)
m=—m
Ecyl = BO z [Cm g(l)(K’k:;’m) + dm E(l)(ka3ym)]y (4'18)
ms-—m

where the coefficients are unrelated to those of the first case pre-
sented above. Now we use equations {2.15) and (2.21) through (2.24)
to find, from the boundary conditions,

17
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m

(.2

<5 Hp{kga)
m Ky k3 Hm(toa)

0

k Koa Hm(xoa)

k% (x2/K2)Jp(xa)

0
k ka Jé((a)
-k <5 Jm(zoa)
me1 -mk kg Jm(Koa)
si—

0

2 -
k2 a J7 (< a)

\

-k

0

Ko Hm(Koa)

2
K¢ Hm(Koa)

m k

m k2k k3 (1/K2)J (ka) k k, ka Jp(ka)
- KZJD)(Ka)

-m k, Jp(ka)

W

3 Hm(Koa)

0

s (4.19)

(4.20)

We find again that two sets of coefficients vanish when k; = 0, which
verifies that the electric fields are along the z-axis for normal
The induced current is given by

incidence.

where

I = 21i0 E, ¢, K& Jl(Ka)/K2 R

Eq = ¢ By &

We compute the coefficient ¢, £rom

and find

2 - b2 (212 = i
(34 Ho(zoa) a, -k (x“/K%) Jo(xa) e, = ik J,(x a),

- Ko Holkga) ag +x J3(ka) cg=-1k Jalkoa),

<

[o}

. 1kK2¢ o [Jo(kga)HS (k pa) = Jglkga)Hy(kqa)]

<[<°x230<g0a>35<<a) - Kkzﬂé(Koa)Jo(Ka)}

(4.21)

(4,22)

(4.23)

(4.24)

(4.25)

We again simplify this expression by means of the Wronskian (3.14)
and obtain the induced current at z = 0,

4iE,
wuosine(eow/c+i)ﬂo(raa)

) «k2 Hl(zoa) Jolxa)

-1

2
KoK Ho(zoa) Jl(Ka)

(4.26)

This result reduces to that in equation (3.15) for normal incidence.

18
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When the conductivity tends to infinity, the moduli of K and «
tend to infinity and the analysis in Section 3 shows that the second
term in the bracket tends to zero. This result then agrees with that
of reference (1).

On the other hand, when the conductivity is finite, equations
(2.12) and (4.1) show that |K| and |x| become small for sufficiently
small w and we can use equations (3.39) through (3.42) to show that
the modulus of the second term in the bracket becomes large compared
to 1, which can be neglected to obtain the approximate value of the
induced current

I(w) ~ 7a’sin® E_(0) - (4.27)

This again is the current induced directly by the incident wave. As
discussed in Section 3, the late-time behavior of the current in-
duced by an incident pulse is determined by the form of the transfer
function for small w, and we find the same gqualitative changes in the
induced current between perfect and imperfect conductors.

Another limiting case of interest is the one in which ¢ tends to
zero, that is, when the incident wave travels almost parallel to the
cylinder. The case of the perfect conductor gives an induced cur-
rent that is approximately

_ 210, , (4.28)
wugG[log(Oka/Z) + v}
which diverges when & tends to zero. We now take the complete ex-
pression (4.26). As, for small & ,
k% m § Cuw (4.29)

and ¥ remains finite, the second term in the bracket is proportional to
1/(621logé) and becomes large, so that

2ngEqalt; (xa)
Iz__.__&_.x____a 2,
K Jo(xa) ? (4.30)

which tends to zero with 8. There is then an angle for which the
current is a maximum for a good conductor. This angle can be obtained
from equation (4.26).

5. CONCLUSIONS

The expressions we have obtained for the current induced in a
conducting cylinder by a plane monochromatic wave--essentially the
transfer function in this problem~-allow us to study the general
properties of the response to an incident pulse. 1In particular, we
found some gqualitative changes due to the presence of a resistivity
both in the late~time behavior of the current and in the small angle
limit.

The early-time behavior of the current, related to the high-
frequency region of the Fourier transform of this function, is not
particularly affected by the terms containing a finite < when com-
pared to the limit of a perfect conductor, and the results obtained
by Barnes are valid. We should even be able to observe the
behavior for large t in some cases, before the changes brought about
by a finite conductivity set in.
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The late-time behavior of the current is determined by the
transfer function for low fregquencies, and in this limit there is
a marked difference between the expressions obtained for finite
conductivity and for a perfect conductor. For finite conductivity,
the scattered field becomes negligible for sufficiently low fre-
gquencies and the field inside the cylinder is that of the incident
wave. Consequently, the induced current is proportional to this
field, and its late~time behavior is not that of iflogt but the
one of the incident pulse.

The analysis of the case where the wave comes in at an arbitrary
angle with respect to the cylinder introduces no qualitative changes
with respect to the simpler case of normal incidence. The special
limit of a small angle between the direction of propagation of the
incident wave and the axis of the cylinder also shows a marked dif-
ference due to a small resistivity; for a perfect conductor, the in-
duced current tends to infinity when the angle tends to zero, whereas

for finite conductivity the limit is zero.

The qualitative differences are due to the changing relative im-
portance of the two terms in the bracket in equation (4.15) or equa-
tion (4.26), f£rom which we can obtain an idea of the order of mag-
nitude of the guantities involved in a particular case. A more pre-
cise calculation of the late-time behavior of the current induced in
a cylinder that shows that transition between the two regimes, or a
determination of the angle of incidence that gives a maximum induced
current, would require numerical calculations of the actual responses.
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