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Abstract

A finite length insulated wire lying at the earth-air interface is
modeled using a transmission line approach. Transient response to a double
exponential incident pulse with 10 ns rise time is obtained for various
incident polarizations, cable lengths, soil conductivities and termination
impedances. Characterizing all cases, the induced current pulses peak at
~(3-20) amps/kv with rise time ~(.1-.2) Usec, A simple bare wire surface
cable model current estimate is shown to be in good agreement with results
from a more sophisticated model of a wire near the ground plane.
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TRANSIENT CURRENT ESTIMATES
FOR FINITE LENGTH SURFACE CABLES

1. INTRODUCTION

In a previous note [1] we reexamined an approiimate theory appli-
cable to studying the EMP response of surface cables interconnecting equip-
ment components of mobile defense systems, Eiplicit finite difference
calculations [1] of the step pulse response of an infinite (no axial
dependence) surface cable revealed that a reasonable estimate of the
surface cable transmission line impedance could be obtained from the
impedance of a cable fully buried in the earth, The latter results should
be comparably vaiid for a cable with axial current variation induced by
the excitation of natural modes. Recently [2] a satisfactory '"natural
mode' buried cable transmission line model has been developed, so it
appears worthwhile to perform a surface cable parameter study within such

a transmission line model framework,

Here we shall assume an electric field with 1 volt/meter peak
amplitude and a 10 nanosecond rise time incident either longitudinally
or vertically with respect to a cable lying along the earth-air interface.
The cable is a sheath insulated wire on the order of tens of meters in

length, We assume for the transmission line various termination impedances



crudely representative of mobile equipment grounding practices. Cable

currents are calculated for several soil conductivities.

2. THE SURFACE CABLE TRANSMISSION LINE MODEL

A cross section of the idealized surface cable model is shown

in Figure 1.
he - -
sheath medium (cs 0, €, Mg = uo)
driving electric field (out of paper)

)

infinite air (¢ = o =
( a ! ea = eo’ ua uo

=u)

infinite earth (oa, €40 Hg o

wire of high conductivity

Figure 1, Cross Section of Surface Cable

A transmission line analog to the cable of Figure 1 is shown schematically

in Figure 2.

o—————

X =0 E‘(w’x) x ™ d
z | V/
_Ji TTYw,o) Itw,x? l 2
_ T(N,d) —%

Figure 2, Surface Cable Transmission Line



d
be discussed shortly., Implied in all of the following is the -assumption

The driving electric field E, and the termination impedances ;fzz will

that the actual incident field suffers negligible attenuation through
the insulating sheath and the diameter of the entire cable is much less

than a wavelength in the earth medium.

For purposes of Fourier analysis we adopt a harmonic time
dependence of e’IMt. Suppressing line parameter w dependence, the

frequency domain transmission line current equation is:

o
87L(W,x), b2 Ty,x) = YEy (w,x) . (1)
ax?
The uniformly distributed longitudinal impedance Z and transverse admit-
tance Y determine the propagation constant h and characteristic impedance

. Z:
c

Y = -h? , Z. = JUY . (2)

In terms of a driving field sufficiently general for the present calcula-

tions, the solution of (1) subject to the termination conditions of Figure

2 is:
T(w,x) = F(x) + e1hx [AF(d)efhdés F (0)]
Ic - Dezlhdi
+ i (d-%) [Ae'™F (o) - B'F(d)]
[C - De2*Nd; (3)
where,



Ey(w,x) = B @e™, mi1>0 ;

F(x) = Eo [(ei'yx _eihx) . (eiyd eih(d-x) _eiyx)]

v

c .

“c L iy-h) i (y+h)
and,
A= (Z-2)( -2.)
B = (ZZ*ZC)(a -Z.) , B' = (% *ZC)(ZZ-ZC)
C = (2 +2)(Z +Z)
D= (2 -2)(Z -Z)

Above, Eo(w) denotes the product of the incident field amplitude and some
appropriate interface transfer function. A possible elYX space dependence
is '"factored out'" of the incident field for generality. The time response

of the cable is the Fourier integral:

oo [3
wt

I(t,x) = 1/2n_£ Tw,x)e “dw “4)
For the calculations of this note, (4) was integrated numerically,

Calculating the surface cable h and Z

Guided by our previous results in [1] we shall simply ignore
the air medium in Figure 1 for purposes of obtaining a surface cable
longitudinal impedance, Thus, we assume

I~z (5)
In (5) Ze is the longitudinal transmission line impedance of the Figure 1
cable buried at "infinite depth" in the soil medium. An approximation
of probably comparable validity for the transverse admittance is the
familiar estimate YaY /2, Thus, for the surface cable propagation

constant we assume from (2) that

h~h//7 . (6)



A spatially uniform field (one case we consider here) applied
to a finite length cable will most certainly excite the natural modes of
the cable, In [1] we considered a uniformly illuminated infinite length
cable in which case the natural modes cannot be ekcited. For the calcula-
tion of Ze, he in (5) and (6) we utilize the recent model of Hill and
Wilson [2] in which accurate parameters of a natural mode buried cable
transmission line have been obtained. Rather than needlessly repeat

the description of this model, the original article is included in this
work as Appendix B, Of course, the latter model produces transmission
line parameters for an infinite line So the present calculations contain
the usual assumptions regarding the addition of termination conditions

to such a line.

The driving electric field

We assume a hypothetical pulse shape for the incident electric
field of the form:

e-bt) volts/meter, (7)

-at
t) = -
Einc.( ) 1.05(e
where a = 4x10° and b = 476x10°%, The resultant driving field for the
transmission line is in general,

Ey(w,x) = 1.05 T(w) (a-b)el™*
(@+ia) (w+ib) . (8)

In (8), the transfer function T(w) and the propagation constant Y
are obtained by calculations assuming the cable not present, We consider

two cases:



1) The source of the incident field is directly overhead and the
electric vector of (7) lies along the cable, The field (8) is, in this
case, assumed to be uniform and hence Y = 0, From any text discussing

the Fresnel coefficients [3] one finds

2k

Tg$%rhead = E_EF—
e a | | (9)

where the propagation constants for earth (e) and air (a) are, in our

convention,
k = /png +ipow , Imk)>0

2) The incident field source lies "end-on'" with respect to the
cable origin and the electric vector of (7) is perpendicular to the
ground plane, The surface wave treatment of Stratton [3] is applicable

(Appendix A) in this case and we find under reasonable assumptions that

k
Téﬁ&—on = Fa'

e ,

ik k
Yend-on )> 0, (10)

e
K2+K2 ’ Im(yénd~on
/ e a

Termination impedances

For the transmission line termination impedances of Figure 2
we shall adopt a number of possibilities, hopefully encompassing a range
of crude correspondence to actual grounding situations of surface cables
in mobile defense systems. Some relatively simple terminations should

suffice for the present study,

.



Always of interest are the limiting terminations ZJ= Zz= 0

(short circuit) and 21= Zzn zc (matched loads), A principally'resistive

impedance results from a vertical ground stake, Sunde T14] gives the
following approximation:

1

Zstake = 7o, M4/ -1 ()

where £ is the length and a the radius of the grounding rod.

Finally we consider the sphere shown in Figure 3,

’//F— perfectly conducting sphere
]//’—t::>\ infinite air (free space)
\\\‘i’,// infinite earth

(Ogs» Hg = Hgys €g)

Figure 3. Sphere Termination

The capacitance of the sphere is easily found to be:

C = 2ma(e +ee) . (12)

Including loss due to the soil conductivity, the impedance of the

Figure 3 configuration is

i
Zsphere 2ma[ (e +e)wioJ . (13)

A small sphere affords a fairly high termination impedance, A larger
sphere may represent equipment vans, et cetera, We should point out,
however, that we ignore in this work any pickup to the termination

structures.,



3. - NUMERICAL RESULTS

We consider a typical cable, the specifications of which

are (Figure 1):

s ]
[

e
]

Q
]

m
1]

= ,9%,0254 m
(.9 + .065), .0254 m
= 5,88x107 mhos/m (copper)

= 2,75 €_ (plastic sheath) ; (Cs = Q)

(o]

All permeabilities are that of free space, and

Ho

€
0

41 x 1077 h/m

1/36m x 107°f/m

The earth dielectric constant is fixed at

e =10

e

€

o

The remaining parameters (type of incident field, cable length d,

observation point x, soil conductivity and assumed terminations) are

specified on the plots.

Specific termination impedances considered are:

1)
2)
3)
4)

5)

Z, (characteristic impedance)

short

sphere (equation 13) with 8 inch radius
sphere with 2m radius

ground stake (equation 11) 2m long, lcm radius

Results are displayed in Figures 4-14.

The shorted line (equivalent here to the midpoint of an infinite

line) provides the worst case estimates for a given earth conductivity as

shown in Figure 4.



Qualitatively, it is useful to consider the approximate transfer

functions:

1-i 2w €e¥
T(w) ~— [ —_<< 1
overhead c . HCe ’ Ge

T ~1/2 T(w
égg-on / gv%rhead . (14)

The transfer functions admit £10% of the incident field at 10° Hz

The line current I(w) has typically a broad makimum in the range 10“-10° Hz
hence the late time tail of the infinite line current, In many cases the
oe dependence of T(w) dominates overall and currents are reduced with
increasing soil conductivity. The other higher conductivity examples show
also an altered pulse shape due to the ¢ dependence of the termination
impedances.

Since the end-on transfer function is so similar to Tgﬁéfhead
only a few end-on cases were included. The end-on current results (al-
lowing for the time delay ~x/c) are roughly just 1/2 the corresponding
overhead incidence currents and exhibit similar pulse shapes. The phase
velocity associated with h is << ¢. The attenuation from h, however,
dominates that of vy (equation 10). Thus, except for the time delay, the
end-on results for short cables are not very sensitive to Y. We have

explicitly verified the latter points by calculating the end-on cases

with vy = 0,

4. CONCLUSIONS

Encompassing all of the cases considered, the simple surface
cable model predicts cable currents of amplitude ~(3-20) amps/kv with
rise time ~(.1-.2)usec, given the incident double eiponential pulse

with 10 ns rise time. The surface wave approximation of an end-on EMP



10

source yields peak currents ~1/2 the amplitude of currents resulting from
uniform overhead illumination of the cable, In many cases the cable
currents decrease with increasing soil conductivity, due to the o‘e"/2

dependence of the earth-air interface transfer functions.

Although the results are reasonable; a number of simplifying
assumptions have been made. It would be desirable to ekperimentally
test the model under faverable situations of incident pulse, termination
impedances and soil conductivity, The estimates presented here should
also provide a useful comparison to predictions of more sophisticated

models which could be developed for the surface cable problem.

o~
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APPENDIX A

TRANSFER FUNCTION FOR END-ON ILLUMINATION

Stratton [3, page 516] presents a detailed discussion of T™
surface waves traveling along the earth-air interface, We shall simply
idapt his notation and results for our purposes, The situation is that
of inhomogeneous plane waves and a complex angle of incidence 60 such
that no reflected wave occurs. The refracted electric field component

along the interface is our desired drive field for the transmission line.

The surface wave geometry is shown in Figure A-1,

x
€,u,0 (air)
E 2 2 2
! 1 x e
- z
E
z €,y ,0 {earth)
11 1
Figure A-1, Surface Wave Geometry
At the interface as x = 0 +, the field solutions are
wy R . s .
Ex = 7 2 ¢in eoc elkzsm eoz iwt %))
2
wi < . .
E, = T(_Z_ cos SOC elkz sin Goz iwt (2)

2
where C is an arbitrary constant and




k
- (¢ - (3)
cot 6‘0 = kx (for uz “1) .

We equate at z = 0 the vertical field Ex of (1) and our

incident field E}gg)e‘ﬂ”t thereby fixing C. The "driving field" E,

from (2) is thus:

k ' .
E -2V} E (U)ele (4)
2 k inc ’
1
where
ik k
e , Im(y) > 0, (5)
’jkz + K
1 2
iwt

The restriction on y in (5) insures exponential decay, given our e~
convention.

The assumption made above is that some source far from the cable
origin (z = O heré) has established (in a manner we need not specify) a T™™
surtface wave. By limiting the problem to the interface (x = 0) we may
approximately fix the surface wave amplitude consistent with ignoring
the presence of the cable. As demonstrated in Stratton, the planes of
constant phase are perpendicular to the interface in the limit of a
pertfectly conducting earth. The phase planes of an actual surface wave
are tilted forward, though for the earth conductivities we consider, the

tilt angle is small for frequencies <10°Hz.




APPENDIX B

NATURAL MODE BURIED CABLE MODEL

The following article [2] is an essentially preliminary study
though it presents a satisfactorily complete formulation of the transmis-
sion line model for calculational purposes. The conclusions regarding
the "transverse conductance anomaly" are far too restrictive, however,

In a forthcoming paper, the authors of [2] shall demonstrate that the
model actually yields a close approximation to the results of a 'forced
oscillation'" analysis (independent of transmission line ideas) even
though the original equivalent circuit for the transmission line cannot

always be physically realized at sufficiently high frequencies,
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SECTION 1

INTRODUCTION

In 1966 Marston and Graham (reference 1) presented an approxi-
mate procedure for the estimation of transmission line parameters
appropriate to a buried conducting cable with an insulating sheath. We
have solved the more exact model which the Marston-Graham (MG) method
approximates and shall demonstrate a striking disagreement between
the results of the two treatments. Noting the presence of an inter-
pretative difficulty in the original MG model, we shall further show
that a plausible modification of one of the MG assumptions results in
quite reasonable qualitative agreement with all of the line parameters

. calculated from the more elaborate treatment.

We consider in this note an insulated cylindrical conductor
surrounded by an infinite, lossy dielectric medium., For this situation,
one may define transmission line parameters via the fields of a natural
mode (free oscillation) analysis. Such a "more exact" approach to the
buried cable is not a new idea, but to our knowledge, complete numerical
predictions of the natural mode buried cable model have not been pre-
viously published. Several authors have discussed (references 2 and 3)
the longitudinal propagation constant but [they] did not explicitly

calculate transmission line impedances from the '"exact' fields. In order
to obtain a perhaps more realistic transmission line model and, as a basis
for comparison with more approximate methods, we calculate all line quanti-

ties from the numerical solution of the boundary value problem.

The three-media natural mode problem involves the numerical

(’ solution of a rather complicated transcendental equation. One may
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avoid the solution of this equation by constructing an approximate
sheathed wire model from the fields of a bare wire embedded in an
infinite dielectric. Such a procedure was utilized by MG and the
modified version of [their] model, with relative computational simpli-

city, should provide more reliable engineering estimates..

If the conductivity of the infinite "earth' medium is suf-
ficiently low, the calculated transmission line transverse conductance
exhibits anomalous behavior at high frequencies. Such behavior appears
to indicate theoretical limitations of the model. Fortunately, for
practical current calculations on long cables, the anomaly occurs at
frequencies high enough so as not to contribute significantly to the

bulk current.

The next section is a review of the transmission line circuit
and equations appropriate to our physical model. Section 3 outlines
the free oscillation analysis and the calculation of transmission line
parameters from the field solutions. In section 4, we critically review
the MG construction of a sheathed wire model approximating that of
section 3. Numerical results are presented and discussed in section 5.

Conclusions follow in section 6.

B-2



N

2. TRANSMISSION LINE EQUATIONS

The theory of transmission lines is treated in references
(4,5,6). An incremental section of the general model we wish to

consider is shown in Figure 1.

I1(z)

I(z+Az)

V(z) V(z+Az)

Figure 1. Incremental Section of Transmission Line

The impedance parameters of Figure 1 are assumed to be uni-
formly distributed along the line. The longitudinal impedance is Z and Y

is the transverse admittance. A driving electric field Ez may be present.
0

Choosing the propagation convention e'iwtwe have in the frequency
domain:
Z = R -iwL (1)
Y = G -iwC . (2)

R, L, G and C are respectively the series resistance, series inductance,
shunt conductance and shunt capacitance, all per unit length and frequency

dependent. Subsequent equations will not explicit the w dependence.



Application of Kirchoff's voltage and current rules to the

incremental transmission line section yields the basic two equations,

v
3z

=21 + Ez
(o] (3)

(4)

Combining (3) and (4) one obtains the current equation:
2
Che -2Y1 = -Ez Y . (5)
22?2 o
Introducing the characteristic impedance Zc and the propaga-

tion constant h the following four transmission line parameters may be

calculated given any two of them:

) h? = -YZ (6)
2 _

zc = Z/Y (7

- Z = -ihZ_ 8)

Y = -ih/Z_ (9)

. . . ihz
By combinations of the homogeneous solutions ( x e*lh )
of equation (5) appropriate to desired boundary conditions, complete
solutions to (5) are easily obtained. The source term, -Ez Y, enters

o
through a particular integral.

In this paper, we examine the calculation of the four quantities
in equations (6-9). The corresponding physical model consists of a
cylindrical conductor covered with an insulating coaxial sheath and sur-

rounded by an infinite, lossy dielectric medium.
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The specific transmission line analog to our physical model is

shown below in Figure 2.

¢ Z fF—
I 1/Ysheath
v ~\\\‘
It 1/Ysoil
‘. 7 5 -.

Figure 2. Coaxial Transmission Line Section

A transverse current (per unit axial length) It returns through
the sheath and the infinite soil, each region given a transverse impedance
and corresponding transverse admittance. The total transverse admittance
as in Figure 1 is just

Ysheath Ysoil

Y =

Ysheath+Ysoil (10)
From (4) it is evident that:
1 < .91
t oz . (11)

Note that we have indicated no driving field in the circuit
model of Figure 2. In the usual approach to this problem one relates
the transmission line parameters to solutions of Maxwell's equations
obtained in the absence of a driving field. The resulting Z and Y are

then assumed to give an adequate description of the driven line through
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the solution of (5). This assumption is reasonable due to the fact

that in most cases of interest, a single mode will predominate in the

current excited on the line by an incident field.
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3. NATURAL MODE ANALYSIS

The geometry of the physical model is shown in Figure 3.

r &>

Ly

RELPN
Figure 3. Cable Geometry
The central cable of radius rlis assembled to be typically a very good
conductor. Region 3, a homogeneous, lossy dielectric, crudely simulates
an infinite '"earth" medium and constitutes the return circuit of a
coaxial system. The insulating sheath, region 2, is allowed a conducti-

vity 02. For all media, the unrestricted propagation constants are:

k2= e pnw? + io.nwy j =1, 2, 3 . 12
it %5 g = (12)

If I is the total current in the central conductor and Io its

amplitude we may assume:

1= I°e1h2~1wt (13)
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The axial propagation constant h of (13) is to be determined by solving

the natural mode boundary value problem. Among the many treatments

in the literature, Stratton (reference 7) is particularly detailed on
cylindrical problems of this nature. For completeness, however, we

shall sketch the derivation in the following.

We assume that only Symmetric, transverse magnetic modes
need be considered. Asymmetric modes would suffer extreme attenuation

for the frequencies and lengths T, T, of interest to us.

The symmetric cylindrical wavefunction (axial component of
the Hert:z vector) is:

_ ihz-iwt
whk = Zo(kr) e

}\2 = kZ_hz (14)
Above, Zo(kr) is a linear combination of zero order Bessel (Jo) or Neu-

mann (Yo) functions appropriate to each of the three regions of Figure

3. Our notation and definitions of cylinder functions is that of reference

(8).
The tangential H, radial E and axial E fields are respectively
given by:
H. = i]iz _._awhk
8 uww 3r (15)
= 27 = -
Er ozHe, Ez ZrHe
Following Stratton's notation, the wave impedances in (15) are:
Z
7 = -wh A “o(Ar) 7 = wih
b .2 0Z_(AT) * “z 2
3(Ar)

-
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In region 1, a finite wgi may be proportional to Jo(llr)

only. Integrating GIES) over the cross section of the central conductor

one easily obtains:

21,2
- J (A
9. lkllv 1( 1r)
® mrwo JOr) (17)
1 1 1 1 11
For regions 2 and 3 we may write:
'@ -1k’ ihz-iwt
Hg' = Z [AJI(Azr) + BYI()\zr) e
A
WA, (18)
9] 'iki ) ihz-iwt
Hg = Zror- CHY (A re
37 b3 (19)

By our convention Im(h) must be positive. In region 3, we choose Im(A3)> 0

and thus the Hankel function of the first kind in (19) insures vanishing
fields at infinity.

The ratio A/B and hence the coefficient C follows from the
homogeneous boundary conditions requiring continuous axial E, tangential H
at both r=r, and r=r . The result is:

Y (A -TY (1
0( zrx) 1( 2 1)

-A/B =
J 0o r ) T3 (A r)

2 )
b K2 n%(xarz)

)\ - Y (AT
YO( 2r2) u A kz l_'(l)()\ T ) )( 2 2)
27273 " 32
= 2 (1)
J vy - BAK HTT ()
T o L)
H,%2% “1 ( 3r2) (20)

(



where,

pAKI (Ar) -+ K

i 1 20 1 1 ~ 2 [

~ uT e 1
2 2 olw

I'=

A k3 (A . 21
uz zk1J1( 1r1) (21)
The approximate form of T in (21) is.suitable for an excellent conductor

in region 1 with A:=k1>>1.

The propagation constant h (for given w) is a root of the
transcendental equation (20). Of the infinite roots of (20) one desires

that valuec of h corresponding to minimum attenuation (principal wave).

We employed a regula falsi technique for the numerical deter-
mination of h. The root locus h(w) was tracked by linear extrapolation

from previous roots. Numerical results are discussed in a later section.

Given the roots h of (20), the coefficient ratio A/B and hence
the fields are determined through the relations previously noted. It
remains to calculate the characteristic impedance ZC for the transmission

line analog to Figure 3 as illustrated in Figure 2.

By definition, the characteristic impedance of our model is

L @ o) -
z.= E_(r)dr + A E.(r) dr | I

o 2 X (22)
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The bracketed factor is the transverse voltage at any point along the

line.

Performinc the radial integrations in (22) we ohtair:

-3 A
L ik J (A 1))
(o

21r 0 A%J (A
™9 2J1( 1r1) (23)

-ihk® k2-k? A A -J_(A Y (A
inktn koK [Jo( JFYO T )-3 O x )Y (AT )
4 5 KL A2 .o )
2 - Y O - A
IR r[?o(xzrz) AT )3 AT Y ()
The constant T in (23) is that of (21). The first term of Zcis a "skin"
impedance and for } ~k >>1 it represents only a small correction to the
11
second term. For a good conductor such as copper the effects of finite

conductivity (F+O) are quite small both in the second term of (23) and

in the determination of h from the determinantal equation (20).

Thus, by taking the normal mode h as our transmission line
propagation constant and, having defined the characteristic impedance of
(23), we may obtain the Z and Y of the line from (8) and (9) respectively.
Equivalently we could obtain the total admittance from (10). Given a
current of the form in (13) and using (11), the transverse current Tt

is ~-ihI. The individual admittances of Figure 2 are just

-ihI .
Y - -]hI .
sheath , Y o= A
sz(?(r) ar Soll./' h[i-)(r) o . (24)
r r

1
An approximate form of the decomposition of Y in (24) is employed by
Marston and Graham. We proceed to a discussion of their model in the

next section.
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4. MARSTON-GRAHAM MODEL

The solution of the three-media transcendental equation (20)
in Section 3 is, in general, a complicated affair. One would like to
approximate the model of the previous section in such a way as to avoid
(20) altogether. In reference (1), Marston and Graham (MG) have formu-
lated an approximation to the transmission line model of Figure 2 based
on the field structure about a good conductor embedded in an infinite,
lossy dielectric medium. One naturally assumes that the bare wire
fields are similar enough to the fields of the sheathed wire that one
may at least estimate the longitudinal impedance and the admittance

through the soil of the coaxial transmission line model.

In the following we shall first review the bare wire boundary
value problem then restate the original MG prescription for approximating
th. coaxial model. A difficulty of interpretation will be noted in the
MG assumption regarding the longitudinal impedance. The removal of this
difficulty by a simple, physically plausible modification will be shown to
result in a marked improvement of agreement between the calculated
parameters of Section 3 and the corresponding MG approximate values.

The graphical numerical comparisons in Section 5 will clearly illustrate

the previous statement.

Fields of the Bare Wire

The geometry and notation for the bare wire problem is shown
in Figure 4.
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K= ¢ uw?douw
J 1) ) J

x;=k;-h; s §=1,2

Figure 4., Bare Wire

The classic investigation of the free oscillation modes of the conducting
cvlinder embedded in dielectric was done by Sommerfeld (reference 9)
in 1899. The problem is solved by the method of Section 3 and as before,
only axiully symmetric TM modes need be considered. To avoid confusion
we shalidenote the axial propagation constant for the bare wire as hb.
All other definitions and conventions are the same as those of the previous
section.
The assumed current in the wire is
ihhz-iwt
1=1 ¢
o (25)
The TM field solutions for the outer region 2 ("earth" medium) are
0. w k20 o

z

a1 v o KD (A 1)
111 21 271 R (26)



siv k21 KO 1)
2 1 1 2

@ _
lJe - &)
w
anl u‘ol Hl (Azrl) , (27)
-ip h k21 HO
E&) i 1u2hb.11 Hl (Azr)
r

2 2 4O () . 8
nrlulolkz % ( 2rl) (28)

For this problem one obtains the propagation constant hb as the (principal

wave) root of a simpler determinantal equation:

kJ (A r) k.ZH(‘)(A T )
0 S VU S S 2 1
: 1Y)
UIAXJO()\XTI) HZAZHO (Azrl) . (29)

Equation (29) is easily solved for hb by the method ot Sommerfeld.
For large but finite wire conductivity one may assume that (provided rlis
not too small):
J (Ar)
Amk o>l , 211 . 4
b J1(A1r1) ) G0
In the principal mode the propagation constant hb differs but slightly

fromw RZ, hence the small argument Hankel expansions are applicable:

. YA T . -
G ~2 g2 1 u) o cd
HY Ot )~ 2( = ) CHYOr)

n)\zrl . (31)
The constant y in (30) is ~1.781.
Employing (31) and defining new variables
Y1\ Gy Mk
g =( zi ‘) ,n = 2 h'z' 'kl" . (32)
equation (29) may be solved by the iterative scheme
€n+1 fn €n =n, £&n an--ZO . (33)
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The algorithm (33) is rapidly convergent. From the final

iterate of { one may then solve the first equation of (32) for hb.
Numerically the above scheme may be slightly improved by explicitly

evaluating the Bessel ratio in (30) for ikI:XISIOU.

The MG Procedure

As a basis for extension to the insulated sheath model, Marston and
Graham identity the bare wire situation of Figure 4 with the transmission

line analog shown helow in Figure 5:

_>I

- ;1 Zb -s+ L *
b

U]
[N
™~

Y

. Bl _ .

« -]

Figure 5. Bare Wire Transmission Line Section

It is essential that we discuss this analog in considerable detail.

In Figurc 5, the total longitudinal impedance Lb(with per
unit length understood as before) is the series sum of the internal a.c.
impedance of the wire (Zs) and the lumped representation of the external
impuedance (ZL)' Yb is the transverse admittance from the surface of
the wire through the infinite outer dielectric medium.

We shall calculate impedances from the fields (26), (27),

and (28). The '"skin" impedance is:

: = N k-fx ﬁ)
L:(r r!)- M, 3_110 (agrl)

( s I 27T I kZHﬁ)(A T )
111 21 21

(34)
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The familiar approximate form of Zs follows from (29), (30) and k1~,/iulolw .

By the definition of inductance one notes that

Z = -iwlL , L=1"f Be@ (r)dr
T

5
L . (35)
utilizing
o O Hg) (Ar)
f nY o rygr = ——214
! z
r kz (36)
1
for the cvaluation of (35) there results:
o e kHY O 1wy ‘N T
S A T 2 ~——2 n|—21
: 27 21 . (37)

2Rr O 4 A HG) (>r)
111 21 21

Small arpmment expansions (31) yield the approximate form of ZL'

By direct addition of the exact cxpressions (34) and (37) we

obtain:

. (38)
The expression (38) will urove ureful in later discussion. Of course

we expect 2, to be dominnted by ZLas (38) clearly shows since hgzkz.

b
Having presented the impedance calculation '"piecewise" let
us now directly obtain the transwmission line parameters for the bare

wire. 'The transverse voltage at any point along the line is

o . 2y 4 .. y.ih
v =/E®(r)dr _ wzhl-k_lloHo (Azll)e. L
T ] 2 Pp)
20 p 0 kA 0. r) . (39)
111221 21

z2 jwt

T
1
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By definition we require that:

vV _
= = -1 (40)

From (39), solving for Z, in (40) and comparing Z in (37) one may

b L

immediately obtain the previous expression (38). The remaining trans-

mission line equation is

ol
3z - Y. (41)
Solving (41} for Yb by again using (39) one finds:
2rirou A k2P r ) -2n(o - W)
Yb - 1 1 1 2z 2 1 2 17 2 2

b HY (4 r )
210 2 1

%21.1
2“( 21 ) : (42)

Note that from either thz exact or the approximate expressions one may

easily verify that Zbe= -h;. The above derivation is equivalent to
the original MG analysis of the bare wire. With due regard to (their)
e+1wt convention, the results are identical.

In terms of the bare wire transmission line parameters let
us first state the entire MG prescription for the coaxial line approxi-
mation, then recall the underlying assumptions. Denoting correspondence

to the quantities of Section 3 by the sub-label 'coax'", the MG model is:

Zcoax P Zb(from (38)) , (43)
Ycoax = Ysheath Ysoil
Ysheath * Ysoil , (44)
where,
Ysoil ~ Yb(from (42) with T OT ¢+ t) (45)

t = sheath thickness = rz-r1 of Section 3
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and,
2 2

Ysheath =~ T+ t-
Qn[ 1 T

1

. (46)

Propagution constant and characteristic impedance are therefore:

h = /-Z Y .
coax toax coax , Im(hcoax)>0 ; (47)

-ih
) _ _ coax
¢’ coax

2

coax . (48)

Bare wire quantities Az,hb needed to calculate (43) and (45) are

obtained by the Sommerfeld method applied to wires of radius r and T+ t
respectively. Equations (43-48) and the former statement constitute a

complete summary of the Marston-Graham buried cable approximation.

The assumption is made in (43) that the addition of a sheath
to the bare wire will not appreciably alter the transmission line
longitudinal impedance. The sheath will, however, have a blocking
effect on the flow of transverse currents. One may therefore analy:ze
the total transverse admittance through components as in (44) and
Figure 2. 1In order to estimate the admittance through the soil (region
2 in this section) MG use the bare wire admittance (45) computed for a
wirc of radius equal to the outer sheath radius in the actual coaxial
case. lor the admittance through the sheath MG adapt (46), the well
known expression for the admittance between two (coaxial) good conductors.
Thus having specified Z and Y, the propagation constant and characteris-

tic impedance may then be obtained through (47) and (48).
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A Difficulty in the MG Model

Calculating the MG longitudinal impedance via (38) and (37)
one immediately encounters a somewhat surprising result, namely that
Re(ZL) and hence Re(zb) are algebraically negative quantities. This result
is evident in the original MG article upon examination of (their)
equation (25) and Example II. The calculation of an apparently unphysical
resistance naturally raises serious questions of interpretation.

Let us first demonstrate that the above mentioned result is
indeed a consequence of the bare wire boundary value problem which was

previously reviewed. Consistent with our propagation convention we must

have:
k2 = a+ ib , (a,b) >0
hy = v+ iB , (v,8) >0 (49)
Im(A: = ki-h;) = 2(ab- )

Now as Sommerfeld first noted, the surrounding fields propagate into
the wire and as a result, the waves suffer additional axial attenuation
(B>b). The traveling waves exhibit also a slightly reduced phase velocity

(y>a). Clearly then from (49) one must find:

In(A)<0 (50)

The bare wire fields (26-28) behave asymptotically (for large radii) as

a Hankel function of the first kind with the form

¢e+i(A2r)—iwt

iz

(51)
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A self-contained physical system must have finite fields at infinity,

hence from (51) only Im(A2)>0 is permissible. The restriction (50) then

demands that A, be of the form:

>‘2 = -¢c + id (c,d)>0 . (52)

Consider now the approximate form of Z, in (37). It is evident

L
that given Xzof the form (52), the imaginary part of the logarithm
argument is >0 and hence Re(ZL)< 0. We note that the foregoing is merely

a simple way to reveal the sign of Re(Z The result is actually a

L)°
consequence of (50) alone since one may express ZLin terms of Zs multiplied
by a factor containing A:. Numerical evaluation of this alternate expres-

sion yields the same conclusion.

Fortunately the above ''difficulty'" has a simple and rather
interesting interpretation. We shall demonstrate in the Appendix that
the MG bare wire transmission line equations do indeed mathematically
describe a well-known circuit analog, but one that is, however, different

from that of Figure 5.

Having relecgated further discussion of the bare wire circuit
analog to the Appendix, let us attempt to clarify the use of Zb in the Marston-
Graham approximation. We need only to note that the MG assumption in (43)
does not include an essential physical difference between the fields
of the bare wire and those of the coaxial solution of section 3. Solving

the coaxial model of the previous section we naturally demand Im(k3)>0

within the earth medium. We then find that A3 is of the form:

A= ,/kz-hz = e + if (e,f)>0 . (53)

3

The result (53) occurs so long as the sheath conductivity has no domina-

(/ ting influence; such is the case of interest in this paper.
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Since (e) in (53) is a positive number, we therefore obtain out-
going waves at asymptotic radii. By way of comparison to the "earth medium

in the bare wire situation, we have shown (52) that Re(A )< 0, repre-

earth
senting incoming waves at asymptotic radii via (51). One will recall the
familiar textbook example (reference 10) of Poynting's Theorem applied to
an imperfectly conducting wire carrying current. The radial Poynting vector
is directed inward (in the direction of radial propagation) and energy flows

into the wire from the surrounding fields in amount equal to heat energy

dissipated in the wire.

We therefore propose an obvious amendment to the original MG
prescription. Let us agree to compute Az(or Az) by the Sommerfeld method
and having obtained the result (52), make the following ad hoc change:

A, as in (52) ~ lel + id

equivalently, Ai -+ (Az)* . (54)
The modified values (54) are to be employed in the calculation of both Zb
and Ysoil in (43) and (45) respectively. Note that (54) has only the ef-

fect on Zb of changing the sign of Re(Zb); component magnitudes of Zb do

not change. The effect of (54) on Yso is also quite favorable. We

i1
shall discuss the latter point more fully in the next section.

The modification (54) simply reverses the direction of (asymptotic)
radial propagation in the bare wire situation in order to achieve a closer
physical approximation to the field structure of the coaxial case. In this
regard, the addition of a sheath to the bare wire has an important (though
indirect) effect on the estimation of the transmission line longitudinal

impedance. Our arguments apply only to an essentially insulating sheath



for which (53) obtains. The model of section 3 yields results quali-
tatively no different from the bare wire model if the sheath medium is

assigned a high enough conductivity.



5. NUMERICAL COMPARISON

We compare both real and imaginary parts of h, Zc, Z and Y
for the coaxial transmission line as obtained from both the field analysis
of Section 3 and from the Marston-Graham model of Section 4. Figures 6
through 29 present the comparative results (log-log plots) for three
distinct cases as indicated. Negative quantities are graphically indicated
by arrowheads superimposed on a plotted line. The individual cases

will be discussed sequentially for clarity.

Cable geometry is that of Figure 3. Common to all three cases

we have taken:

HEN su =41x10"" henry/meter
L3
01= 5.8 x 10’ mhos/meter (copper)

03= lO’amhos/meter (earth medium)

- =1 -9
ea— .105o s eo = 37 X 10 ° farad/meter.

Case 1
Results are displayed in Figures (6-13). The remaining cable

parameters are:

ro= .9 x .0254 meters r2 = (.9+.065)x .0254 meters

£ = 2,75 € (sheath medium) , o = 0.
2 o 2

B-23




The Marston-Graham quantities are labeled MG on the graphs.

For this case, we show the consequences of the original MG prescription

as discussed in the previous section. The MG longitudinal resistance

(Figure 10) is negative and this unphysical result introduces serious
discrepancy into the comparison with the model of Section 3. Most

notable is the effect on the line attenuation constant (Figure 7) and on

Im (ZC) evident in Figure 9. Observe that the MG admittance (Figures 12

and 13) has no radical departure from the other model up to frequencies

-5 x 10°® Hertz. Over this frequency range we see that the actual (asymptotic)
direction of radial propagation in the bare wire solution is not a critical

factor in the MG admittance assumptions.

(@
s\
i
[P}
to

All parameters have the identical values of Case 1. For this
example we consider the modified MG model resulting from the plausibility
arguments leading to (54) in Sectimrn 4. The results are presented in
Figures (14-21). For frequencies:SlO7Hertz the MG model now yields a
reasonable propagation constant (Figures 14 and 15) and characteristic
impedance (Figures 16 and 17). As we earlier pointed out, only the sign

of Re(Z) in Figure 18 changes in comparison to Case 1.

It is important to note that the modification (54) improves also
the MG admittance estimations (Figures 20 and 21). Most significant is
the MG prediction of similar high frequency behavior in the transverse
conductance (Figure 20). The latter behavior will be discussed at the
end of this section.
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While agreement is certainly not quantitative, the overall

qualitative agreement is excellent. The Marston-Graham approach can
thus apparently be made to contain most of the essential physics of

the extended coaxial situation considered in this paper. The modi-

fied MG model should be quite adequate for rough calculations. For

more quantitatively critical cable current predictions, one should

employ the model of section 3, if possible.

Case 3
Cable parameters are:
r‘= 1.19 x .0251 meters r2=(1f19 + .1) x .0254 meters
e - 20260 0 = 10" ° mhos/meter .

Results tor this final example are displaved In Figures (22-29). As

in the previous case, we employ the modified Marston-Graham model.

The comments regarding the Case 2 comparison apply equally well
to this example. Note cspecially the additional (over that of previous
Tesults) structure in Im(ZC); the MG model again can qualitatively re-

produce the detailed behavior of the model in section 3.

The Transverse Conductance

Upon implementing the scheme outlined in Section 3, we find (for
the test case parameters above) that at frequencies.ZlO7Hertz, the cal-
culated transverse conductance becomes negative. From a practical
standpoint, this unfortunate behavior is actually of little consequence,

as we shall claborate momentarily. The result is puzzling, but in this



paper we offer no definitive explanation. We can, however, make some

pertinent observations.

We believe that our solution to the three-medium determinantal
equation is correct. The roots h were obtained smoothly as a function
of frequency step-wise through fine increments. Our solutions for h
compare well with those of Price and Stevenson (reference2). As did the
former authors, we have located non-principal wave roots, but find the
real parts to have magnitudes 100 times that of the desired solutions.
It appears that the admittance anomaly is a theoretical limitation of
the model itself. The fact that the modified Marston-Graham procedure

predicts the same behavior tends to support such a conclusion.

At frequencies 210’Hert:z our test cases show that waves on the
line would be almost totally damped within a distance of -500 meters.
Thus typical current calculations on long cables cannot be appreciably
affected by the region of anomalous admittance.

The admittance difficulty is strongly dependent on the assumed
conductivity of the earth medium. We find, for example, that with 03=1
mhos/meter (and other parameters similar to our test cases), Re(Y) stays

positive for frequencies £10'° Hertz.
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6. CONCLUSIONS

In this paper we have considered an idealized buried cable:
an insulated infinitely long wire embedded in a homogeneous, lossy
dielectric "earth' medium of infinite extent. Transmission line para-
meters were defined and calculated from the free oscillation field analysis

of the sheathed wire.

Using the former calculation as a bench mark we compared
the line parameters resulting from the Marston-Graham approach. The
original MG assumption for the estimation of the longitudinal impedance
led to a model precluding any reasonable correspondence. A physically
pluusible reinterpretation of (their) assumption was then shown to yield
a model in detailed qualitative agreement with the predictions of the

three-medium normal mode approach.

One would reasonably apply the models we have discussed only
to current predictions on long cables. The high frequency transverse
conductance anomalies evident in both models can then be safely ignored.
We finally conclude that for quantitative cable calculations, it would
be clearly desirable to utilize the parameters of the more exact analysis,
if at all possible. The modified MG model should, however, be quite

suitable for engineering estimates.



APPENDIX

TRANSMISSION LINE CIRCUIT FOR THE BARE WIRE

In section 4, following Marston and Graham, we calculated
(via a natural mode analysis) a transmission line longitudinal impedance
Zb for a bare wire embedded in an infinite dielectric. We showed that
the unmodified adoption of Zb as the impedance of a sheathed wire trans-
mission line is physically unacceptable since the sign of Re(Zb) is
negative. Unlike the sheathed wire model, however, the MG bare wire

transmission line equations may be interpreted in terms of an equivalent

circuit conceptually different from that of Figure 5 (and free of the

former difficulty). Thus we shall demonstrate that for the bare wire,
the '"'negative resistance'" is actually only a matter of interpretation

and not a patently unphysical result.

The alternate circuit we wish to examine is well-known to
engineers, viz., the equivalent circuit representation of a transverse
magnetic (TM) guided wave. It is evident that the Sommerfeld bare wire
analysis may be viewed as the determination of the propagating modes of
a TM waveguide. Let us therefore consider an axially symmetric TM wave
propagating in an infinite, lossy dielectric medium characterized by
(uz, oz,ez ). The w;ve is guided along a finitely conducting wire of
radius T As throughout this paper, the assumed time dependence is
e-iwt.
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We shall need only two of the appropriate Maxwell equations.

From the curl E'equation:

T or = mque ' (1)

The curl R equation yields:

o9z

- (0 -iwe
(0,-iwe JE,

(2)

Assuming a waveguide z Jependence of elhbz one may solve (1) and (2)

for H,:

)
- -iw ]
0 (02 i sz) Ez
® kf—h; or . (3)

By
Now (curl E)z=0 , SO in any transverse plane we may obtain the radial

electric field from minus the gradient of a svalasr potential V:

r or . (4)
Observe that we may combine (2) with (3) and (4):

(c -iwe ) 0OE
2 2

) z . oV
-— |- = (g -iWe —_—
5z |7 e PR (5)

2 b
Similarly, by combining (1), (3) and (4) we obtain
- 2 -.
2 (_a_) B o S I D ™
3
3T o -iwe k2-h2 or . (6)
2 2 2 b

The radial derivatives in (5) and (6) can be removed within a constant
of integration which we are free to choose. For the bare wire situation,

let us note that Ez(r + ©) = 0 and let us define the potential so



that V(r -~ «») = 0. We may then integrate (5) and (6) by the following

(suppressing radial dependence of V):

0 o0
9E
oV _ _z - . -
_/15; dr = -V ,J —z dr = Ez(r—rl)
T T (7)

The bare wire transmission line analog is the statement of

(5) and (6) with (7). We identify the transmission line current:

(o0 -iwe )
1. -2 2 E (r=r)
& kZ_hZ 2 1

Transmission line equations are

vV __-g

3z “z, (9)
and,

al_

—= = YV . (10)

0z

The line parameters are just

2 2

-hb . hb

7= ——— = -iwp{—

C -1wgE 2 kz
2 2 2 (11)

and
Y = 0 -iwe . (12)
2 2

Figure A-1 shows the equivalent circuit section for the transmission

line of (8-12):
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L

Figure A-1. Bare Wire TM Waveguide Equivalent Circuit

A discussion of guided wave transmission line analogs may be found in

(reference 6).

The transverse voltage V in Figure A-1 is exactly the definition
previously applied to the bare wire in section 4. The Sommerfeld solution

again determines hb. Note that since typically h ==k2 then from (11),

b
Z::-iwuz and principally inductive. It is easy to demonstrate, using
the previous (section 4) physical arguments given regarding hb and kz,

that the small resistive part of (11) is in fact always positive.

The transmission line current Iz in (8) relates to conduction
and displacement currents in the dielectric (the factor oz-iwaz) and it
relates to the current in the wire Iwire via the boundary condition on
Ez(r = r)) at the guide surface. Denoting as before the a.c. impedance
of the wire by ZS, we have

E =1 = Zslwire , . (13)
and from (8):

(k;-h;)lz

Iwire T (o -iwe )2
2 2" S8

(14)
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Suppose we wish to use our waveguide transmission line
model for a practical current calculation given a driving field Ed(z,w).
Solving the driven transmission line equation (5) (infinite line) for

I (w,2) and using (14) we obtain: ‘
i(kI-hy) ~=

Iwire(w’z) = 2h, 2
s o)

Ed(u,w)e ihb'z—uldu
b

. (15)

Now consider the MG bare wire analog obtained by formal
identification with the circuit of Figure 5. Recall from section 4

that we showed (38):

h2
s =._b =
T SRR N U S (16)
2
Eliminating Z1 in (16) one finds
2
_ hypZs
7. =
b K2-h2
2 b . (17)

For the driven line current the MG model yields:

: -ihb i(ki-h;) ih fz-ul
Iwire(w,:) = 27; (space integral) = 73;7;——" / Ed(u,w)e b dq
(18)

Thus with the aid of (17) we see that the MG bare wire transmission line
equations are mathematically equivalent to those of the waveguide analog.
The bare wire model need not, therefore, be interpreted on the basis

of the circuit in Figure S.

As evidenced in the "hybrid' current Iz it should be apparent
that the unique features of the bare wire model arise from the fact

that there is no physical separation between the wire current and the
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current in the dielectric medium. Precisely such a separation is

provided in the coaxial sheath model.
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APPENDIX C

COMPARISON OF A BARE WIRE SURFACE CABLE ESTIMATE
AND RESULTS FROM A GREENS FUNCTION TREATMENT

OF A WIRE NEAR A FINITELY CONDUCTING GROUND PLANE

Herc we compare the two vable models (infinite bare wires,

uniform overhead illumination) shown below in Figure C-1.

inc inc
H E
X

-
r4

inc inc
@“r R
v
0

|
|
infinite air }
| infinite air (a)

l
///// R4 ¢ ////M/////

¢ € U ) infinite earth (e) (Oe ee.uo) infinite earth (e)
a) w;re near ground, but b) surface cable; treatment
with Yo >>a analogous to that of

reference 1

Figure C-1,

Bombardt [S5] has solved by Greens function techniques a more
general version of problem C-1 (a) (oblique incidence, akis of wire at

x> 0). An application of L'Hespitals rule to the current equation in [5]




and analytic evaluation of all but one integral yields the Bombardt

result for the total wire current in the limiting geometry of Figure C-1(a):

; k -k s
inc Il
o = 4t 1 ofghigt) 5e%]
a

—_— e :
: [ (1) (1 =
B W ‘-Hoiaa) + Ho(%kayo) F R (1)
where,
ik y . _ ,2
= e a o(lkaazo) AﬂT)o(IA*IB)
ik vy - .2 2
Je "a o(l-lkayo) + TT}O(IA+IB) (2)
and,
, 1 v,
AT 12
) a
k2-k2.1/2 '
("a e)” L2 op241/2 , 2 _ 1241/2 ] :
Ig = Yo [Hx[>o(ka k)l - \l[yo(ka keJT1] %)

The function Hlin (5) denotes the order one Struve function, Integral

(4) is easily done numerically,

For the surface cable in C-1(b) we use the ''average'

approximation from [1] for the effective impedance:

i ZZ(ka)Z(ke)
“s.cable  Z(K)) + Z(kg) (6)
where,
(ll)\a')
~ip wH_ (k
2wkalx (ka) . )
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The impedance (7) is a familiar textbook result, The incident
field is multiplied by the overhead transfer function as in the previous
section 3 calculations. Interface effects are, of course, 'built in"

to the Bombardt result (1), :

Assuming the same incident pulse shape as in section 3, a com-
parison of results is shown in Figure C-2., The surface cable model
yields a good estimate of the current induced on a (electrically thin)
wire near (<1 m) the earth's surface. The Bombardt result is insensitive
to y, for Yo < 1 m and in both cases we have Y 2 reasonably large as
required in the derivations of [5]. Had we employed simply Z(ke) rather
than (6) for the surface cable impedance, the resulting current estimate

would be only ~15% larger.
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2 Figure C-2: COMPARISON OF SURFACE CABLE ESTIMATE AND BOMBARDT PT.SULTS
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