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Section 1

INTRODUCTION

The electronic components of mobile defense systems (missiles,
artillery, communications, etc.) are often interconnected by electrical
cables lying on the surface of the earth. To assess the effects of EMP
on these systems we must estimate the response of these surface cables
to excitation by EMP. This paper is the first of a two-part consideration
of this problem. In this paper we examine the adequacy of the trans-
mission line analog of the surface cable. In the second part (published
as a companion volume) we make predictions of the currents that can
be expected on surface cables excited by high-altitude and ground burst
EMP, under various conditions of cable termination, polarization and
angle of incidence.

‘ In addressing the first problem we re-examined the current induced

- on the insulated wire at the earth/air interface. A finite difference
solution was developed that will yield the currents induced on the
surface cable when uniformly excited by an electric field pulse. Exami-
nation of the current predictions made using this computer solution
revealed that the longitudinal impedance of the surface cable can be
estimated from the solutions for the homogeneous media problem. Further,
it was found that the technique used to combine the homogeneous solu-
tions was not as previously suggested by other writers (Ref. 1,2).
Predictions made using the prior combination technique are only
erroneous by a factor of 3/2; however, for most applications of this

of analysis, errors of this magnitude are tolerable.
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Section 2

APPROXIMATIONS APPLICABLE TO THE SURFACE CABLE MODEL

By the nomenclature ''surface cable model" we shall imply the

idealized physical situation shown in Figure 2.1.

Metal Cable Cable Sheath (os, Mg es)

Infinite Air
(°a=0; Ua'UO, ea' EO)

. Infinite Earth

(Ogr Ugr E,)

Figure 2.1. Cross-Section of Surface Cable Model

We assume (for simplicty) that the inner cable of radius, rl, is a
perfect conductor. The cable sheath is essentially insulating but could
have a conductivity O The half-space '"air'" and "earth'" media are
homogeneous and each of infinite extent.

The prototype model of Figure 2.1 poses, in general, (finite
cable length, arbitrary incident field, etc.) a formidable problem for
"first principle" analysis. Consequently, as in previous work, there

is strong motivation for attempting to utilize a transmission line analog

to the surface cable.
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In 1965, Whitson and Vance [1] conducted CW experiments
(theoretically interpreted via transmission line models) on various
cables both fully buried and lying on the surface of the earth, They
found good agreement with theory for buried bare wires (at low fre-
quencies), but poor agreement for insulated surface wires. A similar
subsequent theoretical treatment by Marston and Graham [2] (again
analyzing some experiments of Whitson)led to essentially the same
results. The former authors felt that the poor surface cable results
were due to intermittent cable contact with the earth., It now appears,
however, that the analyses of the experiments may have also suffered
from inadequate approximations.

In these previous approximate treatments of the Figure 2.1 model,
transmission line impedances for the surface cables have been estimated by
plausible modification of the corresponding parameters describing a
cable fully buried. Furthermore, the insulated buried cable transmission

‘ line parameters were also obtained by plausible modification of the bare

wire models. The latter approximations, (especially those of
reference [2]) are not appropriate for transient calculations containing

' important high frequency 02107 Hertz) components. The choice of a
suitable transmission line model for an insulated cable totally embedded
in a single medium (earth or air) will be more fully discussed in our
subsequent note. Here we primarily utilize a simplified SC model to
study the approximate generalization of a single-medium transmission
line longitudinal impedance to the two-media surface cable situation of
Figure 2.1,

An incremental section of the transmission line analog to the

cable of Figure 2.1 is shown in Figure 2,2:
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Figure 2.2. Transmission Line Section for the Surface Cable

In Figure 2.2 the transverse admittance, Y, and the longitudinal
impedance , Z, are assumed uniformly distributed along the line. A
driving incident field along the cable is represented by a distributed
generator EZ. One may then obtain the frequency domain current on

the wire by solving (subject to the desired termination conditions)

the transmission line equation, as discussed in many texts [3]:
01
—5t YZI = YE . (1

The surface cable parameters Y and Z are to be estimated from the
corresponding admittance and impedance of the Figure 2.2 model applied
to an insulated cable fully buried (infinite depth approximation) in
the earth. For the transverse admittance of the surface cable,

references [1] and [2] offer the prescription:

Ysurface"{"l/2 qully ’ (2)

cable buried
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Approximation (2) seems intuitively reasonable, viewing the SC admittance
as the inverse of the total (parallel circuit combination) transverse
"leakage" impedance through both air and soil. The admittance through
the air should be much smaller than that through the earth and hence only
the lower semicircle of the surface cable contributes in (2).

Two estimates for the SC longitudinal impedance have been suggested.
Whitson and Vance [1] use (later reproduced in the DASA Handbook [4]):

Zsurface: = 22'fully ) (%)
cable buried
Marston and Graham [2] adopt the estimate:
zsurface = zfully ’ (4)

cable buried

The approximate validity of explicitly simple estimates such as (3) and
(4) may be tested within the framework of a simplified surface cable
model as we shall demonstrate in the following section.

Given satisfactory estimates of YSC and ZSC for the surface cable

we could define a propagation constant for the transmission line:

hee = VY¥sc Zsc - (5)

Alternatively, we could utilize the best approximation for ZSC and
attempt to estimate hSC directly. These matters, i.e., how best to
employ the surface cable approximate parameters in an actual calculation,

will be considered in our following note.
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Section 3

CALCULATIONS OF TRANSIENT CURRENTS ON
A UNIFORMLY EXCITED SURFACE CABLE

Aside from obvious computational merits, a two-dimensional formu-

lation of the SC problem is valuable as a guide to suggestion and evalu-

ation of approximations applicable (perhaps) to a more general situation.

We calculate in this section, using two different approaches,

the

transient response of the Figure 2.1 SC model (infinite length) to an

axially uniform electric field incident at the surface of the inner

conductor and having the form:

Einc(t) = H(t) volts/meter,

where H(t) is the Heaviside unit step.

3.1 Finite Difference Solution

For our two-dimensional SC model the Maxwell equations

oH H oH oE

¢, ¢ _ 1 _xr_ _Z

ar YT r 3 GEZ e ot !
1% W

T 30 LT ’

and,
ar Y5t '

(6)

are:

(7

(8)

)

Utilizing the symmetry of the problem we may define the geometry as

shown in Figure 3.1.
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Figure 3.1. Surface Cable Geometry

Within the semicircle of radius r, in Figure 3.1 we

3

coordinates and time as follows:

n . .
E, (i, 3)

Hg (i, 3)

E, (t, ¢, T) |,

= nAt sy no=
¢ = (i-1/2)4¢; i =
r= (j-Dar; j =

Hy (£ 05 0 1o L nery2) ac

¢ = (i-1/2) A¢
r = (j-1/2) Ar

3-2

Earth (e)

e Sheath (s) Region

grid the field

(11)



IS

Ho (1, 3) = Ho (6, 6, ) |70 o (na1/2) ae (12)
¢ = (i-1)4¢
r = (j-1) Ar

A straightforward differencing [S] of equations (7-9) yields, respectively,
the expressions:

*1(1,5+1) [— + -A-f-] ar = EN(E,5+1) [K‘% - %—]Ar + A—i[ﬁg (,3+1) - H) (i,j)]

+ 53 [ o ¢ Hy @0 (13)
- s [ @ 50 - /) @)
. W50 - WG - gy [ s 0 - ] as
| and,
“ 0,5 = 16,5« A5 [ ase - g an] (15)

By choosing imax odd, the earth-air interface is horizontal on an

H plane and e—= may be computed inside the media boundaries. The

matched vertlca?tboundary in Figure 3.1 represents a zero normal derivative
specification.

At the perfectly conducting surface defined by Ty = (js-l)Ar, the
incident field (6) may be assumed nonzero (= 1 volt/m) at the first time

step. The boundary condition is therefore:
N21.. . _
E- (1,50 = -1 . (16)

For times S.Z(rs-rl)/c (clear time) the above solution effectively

simulates infinite outer boundaries as we desire in the surface cable model.
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Consequently, in this note we simply assume a perfectly conducting outer

shell with T, chosen so as to yield a sufficiently long clear time.
Having solved the problem as described we then need only compute

the tangential magnetic field distribution at the wire surface. A

first order Taylor series approximation is adequate:

(1), *SHCP(I’JS)sz’(l’Jsm .an

=r1

Htang.

3.2 Approximate Analytical Solution

Our approximate SC model is based on an exact calculation of the
longitudinal impedance characteristic of the cable (driven by an axially

uniform applied field) illustrated in Figure 3.2,

Perfectly conducting
boundaries

T, = Finite or may + «

Figure 3.2. Cable Geometry

Our primary interest lies in the case of an infinite outer medium 3, but
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it is instructive to solve the finite outer boundary problem and then
obtain (exactly) the infinite boundary results as a limiting case. It

can thus be demonstrated that most of the interesting features of the model
occur only in the case of an infinite outer medium. The elementary
solution to the boundary value problem appropriate to Figure 3.2 and

the various impedance expressions are derived in the Appendix.

The impedance of the Figure 3.2 cable is just

()
7 = (constant applied field . E, (r=r ) (18)
wire current r=r1 Zﬂr }{2%r=rl)

Explicitly, we find for the infinite outer boundary case (with notations

and conventions of the Appendix):

) iwuz Yo(kzrl) + C_ J0(k2r1)
2(w) = Zﬂrlkz ['yl(kzrl) ¥ C_ Jl(kzrl) s (19)
where, é
) uky H 7k gry)
YO( 2r2) uz 3 H Terk r ) ¥1(k2r2) |
Co = - : 20
N Mk H( )(k r.) ’ (20)
J (k,r,) 3 2 o 27 J,(kyry)
0° 2727 - T ) z 2
273 H;“(k,r,) ¢

If Einc(w) is the frequency domain input pulse, then the time
response of the cable may be obtained from(18), (19), and the law of Biot

and Savart.

” W .
1(t) = -2-;‘,- f —%‘(l;T—ewt dw : (21)

Given the step pulse (6) we may evaluate (21) numerically utilizing
the shift theorem:



ot ® igt
_e e dw
1) = 7 / (o+iw) Z{w-iq) ’ (22)

- 00

Over the time range of interest we have obtained excellent numerical
transforms (Section 3.3)from (22), with an offset g= 108.
Now let us estimate the corresponding surface cable (Figure 2.1)
response from the above result. Taking into account both the earth and
air media, perhaps the simplest estimate of the surface cable current

Isc(t) is:

Igo(t) = 1/2([ (8] + Iair(t)) , (23)

eart
computed from (19) and (22) by assigning region 3 of Figure 3.2 the
appropriate electrical properties. As we shall show shortly, the crude
approximation (23) does remarkably well.

The result (23) is identical to that obtained from the calculation

of integral (22) using an equivalent surface cable impedance of the form:

ZZearth (@) Zair(w)

Zsc(m) ) zearth(“D * Zair(w) . (24

The equivalent transmission line circuit element representing (24) is

just the parallel combination of impedances Z and zair' Of course,

earth
our analysis strictly applies only to an infinite transmission line in

which the current on the line has no z dependence; nevertheless, the
results should be approximately applicable to a line of finite length.
Note that we can obtain from (24) the estimate of Whitson and Vance

by assuming Zair > 7 h? whence ZSC ® 2garthe

eart

The Marston-Graham estimate, zscsz Zearth’ also follows from (24)

under the assumption Z = Z Let us now test these various approxi-

air earth’
mations by way of comparing the resultipng current predictions with the

finite difference solution.
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3,3 Numerical Comparison

As a test case we chose cable dimensions (Figure 2.1):

3 X 10-2 m

g}
"

T+ 2.25 x 10_2 m.

i
The reflecting outer boundary T, in the finite difference solution was
fixed at 1.15 m, allowing a clear ‘time~10-8 sec. Choosing a larger rg
would have involved additional computer time with little gain in useful

information.

The infinite air medium was assumed to be free space with

107°

367

€0 ~ f/m

Hp= 4T X 1077 h/m .

For the sheath and infinite earth media we have taken:

" Usheath - Hearth - Yo

€sheath - 2.75 €

0
€earth = 10 )

Osheath - 0

Ogpeen, = 2 X 1072, .1, L mhos/m

Figures 3.3, 2.4 and 3.5 display the calculated transient surface
cable currents for various earth conductivities. The labels "earth",
"air' and "earth-air average' refer to the current components and resul-
tant value of the analytic estimate (23). The '"earth'" currents are
the consequences of the Marston-Graham (MG) estimate, The Whitson-
Vance (WV) current estimates would clearly be 1/2 of the MG values.
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At least within the limitations of ocur two-dimensional SC model, it
is evident that the simple averagé analytic estimate yields a quite reasonable
engineering approximation to the more accurate SC transient solutions.
The MG and WV predictions are, of course, also reasonable, respectively
overestimating and underestimating the finite difference result.by factors

of ~3/2.

Note that the deviation of the average current from the finite
difference solution gfows slightly with increasing time as the earth
conductivity is increased. This result, as well as the overall reason-
ableness of the simple analytic estimates, is illuminated by examining
the surface current densities on the cable as displayed in Figures 3.6,
3.7 and 3.8, The finite difference values are simply the average magnetic
field H(é)(r=rl) over both the top and bottom semicircles of the cable.
The "earth'", '"air" and ''average' current density values are just the
analytic model currents previously discussed divided by Zwrl.

The magnetic field (from time zerc) requires an interval of
about ﬂrl/c ~ 3 x 10-10 sec to circulate around one semicircle; following
roughly this time, we see that the individual top and bottom (finite
difference) current densities may be distinguished. The bottom density
is naturally largest (since the air has no conductivity) and this quantity
is rather well approximated by the analytic "earth" estimate. The top
current density in the finite difference solution is evidently more
sensitive to increased earth conductivity and grows significantly faster
than the "air" estimate would suggest. Thus most of the error in the
analytic model is due to the air segment, but since the top cable current
is ~1/2 the bottom current, the net effect on the average current estimate
is small,
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Section 4

CONCLUSIONS

If one assumes a spatially uniform incident pulse, then the
transient response of an (infinite) insulated wire symmetrically
embedded at an idealized earth-air interface can be easily obtained from
a straightforward finite difference solution of the Maxwell equations.
In the absence of the earth-air interface, the latter problem can be
exactly solved analytically. A simple average of the analytic transient
solutions computed for cables embedded in both earth and air media yields
a satisfactory engineering approximation to the finite difference result.
Thus, the effective surface cable longitudinal impedance may be quite

reasonably estimated from the exact analytic impedance expressions:

(@)
p (W)

7 (w)~,2 zair(w) zeart
SC T T . (w) + Z
air

eart

To within factors ~3/2 of the computed transient currents, the
latter analytic estimate justifies the similar suggestions of previous
authors. Our results do not, however, validate their actual surface cable

current calculations.
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APPENDIX

IMPEDANCE CALCULATIONS

The boundary value problem appropriate to Figure 3.2, given a

constant applied field Ea (axially uniform) at the surface r=r;, is:

2:(3) (3)
2%k 3

z w1 2 P -0; o 5e12
ar2 r 9 j L

subject to boundary conditions

-E

E§2)(r=rl) a

|}
o

E£3)(r=r3) =

Adopting an elwt convention, the propagation constants for regions 1 and

2 are:

2 2
kT = u.e. - iy.o. I (k)< 0.
§ 7 HyEe T nyoge s Il

The wave equation solutions for each region are linear combinations
of zero order Bessel, Jo(kjr) and Neumann, Yo(kjr) functions as defined in
[6] . The transverse magnetic field is

(j)
. . oE
(il -4 Z

¢ W or

From the solution to the above problem, the longitudinal impedance

of the cable is

(2)
-E (k,r,)
Z = —t (2§ 1 . (1)
Zwrl H¢ (kzrl)
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Explicitly we find

iwu, [Yo(kzrl) + C Jo(kzrl)]

Z-= (2)
Zvrlkz Yl(kzrl) + C Jl(kzrl)
where the coefficient C is
Hokg
Yl(kzrz) Fo + E;E; Yo(kzrz) Fl
C=- (3)
Hoks
Jl(kzrz) Fo + uzkz Jo(kzrz) Fl
The F coefficients in (3) are
Fo = Jo(ksrz) Yo(ksrs) - Jo(k3r3) Yo(ksrz) 4
F1 = Jo(ksrs) Yl(ksrz) - Jl(ksrz) Yo(ksrs) (5)

In the long wavelength approximation (kr <1), Z reduces to
2,  ~ 2 [uen (/1) + w, 20 (r,/1,) (6)
L.w. 2n |73 372 2 2'71

The result (6) demonstrates that for the finite outer (rs) radius case,
the geometry dominates the impedance and sj,oj play no essential role.
The transient response of the Figure 3.2 cable to a unit step is therefore
basically linear in time., Likewise, the finite difference transient
solution of Section 3 is essentially a ramp response for times greater
than the clear time. In such a case the approximation (6) would be adequate
for the "split-media' cable with a perfectly conducting finite outer
shield.

The surface cable formulation of greatest interest contains infinite
media., The relevant impedance is again (2) and taking the limit in the

coefficient (3) (using asymptotic Bessel expansions) we find:
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(2)
i N i
2727 upkg H(ZJ(k 4,)

¥) (k7))

(7)
H(z)(k r))

3, (et
Hookg H(Z)(k r,) 2"2

Coefficient (7) contains Hankel functions of the second kind. The long

wavelength approximation to the latter impedance is

iwu Ciwp k,r
Z - 2 3 (Y 3 2)
2. w. > in (rz/rl) - n =T s (8)

where Y ~1.781. Approximation (8) is closely related to a corresponding
expression utilized by Whitson and Vance [1], but these authors had

incorrectly employed Hankel functions of the first kind in their
iwt

(e convention) model formulation.
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