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ABSTRACT

The singularity expansion method (SEM) has been applied to a system
of Pocklington~type integro-differential equations representing perpen-
dicular crossed cylinders. The SEM characteristics of this structure
have been studied as the various parameters are varied. The time domain
response of one particular geometry has been obtained by SEM and compared
to that determined by the more conventional frequency domain analysis
and Fourier inversion.
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1. Introduction

The singularity expansion method (SEM) as first discussed by Baum [1]
has been elaborated and applied in a series of recent notes [2 6] Using

SEM it is possible to determine the time domain scattering from a con-

ducting object in‘terms of a summation of damped sinusoids._ This technique

appears to be particularlyVaduantageous in treatidg scattering from wire
configurations that may be‘usefulrto model complex ph&sicalratructures
such as aircraftJ In'thisrreport SEM is applied to determine the current
and charge induced on a system of two perpendicular crossed thin cylinders
(wires) in free space. lhisiconfiguration may be viewed as a crude model
of an aircraft. The induced current and charge are considered as various
parameters of'the problem are varied. o |

In the application of SEM to determine the time domain response of

the induced currents it is conventional to derive an integral equation for

the induced current and to render it into matrix form by use of the method
of moments., Although this procedure is quite straight forward it may con-
sume excessive amounts of time in computation, especially if a parametric
lstudy such as the one reported here'is performed. Attempting to circum-
.vent thie'difficulty the writers inuestigatedran alternative to the conven—
tional technique. It was observed that if the current distribution on a

":current filament is sinusoidal then exact analytical expressions for the

accompaning fields are available. Thus the current induced on a wire con-
figuration can be segmented into sinusoidal current filaments, and the exact
analytical expressions can be used to determine the scattered electric and

magnetic fields. By requiring the component of the incidentlplus the



scatteredreleétrié field tangent to the wire axis to be zero on the

wire axis a sjstem of linear equations is obtained for the wire cuffénts.'
This pfocedure was found to be extremeiy éfficieni. Moreover, it was

also possible'to treat solid wires with end caps. The charge distribution
Bn the wir;é i; bbtainéa Qia the eqﬁatién of continuity.

Computations for the currents on tﬁo pérpendicular crossed wires are
.made, and thé data are compared with thaﬁ obtained using the conventional
integral equation solution technique. In general the results agree within
a few percent difference. Interesting results with regard to the charge
distribution at the wire junction are obtained. These results indicate
that the treatment of wire junctions by some investigators may not be
correct—-—at least for’certain wire parameters.

The singularity expansions for the wire currents and chargés are
expressed in terms of the complex natural frequencies, vector current
modes, coupling vectors and coupling coefficients. The variation of

these quantities with changes in the wire configuration is presented.
2, Formulation

As mentioned 1in the foregoing the exact field about a currentfila-
ment with a siﬁusoidal variation of the current along the filament is

used. The axial component of the electric field is
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for the complex Laplacian frequency 8 = o + ju and a filament

extending from r = ?& to r =‘?2 , where 1' 1is the axial derivative

of the current and
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The corresponding radial component of the electric field is
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" where Poy is the radial variable corresponding to the radial variable

of a cylindrical coordinate system with the z axis coincident with the
axls of the filament. Using (1) and (2) to determine the scattered
electric field it is possible to develop a linear system of equations to
determine the currents. If the wires are solid then the end cap contri-
butions should be added to both (1) and (2) as discussed in reference [9].

To derive the system of equations for the current distribution on
the.perpendicular crossed wires the wires are divided into segments. The
current on the kth segment of the mth wire is represented

o sinh[s(xk+l - x)/c] + Gl sinh[s(x - xk)/c]
Imk(x) =

(3)
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Note that o "is the axial current at x = X where x 1s the variable

along any particular wire. Next (3) is used in (1) and (2) to obtain



the components of the scattered electric field about the crossed wires.
These components are added to the corresponding incident electric field
components to obtain the total electric field. To obtain the system of

‘linear equations for the a. 's, the component of the total electric field

k
tangent to the wire axis is set equal to zero at a discrete set of points
along the axes of both wires. For best results these points are selected
to be the end points of the aforementioned segments. In addition to the
foregoing the junction currents were required to satisfy the Kirchhoff
circuit law.

The resulting system of linear equations for the wire currents can

be written in the form
Z(s) J(s) = E(s) (4)

where %fs) is a square system matrix, '3(5) is a column matrix whose
elements are the currents, ak's , and Eks) is a column matrix whose
elements -are the values of the incident field components evaluated on the
wire axes at the end points of the wire segments. According to the singq—

larity expanéion'method of solution, the current vector may be expressed

—_ L —
J(s) = } e 5 =5 E,(8)v, (5)
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where Eo(s) 1s the Laplace transform of the incldent pulse, sa are
the complex natural frequenciles or poles defined as the zeros of the

+

determinant of the system matrix, i. e.

det[?(sa)] =0 , (6)




v, are the natural modes that are obtailned by solving

:Z:(sa) o= o0, | 7

and n, are the coupling coefficients defined

n E_(s)v_ = 2in (s - sa)[?(s)]—l E(s) (8)
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The computational details of the calculation of the foregoing
quantities are described in [6]. The charge distribution on the

wires is obtained via the equation of éontinuity,
LT 3
divd = =-—op 9)

Applying the Laplace transform to (9) and using (5) yields

= 1 Bol8) —(p)
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where ;;(p) is a column vector whose elements are the negative

spacial derivatives of the currents evaluated at the same points as

the current elements of vu*. In general the Vo, elements were

normalized so that the element with the largest absolute value was set

equal + 1. These elements were then used to determine Ga(p) according

to the foregoing definition.

For a simple step pulse incident on the wire configuration

e (11)

EO(S) = 5

*The current expansion exhibits discontinuous derivatives at the
ends of the current segments. The derivative at those points is con-
sidered to be the arithmetic mean of the finite discontinuity.



and using (11) in both (5) and (10) yields the time domain response of

the current and charge
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Since the poles éccurred in complex conjugate pairs (except for those
poles on the negative real axis) both (12) and (13) yield real elements
for J(t) and p(t). The poles s, were obtained by searching for the
zeros of the system matrix determinant in the third quadrant of the
complex s-plane (the conjugate poles occurred in the fourth quadrant).

To account for the contribution of the conjugate poles (12) and (13)

were evaluated by using only the poles in the third quadrant, taking only ‘
the real part of the sum over o and multiplying the fimal wvalue for
the sum by a factor of two.
Before applying the SEM two additional operations are performed.
First, instead of excitation by a single incoming plane wave, the excita-
tion by two incoming waves is considered as in [7]. Thus the problem
can be broken into a symmetric part and an anti-symmetric part, and by
using such conditions the number of current segments that must be carried
in the calculations can be reduced. Second the end currents are not
assumed zero and uniform end charge distributions are assumed to exist

on flat end caps on each wire [8,9].




3. Results

Figure 1 represents the geometry considered and the definition

of the parameters in the problem. The reference case is defined as
Q{/ll,= 0.5, 25&2/(2l + 2{) = 1.0 , 2&2/32’= 20, , a; = a, , 20, =1L

wheré the incidence is normal to the plane of the waves with the electric
field directed along the y axis (this is the same as used ih IN85 [71).
The first five poles and coupling coefficients obtained for the
reference case are given in Table 1. In a related study it has been
observed that as the number of zones increased from 6 zones per-L to
12 zones per L to 18 zomes per L, the pole locations change by about 10%
in going from 6.to 12 zones per L but only another 2% in going from 12
to 18 zonés per L, Iﬁ the interest of accﬁracy these studies reported
here were run at 18 zones per L. A representation of the crossed cylinder
geometry in a three dimensional space and two incoming wave vectors 1s
éhown in Figure 2. The 1llumination of the crossed wires 1s expressed
In terms of symmetric and antisymmetfic excitation by two incoming plane
wavesv[7] and the appropriate angles of incidence for these waves are
indicated in Figure 2. 1In any discussion of the crossed cylinder problem
having the v, é plane as a symmetry plane there are, in reality, two
separate problems to be‘discussed: 1) the crossed wire problem with E
field excitation along the y-wire and 2) the isolated éylinder problem
with E field excitation alecng the y-wire. Since Tesche [3] has discussed
thoroughly the latter problem, this discussion will emphasize the former.
Thus, Table 1 refers to poles obtained for the reference case when the
excitation is along the y~wire, and currents andvcharges will be induced

on each wire in the system. Figure 3 shows the pole behaviors as the



crossing point moves along wire 1 from near one end (Q;/ﬁl = 0.2) to

the mid-point of wire 1 (2;/%1 = 1.0). To follow such poles it is

necessary to calculate mode vectors in order to keep track of the same
pole and assign values to the right pole. In these studies the length
%, has been maintained constant and the problems zoned such that 9 zones
are always over the length QZ. In Figure 4 the pole trajectories are
shown as the ratio 222/(25 + 21) is varied from 0.444 to 1.33. rThe

curves in Figure 5 show the motion of four poles as the radii of both

wires change.
;

In each of the Figures 6-8 are three dimensional representations of
the mode vectors for various poles. The real parts of the mode vectors
lie in the z-direction while the cylinders are oriented as in Figure 2.
In Figure 6 are the mode vectors for poles n = 1,2, reference case,

' >
crossed cylinders, symmetric excitation (or E parallel to y-wire).

Figure 7 is similar to Figure 6 except for the n = 3 and n = 4 poles. In

Figure 8 the mode vectors are plotted for four poles (whose imaginary
values are designated on the figure) associated with antisymmetric
excitation (or E parallel to x—wi;e). Due to the location of the inter-
section point of the wires, these modes do not couple to the y-wire and
this case reduces to the isolated cylinder [3].

Figures 9 and 10 are somewhat more conventional plots of the real and
imaginary parts of the first four current modes for the reference case,
symmetric excitation. In the figures the y = 0 and x = 0 points have been
dispaced for clarity. As discussed earlier [1,2,3,6] the cha;ge densities

can also be calculated from SEM. To do this requires knowledge of the

derivatives of the current mode vectors as mentioned in the foregoing.
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Figures 11 and 12 show the 3-d version of the real part of the first
four charge mode vectors, Figures 13 énd‘lhlare the complex charge mode
vectors (first four) for the reference case.

From'Figu:es 11-14 it may be ndted that fhe indpced charge per unit
length is continuous thxqugh therjunction région on.both.wires, yet the
'charge per unit length on the perpendicular wires is different. However,
the only coﬁdition imposed on the iqduced chargéraga gurreét 1s that the
éurrent on the wireé at thé midpoint of the jﬁnction ﬁust satisfy the

Kirchhoff Circuit‘law, i.e.
+ ‘0+) - -y - -y =
I (oH) + I (06) - I (0-) I, (0-) 0

other investigators have imposed in addition to the foregoing that the
juqction charge be uniformly distributed over the junction surface. The
computations reported here do not justify that requiréﬁené; at least fér'
the parameters that are considered.

Figﬁres 15, 16 and 17.represent the coupliﬁg coefficients tl,2,3]
for the first threerpoles (reference case) as a fupétion of & and ¢
for E—symmetric excitation.

Figure 18 is the time history of the junction cufrenf at vy = 0- for
ocne, and five poles, reference case, normal incidence. This time history
and the others that are subsequently reported are those induced by a step
incidentkpulse. The aforementioned graph indiéates the rate of convergence
as the number of terms included in the SEM sum increases. On the same
figure is included the result>of the conventional Fourie; inversion
technique which was previously’obtained considering the frequency response
from neaf zero up to a ki, vélﬁe approaching 5 [7];  The cémparison

shown in Figure 18 must be evaluated in the manner intended. The results

11



obtained by SEM are. derived from a formulation which includes end caps
and uses sinusoidal expansion functions for the current. The Fourier
resuits are based on the E-field Hallen integral.equation formulation
which does not include end caps and uses constant current expansion
functions. The fact that differences occur between the results evidently
is primarily due to end caps being included in one case and not in the
other rather than being due to the difference between the SEM and standard
Fourier techniques. As a matter of fact previously obtained results [6]
show that the inclusion of end caps in this SEM problem results in the
first peak being higher and somewhat more narrow with the remaining
portions of the time history curves being attenuated at a slightly more
raplid rate with a shift in the ringing frequency due to the electrical
lengths of the wires being increased with the addition of end caps. This
behavior is also seen in Figure 19 where the time histories of the
junction currents at y = O+ and x = 0+ are presented.

Figure 20 is the time history of the charge density at the end of
one wire element. As discussed in previous reports [1,3,6], there are
two methods by which the charge density may be calculated. In each there
is a time dependent term in the form of a summation over poles. In each
there is a time independent term but it is evaluated differently in the
two methods. First, it can be evaluated by a limiting process (s - 0)
which provide the correct late time behavior; second, it can be calcu-
lated as a summation over poles. The curves in Figure 20 are the result
of the latter method. The symbol D appearing on the Graph is EoEo the
incident electric flux density. On Figure 20 the solid lines beginning

at ct/L = 7.0 indicate the results of the time independent summation

process as one includes one, three, and five poles in the sum. This

12




indicates the rate of convergence of the method to the late time behavior
obtained by the limiting process which in a sense should include all
pole terms. Figure 21 shows the time histories for the charge densities

at the ends of the other two wire elements, vy = + 2{ and x = £2.

13
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Table 1: Natural Frequencies and Coupling Coefficients

for the Reference Case

g ‘Pole Numbér_(d) ' | »V ‘ SaL/C | - nuﬁ/LxlO3
1 ' - .2935 + 4 2.2922 9.089 + § 3.525
2 o - .3356 + j 3.8392 3,768 + § 4.295
'3 L6609 +3 6.0656  1.788 + 3 1.774
ho - -1.0065 + § 8.1563 -3.148 - j 1.908
5 | ~1.1143 + §11.0767  0.637 + § 0.486
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Figure 1:

Crossed Thin Cylinders (Positive
Current are directed in the +x
and +y directions).
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Figure 2: Crossed Thin Cylinders with
Two Incident Plane Waves.
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Figure 6: Real Part of the Current Modes
for the Reference Case.

21



n=3
3y
-12
o)
n=4
_12

0,70,;24,/(4+1) 51.0; 4,/1,* 0.5, 20,/a,* 20.0
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