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ABSTRACT

In this note, the transient response of an infinitely long, perfectly

conducting, cylindrical antenna to an electromagnetic plane wave pulse
is congidered. The infinite cylindrical antenna is located in free
space and the two antenna elements are separated by a finite gap.
Farly time asymptotic expansions are derived for the antenna short-
circuit current, open-circult voltage, load current, and load voltage
responses. A parametric study of the antenna response was performed
in graphical form. Also, the responses of a selected infinite cylin-
drical antenna to a do%ble exponential electromagnetic pulse are cal-

culated and graphed for several types of losds as an example problem.
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I. TINTRODUCTION

In communications systems, the antenna 1s an important means of
coupling transient electromagnetic energy to some of the most vulner-
able electronic components in the system. In order to specify surge
protection requirements for communications equipment, knowledge of the
early time response of the antenna to a transient electromagnetic
source is desirable.

The singularity expansion method as formalized by Bauml is a new
method for determining the solution of electromagnetic interaction
problems. It involves expanding the solution in terms of its singulari-
ties in the Laplace transform plane. The time domain solution is given
by the inverse Laplace transform of each term in the singularity expan-
gion. TFor late and moderate times, a solution can often be obtained
by congldering only a few singularities. This method is more efficient
and accurate than the conventional brute-force numerical integration
methods. However, for early times nearly all of the singularities con-
tribute to the solution and the singularity expansion method also
becomes inaccurate and inefficient.

In this note, the exact solution ofﬁggkinfinitely long, perfectly
conducting, cylindrical antenna response to an electromagnetic plane wave
pulse is discussed. This solution can be used to provide early time infor-
mation about the finite cylindrical dipole antenna response. The infinite
cylindrical antenna and incident wave are shown in Fig. 1. Each antenna
element of radius a is separated by a finite gap with a half-width b. The
incident electromagnetic plane wave source is polarized with the magnetic

field perpendicular to the axis of the cylinder.
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Fig. 1. 1Infinitely Long, Circular, Cylindrical Antenna

and Incident Vector Plane Wave.




The response of the finite antenna is the same as that of ths irfi-
nite antenna for times before the ends of the finite structure have
effect. The applicable time interval i52

0<t <= (1-cosh) (1.1)

o hs

where zero time 1s reference to the time that the leading edge of the
incident wave reaches the cylindrical surface where the response ig
observed. The constant c¢ is the speed of light in free space, y ig the
half-length of the finite dipole, and § is the incident angle defined

in Fig. 1. For long antennas which are geveral hundred meters long

gsuch as low-frequency communications antennas, the applicable time
interval is several hundred nanoseconds. The solution for the infinite
cylindrical antenna response is an early time solution for the finite
cylindrical dipole response, and thus complements the singularity expan-

sion method.

IT. ANALYSIS
The Norton eguivalent circult for an antenna may be employed to

analyze the response of the infinite ecylindrical anfenna as a recelving
device. The Norton equivalent circuit is shown in Fig. 2. The Norton
equivalent circuit parameters are Ia, the Norton eguivalent current source
of the antenna and the electromagnetic environment and Yoo the admittance
of the antenna. Once I, and Ya have been determined, the voltage across
the load admittance YL is given by

I

a
veste (
Ya + YL

N
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and the current through the load is

IaYL
T :—Y—-—‘;——,T . (d-d)
a L

And the open circuit antenna voltage, the Thevenin equivalent voltage

source, 1is given by

V= . (2.3)

The Norton equivalent current source is equal to the ghort circuilt
current response of the antenna. The current induced on an infinitely

long, perfectly conducting cylinder is given by2

it 2mc E(s)
1a =7 sing s K  (as sing/c) (2.4)
where s is the Laplace transform variable, E(s) is the Laplace transform
of the incident wave time history, and Z is the wave impedance of free -
space approximaégly equal to 1207 ohms. The tilde, ~, over a quantity
Hex
indicates the frequency domain expression of the guantity. Equation (2.4)

.. . . 2
can be written as a function of time as

27 ¢

-‘b .
5 = TSTiE ] E(t-1) F(ct/a sing) dr (2.5)

I

where F(CT/a sing) is the normalized impulse response given by

® e a sind
Fler ing) = d . 2.6
(ex/e ate) = ] L (E) + T T2(6)] : =

'€<—“EI““ - l) T (g)




The admittance of an infinitely long, perfectly conducting, cylindri-

cal antenna excited by a uniform finite distributed source has been

derived in a previous report.3 The distributed source is a much more
realistic source than the infinitesimal-gap voltage source so often
employed for the purpose of deriving the antenns driving point admittance
since the finite gap of the distributed source does not introduce a gin-
gularity in ﬁhe admittance function. However, the admittance of an antenna
excited by a distributed source is dependent on the field distribution of
the source. For frequencies with wavelengths greater than the source gap,
this dependence is slight.  Even for frequencies with wavelengths =squal fo
or less than the gource gap, the uniform source is as good as any realistic
source that one might select for the purpose of deriving the admittance of
the antenna.

The infinite cylindrical antenna admittance is given in terms of the

3

Laplace transform variable s as

v, = 352 gm sing$§ uKki?&7 dé | (2.7)

where -
as.2 1/2 -
u= (8 + (=)) , (2.9)

and ¢ 1s an antenna parameter given by

T (2.2)

The Laplace transform of the load response can be cbtained by the
substitutions of Egs. (2.7) and (2.5) into Egs. (2.1) or (2.2). The time
history of the locad response can be obtained by a numerical Laplace

inversion.




ITT. ASYMPTOTIC EXPANSIONS

‘ B. TFarly Time Behavior

The early time asymptotic expansions of the open circuit voltage,

load current, and load voltage responses are of interest since they are
applicable to the finite cylindrical dipole antenna, as well as the infi-
nite cylindrical antenna. To derive the early time asymptotic expansions,
the Theorem in Ref. 4 which relates the large s asymptotic expansion of
the Laplace transform of a function to its small time asymptotic expan-
sion in the time domain will be employed.

~

The asymptotic expansion for I as s + o is given by2

(s) e eas sing/c .
1/51n@ [l " B as sing
(3.1)
2
_ 7 ¢ + O(‘Sl—:s)] .
128 a® §° sin®g
And the asymptotic expansion for Y, as s @ i53
c _c? -3 .

Y — [i + 5o - + 0(ls ] . 3.2
a ¢Z 2as La? g2 ] l ) ( )

The large s asymptotic expansion of the open circuit voltage response

is found as

P<1I: R
[

Vv =
a

28 sing/c

]

o QE(S)/JQ ca,

T ging

[l Lo he §1n9
as sing

/s

e et e i

(3.3)

i T

. 6l ¢2 ginfg - 8 ¢® ging - 7 c3 . O(’S‘-a)]

128 &® §° sin®g



Tor the incident wave with a decaying exponential time history given

by
ot
E(t) = E, e , (3.4)

the large s asympbotic expansion for Va is

~ as .
Vg = 2 ¥ & B /2T i:/xs[l Bt olss)] 6

where
A= a sing/c
8 Ay + 4 ging -1
Cl = 8 3
and

e, = (128 A%° + 64 sin®e + 64 Ay sing - 16 Ay - 3 sing - 7)/12%
2 - B

The inverse Laplace transform of Eq. (3.5) is

v = Ly a By 2 ctX 2 e, et” N boc ( ct” )

a i vJa sing T 3 a sind 15 ‘a sing
(3.6)

ct 3
+0 [<a sine) J] ?
where t° is a shifted time given by
* a sind

b=ty =" . (3.7)
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For the double exponential incident wave time history given by

B(6) = B (™ - %), (3.3)

the asymptotic expansion of Va becones

8¢ alE_ t" (B-q) g *
o) 2 ct 2%
vV, = 37 'J a sind [l "B
o 1 %42 ‘
TS (L - 57535)]4_0 [(s >]] ) (3-9)

The agymptotic expansion of the load voltage response can be derived

from the open circuilt voltage by the relation

~ TV, c 7
V = [l-f— (l - )
vz YL + 7 2as v Z YL + 7
(3.11)
c® ° -
- — (1 - 2) + 0 (s7%)
L a%s (¢ 2 ¥ + )
For a resistive load Y, = 1/R, Eqg. (3.11) becomes
TRV, - ,
~ a c _ RT
V‘¢z+mtl+2as(l 77 R
2 ﬂsz ‘
R e £ R LIC Y I (3.12)
b a®s yZ + RT)
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and the inverse Laplace transform of Eq. (3.12) is

TRV, 4
'\7=E—7:---:'-',}.ﬁ+O[J.A Va(’f) dT} . » (3.13)
S .

Thervoltage response across a registive load due to a double expo-
nential incident wave ig obtained by the substitution of Eq. (3.9) into

Eg. (3.13). The asymptotic form is

V =

8 Ry a E, " (B-x) 2 —oTF .
ROAED a 5 [l - O(t ] . (3.1k4)

Of course, the load current can be obtained by dividing Eq. (3.1L) by R.

For an inductive load Y. = l/sL, the asymptotic expansion of the load

L

voltage response for & + « is

N-—_N -IJLZ__ -2 -
V=V, (1 =T * o(s™2) ) . (3.15)
And the inverse Laplace transform of Eg. (3.15) is

.16)

o

t-)(-
V=V, +0 [f v, (7) d{} . (

For the double exponential incident waveform, the early time agymp-

totic expansion of the Load voltage is

8 ¢ a B b (B-a) 2 ct* [ *
. vV = i Newrsr 1+ 0(t )J . (3.17)




The load current can be derived from Eq. (3.17) by the relation

t*

I=% [ v(o)ar . (3.18)

=

The asymptotic form of the load current response to a double expo-
nential incident wave is obtained by the sbustitution of Eg. (3.17) into

(3.18) and is given by

o) 2 ct ¢
t= IS5 T L ’/a sing [l+ o(t™) ] ’ (3.19)

B. ILate Time Behavior

The late time asymptotic behavior of the infinite cylindrical
antenna response can be deduced from the behavior of its lLaplace trans-
form near the singularity s = O [Ref. 5]. The small s asymptotic form

3

of the antenna admittance is

=1

Ya ~ T n (as/c) ) (3.20)

The substitution of Eq. (3.20) into (2.3) gives the small s asymp-

totic behavior of the open circuit voltage as

~ -T2 Z on (as/c)

v .21
. = (3.21)
. ~ .2
The small s asymptotic form of Ia is
e (3.22)
Z sing s in (———C-—)
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Equation (3.21) can be rewritten as

T 7
T o~ 2 B(s) , o on (sing) . (3.23)
a ginh s T

The late time behavior of Vg can be written from the inverse Laplace

transform of Eqg. (3.23), the result is

~

a S

t .
fge [ E(r) ar + Zon (sing) 1,(t) - (3.24)

m
e

For the step function incident wave given by Eq. (3.4) with « = 0,

the late time behavior of the open circuit voltage is

~2cEt [1 y dn (sing) >] ) (3.29)

a sing ( ct
a sing

The open circuit voltage response to the decaying exponential inci-

dent wave given by Eq. (3.4) with % # 0 is

Yy o sing

_2cE _ e—at . In {sing) ] (3.26)
ct ‘ :
@z<a sine)

Now corngider the late time behavior of the load voltage response for

a resistive load. The substitution of Eq. (3.20) into (2.1) gives the

small s asymptotic behavior of the load voltage as

¢
»
i
g
el
—~
wal
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The late time asymptotic behavior of the load voltage response

is

v, ~ RIa(t) . (3.28)

For a step function incident wave, the late time response is

27 ¢ Eo R %

sing 2 0n (2orer)

(3.29)

And the late time load voltage response to a decaying exponential

incident wave is

QﬂCEoR

7 ¢ sinf in (ﬁ)

: (3.30)

V ~
a

IV. TIME DOMAIN RESULTS

One method of transforming from the Laplace domain to ths: time domain
is to employ the Gaussian inbtegration technique. This method is d=scribed
in Ref. 6 and is convenient to use for analytic functions of s which trans-
form to nonoscillatory functions of time. In contrast to the usual method
of computing the inverse Laplace transform which employs a set of arbitrarily
selected and equally spaced frequency points, the Gausslian technique pre-
scribes the frequencies at which the response function is to be calculated.
It does this in such a way so as to minimize the errors for nonoscillatory
functions of time. It can also give good results for some oscillatory func-
tions of time. This CGaussian inverse Laplace transform technique has been

used to obtain the time domain responses presented in this section.

1»



The normalized open-circuit volbage responses to an incident plane ‘

wéve with a step-function time history are shown in Figs. 3 and 4 as a

function of normalized time T where
*
LI | (b.1)

In Fig. 3, the curves are plotted with { = 1 and § as a parameter.
In Fig. 4, the curves are plotted with ¢ = 10 and § as a parameter. The
early bime asymptotic forms have been computed from the first three terms
of Eq. (3.6) with o = 0.0.

In Figs. 5 and 6, the normalized load voltage response to a step-
function incident wave for a 75-ohm load are presented for the same range
of ¢ and § values used for the open-circuit voltage plots. The early

time asymptotic forms were computed from the first two terme as derived

from Eq. (3.12). Curves for the load current can be obtained from Figs.
5 and 6. Curves from the short-circuit current responses are available
in Ref. 2.

In Figs. 3 and L, the late time asymptotic forms have been calcu-
lated by Eq. (3.25). And in Figs. 5 and 6, the late time asumptotic
forms have been calculated by Eqg. (3.29).

As aﬁ example problem, consider the response of an infinite cylin-
drical antenna with a = 0.75 m and § = 1 to a double exponential electro-
magnetic pulse. The time history of the incident wate is given by Eq.

(3.8) with Ey = 100 kV/m, o= 0.01 nsec'l, and B = 0.5 nsec™t and is

il

ghown in Fig. 7.
In Figs. 8 through 10, the response curves are presented with § as

a parameter. Figure 8 shows the short-circuit current and open-circuit

16
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voltage responses. Figure 9 shows the load voltage responses for a
75-ohm resistive load and a 2-mh inductive load. 1In Fig. 10, the volt-
age response across the resistor of a series RIC load with L = 2 mh,
C = 10 nf, and R = 1 ohm is shown. The series RIC circuit is at about

35.6 kHz. ' o

V. SUMMARY

In this note, the responses of an infinitely long, perfectly con-
ducting, cylindrical antenna to a transient electromagnetic pulse have
been considered. The exact solutions of the Norton equivalent circuit
parameters have been used to calculate the open-circuit voltage, short-
circuit current, load current, and load voltage responses. The antenna
input admittance used in the calculations was derived from the axial cur-
rent obtained at the driving point when the antenna is driven by a finite
uniform distributed source. It was found that the early time behavior
of the open-circult voltage, short-circult current, and a resistive load
voltage and current responses to a double exponential wave are propor-
tional to the three halves power of time. This result is due, in part,
to the discontinuous time derivative of the incident field at time equal
to zero. It was also found that the late time behavior of the voltage
response across a resistive load to a decaying exponential wave is inversely
proportional to the logarithm of time. The results of a parametric study

and an example problem have been presented as graphical data.
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