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ABSTRACT

In this paper the H-integral equation is investigated for the
problem of plane wave diffraction by a thin plate. It is found that by
itself the limiting form of the H-equation is not complete unless the
condition i + H = 0 is simultaneously enforced. By suitably combining
the above mentioned equations, a new set of equations is derived for the
two components of the surface current distribution on the plate. Several
advantageous features of the new equations are pointed out and numerical
results based upon the use of these equations are preseﬁted for the thin

strip and the square plate problems.



NEW LOOK AT THE THIN-PLATE SCATTERING PROBLEM

When deriving a numerical solution to scattering problems, it is
well-known that the H-integral equation is preferable to the E-equation
when considering solid surface scatterers. It is also known that for
thin scatterers one isfofced to use the E-equation, since the
H-equation is fraught with numerical instability problems in the zero
thickness limit,

In this paper we study the H?equation for the limiting case of zero
plate thickness and find that by itself the resulting H-equation is not
complete. We also find an auxiliary condition, viz A * H = 0 must be
simultaneously satisfied in ordér to derive the correct solution. By
suitably combining all of these equations we derive two new equations
which are differentifrom either the E or the H-equation and has some
important and advnatageous features.

Although the thin plate problem has been studied by a number of
authors [Mentzer, 1955; Ross, 1966] using the physical optics or GTD
approach there still exists a need for deriving a self-existent numerical
formulation of the problem which gives accurate results for arbitrary
angles of incidence of the illuminating plane wave. The purpose of this
paper is to discuss some aspects of numerical formulation and soclution
of this problem.

For a perfect electric conductor the H-equation takes the form

J x V'd ds', (1)
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where J is the surface current density, ﬁi is the incident magnetic field,
$ = (4ﬂr)—l exp(-jkr), @l is the outward normal to the surface and r is
the distance between the source and observation points. Throughout this
work the source points will be denoted in prime, and the observation

points in the unprimed coordinate systems.
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Let us now consider a thin scatterer, e.g., a thin plate, as shown

in Figure 1. Applying the H-equation (1) to the two surfaces of the plate

we obtain
AP 2.y + /7  F-(5V'®)] ds' (2a)
2 i1 5 (=) g (+)
3; _ _ .
= -2 x H, (z2) + S Jt (~2.V'9) ds' (2b)
2 1 2 S(+) Z !S(_)

where the superscripts (+) and (-) serve to indicate the top and bottom
surfaces respectively, and the integrals over S' in (2) are interpreted

in the Cauchy principal value sense. The kernel function in the integrand
of (2) may be written |

-jkr

(e4 ) = (1 + jkr)
mr
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2eV'9 = 2V (z - z') e (3)

b
where r = [(x - x')2 + (y - y')2 + (z - Z,)211/2.

For a thin scatterer the solution of the H—equatioﬁ would require the
simultaneous solution of (2a) and (2b) for the two surface currents Jt and
J-. However, for a small A these two equations are almost parallel, and
hence their numerical inversion is unstable. By subtracting and adding
the above two equations one can generate two new equations. The first

equation which is for (gt - J7), is 0(l), while the second for (J* + J7)

is 0(A), A being the thickness of the plate,

Subtracting (2b) from (2a) we obtain

JtT - F =28 x Hi , (&)

which is independent of A, More importantly, it does not contain the desired

+

unknown for our problem, viz., J© + J- = Jo» and thus is of little use. To

get an equation for J, we add (2a) and (2b) and derive
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and r is given by r [{x - x')2 + (y - y')2 + AZ]

3 + 77 - . s ——
although H, (z') - H,;(27) 1s of 0(a), (3, + J7)/2 given by (5) is
nevertheless 0(l) since the integral in the r.h.s. of (5) is 0(1/A)}. To
show this we rewrite the above integral as

Jt + I

J Gt +37) 6ds' =T (Vi+k2) S @+ I %ast, (6)
as A~ 0.
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The integral in the r.h.s. of (6) is bounded, and in fact turns out to be

0(l) in the limit A - 0. Substituting (6) in (5), letting A+ 0, and

equating the coefficients of the terms that are of 0(A), one obtains the

* - - .
degsired equation for Js’ viz.,

2.2 . = v _ 9 s =
(Ve + &) fs Jg ¢ d8' = = (£ x Hi)]S (8)

Alternatively, this equation may also be derived by starting with the
E-equation énd making use of the condition neds= 0, although the latter
condition is implied in the E-equation. Note also that (8), which is
the limiting form of the H-equation for a thin scatterer, is simply the
normal derivafive of the original H-integral equation given in (1).

Note also that this equation is not complete since the equations for the
two scalar components of the surface current are uncoupled., If (8)

were complete, it would be possible to solve for the two current com-
ponents independently, irrespective of the geometrical shape of the

plate. It is evident that the equations for the two components of 3;

should be coupled except in the limiting case of an infinite plate.
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An investigation of (8) reveals the cause of this difficulty,
viz., that the solution of this equation does not necessarily satisfy the
required bouﬁdary condition i x E = 0 on the surface of the thin scatterer.
Although for é solid scatterer the condition f x H =‘38 implies the
satisfaction of A x E, and hence, i * H = 0 on the surface of the scatterer,
neither of these is automatically satisfied when the écatterer is thin.
However, it is possible to satisfy A x E = 0 and derive a unique solution

by solving the equation A x H = JS in conjunction with the auxiliary condition

The investigation also reveals that Equation (8) admits non-trival,
homogeneous solutions. That is, non-zero solutions of fhis equation can be
constructed even when its r.h.s. is identically zero. Furthermore, homogeneous
solutions of (8) exist even though the matrix version of this equation is
not singular and its determinant is not zero. As shown later these homo-
geneous solutions play a very important role.

In spite of the above features of (8), the equation is consistent
with the E—eduation as shown below. The E-equation for the thin plate may

be written in the form

& x (K> J Jg 0 d8" 4/ (0 VDV 9 ds'} + jue BxE =0 (9)
S S i

Subtracting (8) from (9) we get, after simplificatibn,

) =0onsS (10)

A‘— T l= Ao—
v {2 ,(Hi + VxS JS ¢ ds') 0 onS, or Vt(z Htot

t S

@ result which is evidently true since % Htot = normal component of
total H is zero on the surface S, implying that its tangential derivative
is also zero. The conclusion is that (8) and (10) are required to be

satisfied simultaneously in order to satisfy (9), the latter being a state-

ment of the boundary condition Etan = 0 on S.



In the next section we develap a procedure for constructing a solution

to (8) that simultaneously satisfies the auxiliary condition 2 ﬁtot = Q.

DERIVATION OF NEW EQUATIONS : -

Numerically, a straightforward method for cémbining (8) and (10) is to
simultaneously solve a set of algebraic equations representing the discretized
versions of these equations. Numerical experiments based on this approach
have shown that it leads to erroneous regults; however, a correct and
consistent method for combining these equations has been developed and is
outlined below. For the present, we restrict the derivation to the case of
plane wa#e incidenée, which is the case of most common interest. However,
generalization of the method to an arbitrary incident wave is also possible
by a slight extension of the method.

The strategy for generating the desired equations for 38 is as
follows. First, the two scalar components of (8) are integrated and both
the homogeneous and inhomogeneous solutions are included in the resulting
integrated form. The incluslon of a homogeneous solution is necessary for
completeness. This step also assures that Jx and Jy are properly coupled
aﬁd that they are nonzéro when either Hyi or HXi or both (but not Hzi) are
zero. Second, the unknown_coefficients of the homogeneous terms in the

two equations are related by invoking the z - ﬁtot = 0 condition. Finally,

these coefficients are determined by invoking the condition Ved= 0,
where V is a vector lying in the X,y plane and is normal to the contour

of the plate.
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Expressing (Vi + kz) explicitly as §—§-+ §—§-+ kzéi, and solving the
| 9% oy {
differential equation, one can derive the following equations for the scalar

components JX and Jy. Assuming plane wave incidence with ki + ki = kz,
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where the integrals in (11) and (12) are spectral representations of the

2

. + k2), and A(kx) is as yet

homogeneous solutions of the operator (¥
unknown., That (11) and (12) indeed simultaneously satisfy (8) and
z - ﬁtot = 0 may be verified by direct substitution,

At this point we note some rather important and useful features of (11)
and (12). 1In contrast to the conventional E—equation‘éiven in (9), the
new equations are uncoupled for the two components JX and Jy and the kernel
functions of (11) and (12) are identical. The above features allow one to
use matrix sizes that are half that required by the E-equation. In addition,
the fill-time for the matrix elements is smaller since the kernel function
is simpler énd its singularity less severe in comparison to the LE-equation

kernel. 1In light of the above, the new equations (11) and (12) would be

expected to be more efficient numerically than the conventional E-equation.
NUMERICAL VERIFICATION

The primary purpose of this paper was to introduce the underlying
concepts leading to the derivation of the new equations for the thin plate
problem, deferring the presentation of extensive numerical results to a
later publication. However, for the sake of completeness it seems appropriate
to include some representative examples to illustrate the use of the un-

coupled integral equations (11) and (12). With this in mind we briefly

.discuss in this section the problems of diffraction by an infinitely long

strip and by a square plate, both of which are electrically thin.



THIN STRIP (H-POLARIZATION)

Consider the geometry, of the strip problem shown in Figure 2. Let us

first consider the case of an incident plane wave with its H vector parallel '
to the edge of the strip, i.e., a H-polarized incident wave. It is well

known that this éroblem is reducible to a scalar one via the introduction .

of a scalar potential proportional to Hy' The only non-zero component of

the surface current is JX, which may be shown to satisfy the integral

equation
/3 h gt = "8 x H) a3
x ozdz' . 9z _
z' =0 z =0
z =0
with g = %3 Ho(z) (k]B - 5']), the two-dimensional Green's function,

o= /;2 + 22, Hi

Equation (13) is equivalent to the E-equation for the thin strip problem.

$ e—;kx cos © + jkz sin © and 6 1s the incident angle.

and can be discretized using the moment method [Harrington, 1968] and solved .
via the usual matrix inversion procedures. The results of this computation
afford a convenient comparison with.those derived from the alternate form
of the equation, i.e., the integrated version, which will now be discussed.
For this\two—dimensional case, the integrated equation degenerates to
a | :

jkzi i JX g dx' = Hyi + Acos k(x - a/2) + B sin k (x - a/2) (14)
where a is the half-width of strip and A, B are unknowns. Equation (14)
is a slightly rearranged version of (11) with g the same as in (13). This

equation is again transformed into a matrix form and solved for JX with

A and B as parameters. Finally, these two unknowns A and B are determined
by imposing the two end conditiomns, viz., JX = 0 at |x[ = a.

It should be pointed out that slight differences in the numerical

solutions of (13) and (l4) are unavoidable because of the way they are

discretized. Specifically, in the numerical solution of (14) the end
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conditions, viz.,vJX = 0, are imposed not exactly at Ix] = a but at

]x] = (a - Ax/2), where Ax is the .width of the segment used in the discretiza-
tion of the interval lxl < a. Thus the width of the strip effectively becomes
2a - Ax rather than 2a. On the other hand, while solving (13) the boundary
conditions on JX at ]x] = a are not imposed directly; instead, it is tacitly
assumed that the above boundary conditions are automatically satisfied. Once
again, because of discretization, it appears that the Jx computed from (13)
appears to go to zero at [x[ = (a + Ax/2) and hence the effective width of the
strip appears to‘be 2a + Ax . Keeping this in mind we note that the two
curves shown in Figure 3 appear to agree reasonably well. It should be
mentioned that similar differences arise in the solution of a thin-wire
antenna prbblem using Pocklington's equation [Poggio and Miller, 1973] which
corresponds to (13), and Hallen's\equation [Collin and Zucker, 1969] which is
the counterpart of (14). However, this problem can be alleviated by using
triangular rather than rectangular pulses for basis functions for the

representation of Jx'
THE THIN-PLATE PROBLEM

The numerical advantages of the new form of Equations (11) and (12)
become more evident when one deals with a two-dimensional structure, e.g.,
a thin plate (or the complementary problem of an aperture in a thin plate).
We consider the problem of scattering of a plane wave incident at an
arbitrary angle on a perfectly conducting square plate whose linear dimension
is a. As shown in Figure 4, the z direction coincides with the normal to the
surface of the plate. Although we report only some illustrative results of the
surface current computation for an incident E-vector parallel to the plate,
it should be mentioned that extensive results have’'been obtained for RCS

computations and will appear in a later publication.



Using the moment method in connection with (11-12) obtain the following

two equations for JX and Jy

M M
ik L L J_(n,m) ¢Ck,q3n,m) Axldy =
21 m=1 n=1 %
(15)
4M +ik__xtik y
H . (k,0) + & A ke XP 7 YP
yi =1 P Xp k,%
P—
M M
jk ., X & J (n,m) ¢(k,;n,m) AxAy =
2L m=1n=1 7
(16)
4M +jk. x+jk vy
-H . (k,8) + £ A ke *P yP
xi p=1 P ¥Yp TR, A

In the above equations the surface current distributions have been represented
by two-dimensional pulse functions and point matching has been used in
conjunction with this representation to derive the matrix elements ¢(k,%,n,m).

As usual, special care 1s required in the evaluation of the self-patch

integral which is carried out analytically to yield
Ax Ay \s

Ok, L3k, 0)Axby = S [ o(k,25x,y) dxdy = Z= dn (1 + v2) (17)
where s = a/A and Ax = Ay = a/M. The only other comment regarding the
numerical transformation of the integral equations (15) and (16) into a
matrix form pertains to the choice of kxp’ the x-components of the wave
numbers of the plane wave forcing functions appearing in the r.h.s. of
(11) and (12). 1In this computation the kxp's were assumed to be uniformly

distributed, i.e.,

_2n 27 . _
% -~ X cos ( - +8) ; p=1, ... &M

where §, which can be an arbitrary angle that was set equal to 5°. Note

that 4M of these forcing functions are required in order to satisfy the
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boundary conditions to be imposed on Jx and Jy along the edges parallel to

the y and x axis, respectively. Numerically the above boundary conditions

imply that
i) JX = 0 at extreme top and bottom rows of patches;
ii) Jy = 0 at extreme left and right columns of patches.

The matrix equation for JX and Jy’ each of which is M2 be M2 in size,
can now be solved numerically in terms of the constants An's. These constants
are in turn determined, and the solution for JX and Jy completed by applying
the boundary conditions on JX and Jy as indicated above.

We present some numerical results for the two components of the current
distribution on a square plate for a normally incident plane wave with
E polarized parallel to the plate along the y axis. The plate is one wave-
length square, i.e., a = A, and was sectionalized into 81 subsections. The
‘results however do not substantially deteriorate when the number of sub-
sections is reduced to only 36,

A general program, which was written for handling arbitrary incident
angles, was used to derive the solution and no advantage was taken of the
symmettry of the problem, although the matrix size could be reduced consider-
ably for this special case., Figure 5 shows that the currents exhibit the
proper behavior at the edges, viz., the normal component of the current goes
smoothly to zero aﬁ the edge, and the parallel component exhibits a
singular-type behavior. 1t was also verified that JX was zero in the middle
patches and was asymmetric about y = a/2, while Jy was symmetric. This
behavior of the current distribution should be expected for incident E
parallel to the y axis. Though not shown here, we found‘by incfeasing the
size of the plate, the current distribution near the center of the plate

slowly tends to the physical optiecs current 2n x f, as the plate size is

i
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increased. The estimated size of the plate is approximately 5\ square
before this becomes an accurate approximation.
The general program was also used to solve the oblique incidence case
and typical results are shown in Figure 6, for an angle of incidence of
85° from the normal. |
Finally, it was found that the equations are quite stable and numerically

well-behaved for all of the plate sizes and angles of incidence studied here.
CONCLUSIONS

In this paper we have examined the limiting case of the H-~equation for
the thin-plate ﬁroblem and have found an additional condition, viz.,
n e ﬁtot = 0, must be imposed on this equation (where n is the normal to
the surface) in order to derive a unique solution to the problem. It is
shown how these equations can be combined to derive a new set of equations
for the surface current components. These new equations have several
advantages that are pointed out in the text. Some numerical results

illustrating the application of the new equations to the thin-strip and the

square-plate diffraction problems are presented.
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Incident
Plane Wave z (Normal to plate)

Figure 1. Thin plate diffraction problem. The plate lies in the x-y

+)

plane. TIts top surface is designated by § and the

)

bottom surface by S
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Figure 2. The thin strip diffraction problem (H-polarization).
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a/h = 2 and A = 0.0, duc to a normally inclident plane wave using
pulge approximatlion and 33 sections. a) as obtalined from (13),

b)) as obtained from (L4)
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Figure 4, The thin square plate diffraction problem (E-polarization).
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Figure 5. Amplitude of current distribution on a thin plate for normal
’ incidence.6 = 0°, ¢ = 0°. (a) J, component (b) Jy component.
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Figure 6. Amplitude of current distribution on thin plate for oblique
incidence. 6 = 85°, ¢ = 0°. (a)JX component (b) Jy component.,
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