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ABSTRACT

A uniform symmetrical distributed source is used to derive the
input admittance expression for a perfectly conducting, infinitely
long, cylindrical antenna. This type of source aveids the singu-
larity which a conventional infinitesimally narrow-gap source intro-
duces in the admittance expression. Analytical expressions are
developed for the asymptotic behavior of the admittance for large
and small complex frequency amplitudes. Also, a conventional admit-
tance expression for an infinite cylindrical antenna excited by an
infinitesimally narrow-gap source is derived in a commonly used
form. For comparison, the two admittance expressions are applied
to a transient problem. The two time-domain results are found to

be significantly different, particularly for early times.
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I. INTRODUCTION

The properties of an infinite cylindrical antenna have been studied by
several investigators. Among them are Halien,l Papas,g and Latham and Lee3
to name but a few. The usual idealized model for the infinite cylindrical
antenna consist of an infinitely long, perfectly conducting circular cylin-
der excited by a delta-function voltage generator. The hypothetical delta-
function voltage generator consists of a source voltage V impressed across a
circumferential gap of infinitesimal width. The geometry of the model along

with eylindrical coordinates (p, ¢, z) are shown in Fig. 1.

The electric field in the gap is given by

Epop = -v6(z) (1)

where §(z) 1s the Dirac-Delta function with dimensions of inverse distance.
The total electromotive force exciting the antenna can be computed from

the electric field in the gap by

gap

which is equal to V for the delta-function voltage source.
The input admittance of the antenna is defined as a freguency domain

quantity by the ratio

r = 2ol | (3)

~

where I(z) is the total axial current on the antenna.

The tilde, ~, over a quantity indicates the frequency domain expression

of the guantity.
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Fig. 1. Infinite Cylindrical Antenna with a Delta-Gap Voltage Source.




Unfortunately, the input admittance of the antenna driven by a delta-

function voltage generator 1s infinite if the radius a is greater than iero.
It is plausible to attribute this singularity to the infinite capacitance of
the infinitesimally narrow gap at the driving point. Normally, this singu-
larity is removed to obtain a finite input admittance. Two conventionally
used processes to remove the singularity in the input admittance are: (1)
solve for the antenna current by an iterative procedure which ignoreg the
singulari’t:;y*,LL and (2)A¢alcﬁlate a finite antenna éﬁrrent at Z': Az > C. (Ref. 5)
The processes of ‘'subtracting-out" the singularity are, however, ambiguous
and the accuracy of thé admitbtance solutions may be severely limited over
certain frequency'ranges.h Thus, for transient problems the application of
the results obtained from the delta-function voltage driven antenna are not
clear cut.

An alternative to the delta-function voltage generator for computing the
dipole input admittance a finite distributed source. This source dées not
introduce a singularity due to an infinitesimally narrow gap. However,‘the
input admittance depends, to a slight extent, on the distribution of the
electric field in the gap.6

In this note, we consider the input admittance of a perfectly conducting,
infinite antenna driven by a distributed source. For simplicity, we assume a

uniform distribution for the electric field given by

-E zi £b
E_ = {5 el : (%)
l 0 elsevwhere

where b is the half-width of the source gap. We also assume that the source

is a cylindrical distributed source symmetric about the axig of the antenna

15



and that the frequency of the source field has no z dependence. Furthermore,

we gpecify that the source is an ideal distributed source with zero internal
impedance. The geometry of the antenna and distributed source is shown in
Fig. 2. The admittance of this antenna should give physically meaningful

results when used in transient problems.

II. DERIVATION OF THE ADMITTANCE

The time-harmonic magnetic field in the phi (@) direction (ﬁ¢) of a per-
fectly conducting, infinitely long, cylindrical antenna driven by a finite
ideal cylindrical distributed source with a surface electric field specified

by Eq. (4), with ert suppressed, is given by7

) ac (5)
¢ (k2'62)l/2 HO(Z) (a EKE _ €2]l/2)‘

~ JjkE ® 3z . (2) 2 .2
H¢ (0,2) = s o £m e sin Lo Hy ™ (p [k 7]

where Z is the free space radliation impedance approximately equal to 1207 ohms, ‘
k is the propagation constant, and the meanings of a, b, and p are given in Fig. 2.
which depicts the geometry of the antenna. Egquations (31) and (39) in Ref. 7

were used to obtain the expression given by Eq. (5). This same expression

can be derived by the application of the superposition technique used in

a previous investigation.

In terms of the Iaplace transform variable s, the magnetic field becomes

=

~ IS w@ ng R .
H¢(p,z) . coz { e sin €b X (ou) ac (6)
= € v K (au)
where y = (g2 + 52/02)1/2, c is the speed of light in free space, and the
relations s= g, k = w/c, B (3%) = - § (/1) Ko(x), B (32) = ~(2/T)K (x),
and j(§2l+ s2/02)l/2 = (-52 - s2/c2)l/2 have been used.

6
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The total axial current at z = 0, the midpoint between the distributed

source gap, is

27 S

j §¢ (a,0) a¢

SR
]

N 2 as ES 'J"w sin Cb Ky (aU) dg (7)
c 7 e ¢ vk (av)
and the voltage across the gap is
~4 b ~ ~
gap” -jb-Eo dz = 2b By . (8)

The substitution of Egs (7) and (8) into Eq. (3) gives the admittance

as

wa,b) = 557 [ SRR 2 (9)

For convenience, we can change the variable of integration to § = af;

Eg. (9) becomes

¥(y) =‘I’_S_Z_£ singﬂlg Klul({:gugg (10)

where u = (§2 + S)l/2

, 8 is a normalized dimensionless ILaplace transform

variable defined by

s =22, | (11)




and § 1s an antenna parameter given by

¢ = b/a . (12)
Now for convenience, we define a normalized dimensionless antenna admit-
tance as

zZY
A=

S g
. WJ_;, smgwé gléougw S (13)

The integrand in Eq. (13) is an even function of &; thus, the admittance

can be expressed as

[ee]
_ 28 sin ¢§ K (u) .
b Teenete Y
IIT. ASYMPTOTIC BEHAVIOR OF THE ADMITTANCE

In this section, we consider the asymptotic behavior of the admittance
for both small and large frequencies and for small §.

A. Bmall Frequency Behavior

As 8 » 0, the integrand in Eq. (14) becomes large as £ + 0. It ig rea-
sonable to suspect that the major contribution to the integral is made at

small values of £. For swall § and £, the integrand takes the form

. 2
sin y€ K (w)  _ oy + O(E7) . -y (15)
& uk (u) w2 on (u) % on (u)

where the Taylor's series for sin ¢£ and the asymptotic expansions of the
Bessel functions for small arguments as given by Egs. (9.6.9) and (9.6.13)

in Ref. 9 have been used to obtain Eg. (15).



To determine the asymptotic expansion of A for S -+ O, we lntuitively Q

write Eq. (1) as

_2s ¢ Ysin(yE) K (u) y
A_ﬂ\lfo{ uKo(u)Jrumu}dg

(16)

a .
f : 5o - Mt he

° (g +S)£7/n(€ +87)
where the asymptotic form of the integrand has been used; A, and A, are the
first and second integral terms from left to right respectively in Eq. (16).

To determine the order of Ay s we write

Ie £° 0() at

M =7
(€2 + %) i (£° S

(17)

, 28 { (1) 24 "
(i 51/ " 2.2 2 .2 '
Ve lee®s®? (£746°) on (£545%) o
where ¢ is a real constant chosen such that O < ¢ << 1. Notice that M’l(§2 2)

is bounded by 0.5 wfl(s) over the range of integration. The substitution of

0.5 g~ l(s) for on l(g +82) and the evaluation of the integrals in Eq. (17) gives

Ay =0 (s Q/n-l(S)) . (18)
The second integral term can be written as

w

dg

L

SRR Y PER 3
1+=2 S 1+ 2=
+S2Q/n + In +52

-2 dx
x /X1 lon S + on x]

(19)

1
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2
where a change of variable of integration x2 =1 + é— has been made. Now

82
let y = 8 on %, BEq. (19) becomes
= -ay
-2q e
hp == | dy (20)

Vi - e PW [ o + gy

where q = S_l. Ag S =+ 0, g+ « and we can apply the formal process provided
by Watson's lemmalo to derive the asymptotic expansion for the integral in

Eq. (20). The indirect application of Watson's lemma gives

-2 ¢ (=1)" 0! 7 e (gp)"
Ay ~ == dy
2 s n=O,(&1S)n+l g L e_eqy
© n al 1 n
- ;’;T% Z ‘5’ (on (l/Z) ) dx» (21)
n=0 w1s) O W1l - x
N-1 C C
= -—u——-l;l—-—-. + 0 ——L-——.

where

o, - 20 Jwmu/xw .

n - X . (22)
1l -x ' '
Evaluation of Co gives
-2
o=-,-,-T—f — =1 (23)
O N1 -~ x '
and the values of C, and C arell

1 2

11



. =22 (1) f i (1/x) &z _, 5 | (24)
157 — | |

and

1 2 2
2 [l e )
1 -x

where the values of the integrals in Egs. (24) and (25) are given by Egs.
(863.41) and (864.33) in Ref. 1l respectively.

To obtain an upper bound for 03, we first integrate by parts:

_ =12 j’l (on X)3 dx
3 m : 5
o 1-x

1 2 .
;%2 Q%zx)3 arc sin x | + %?- j 30nx) arc sin X 4, (26)
' ' o)

36 f sz) arc sin x .

= xs—ﬁ-j'g(g/nx) dx = 36 .
(o]

o}

Collecting the results of Egs. (18), (21), (23), (24), (25), and (26)

gives the asymptotic expansion of A for § - 0 as

C

2 -
%; (&zs)n+l 0 ((&18) )
-l on 2 (wn 2+7T/6 o by 5
ms+(ms) ns) ro (s (B0




Now substituting S = jka in the first term of Eq. (27) gives

which is in good agreement with the result obtained by Schelkunoff.6
B. Large Frequency Behgvior
As 8 + =, Eg. (14) can be written as
sin [ + ——-+ 525 + O(u'B)] a& (29)
u

where the asymptotic expansions of the Bessel functions for large arguments
as given by Eq. (9.7.2) in Ref. 9 have been used. Now we make a change of

variable of integration x = £/S, Eq. (29) becomes

gfsi_ﬂﬁ.@_ldx [ lsn o,

) = 41 bq (X + 1)
(30)
. l2 il sig (wSx%Z 3% 4 O(%) I sin éwSX) dx
88" o x (x= + 1) S o ¥ (%7 + l)
The first integral can be written a512
o \”S
I sin (in) dx _ f K, (t) ds
o) N o)
xNx + 1 (31)
=g-j (t) at
S

13



As |8] + =, the asymptotic form of Eq. (31) 1512

"\L’S

{ sin (¢8x) dx _ ) (32)

xVx24-l
where the asymptotic form of K (t) for t —+ < has been used to obtain the order
term in Eq. (32). The second integral term in Eq. (30) is listed by Eq.

(859.005) in Ref. 1l as

Lo snlen) ax LT T5) (33)
&8 f x (5% + 1) /

The third integral term in Eq. (30) can be expressed ast?®

© S
1 sin (@SX) dx 1 \ & K, (t) ds
82 Y x (24 132 8 { t

(34)

=gsl—2 [—ﬂ - I{: t Ky (t) dt]

As |8| » =, the substitution of the asymptotic form of Ki(t) as t »+ =

gives12

1 ” sin (wSx) dx -7 r(
— - T (3/2, 8)
8s° { e 2+ 1372 8P ’

- -§S
=-8—:—2-+O(\/-JS-—37e-é——>

The fourth integral in Eq. (30) is given by Eg. (859.01k) in Ref. 11 as

(35)

sin (gsx) .1 Bre ¥y - (36)
o x (x°+1)

1k



Collecting the results of Egs. (30), (32), (33), (35), and (36) gives
the asymptotic expansion of A for [S] -+ « with ‘arg S] < g as
1 1 1 -3
A==+4=0 - —— + 0 (]s a
Vs T, Cs[) | (37a)

where ¢ is assumed finite. For Iarg S|= ﬂ/2, the agymptotic form of A for

S = juw 2 Jeo is
A= —iw(lst'l/g) - (37b)

C. Small { Behavior

To determine the asymptotic form of A for { - O with S restricted to

finite values, we first break the integral in Eg. (14) into two parts:

os M sin ¢t Ky (u) 28 Csin 4 K, (u)
Vemd e owgm R TE TR ®
(36)
= I, +1,

where u is defined as & real constant selected such that 1 <<y < 20 and Il

and I, are the first and second integral terms in Eq. (38).

2

We can obtain an upper bound for Il by writing

o B(8) B i at

MtT SR (8 d "€
2 X, (8)
TR (0 o(¢)) (39)
and
I, = 0o(1) . | (40)

15



The second integral term in Eq. (38) can be written as

o5 @ sin x B2 (V)
I, ==

X v Ko (v) dx » (h1)

where a change of variable of integration x = ¢£ has been made and

v = (ig + Sz>l/2 . | - (k2)

The substitution of the asymptotic expansions for the Bessel functions

for v #» » gives

28 o sin x 1 -2
'12=Wf _-}{—7-[1+-2—V+O(v_ )] dx . | . (k3)
Now rewrite 12 as
og & og
I, = = ot ) dx -~ = D > Li
=] R ) ()

As | - O, the asymptotic form of the second integral in Eq. (44) is

m

Cog B g 1 -2 og M1 1 -3 |
- 28 f sin x [L+ - - o(v=)] ~ - —E g [; + ;;§ + 0(v™2)] ax = 0(1) (k5)

and
28 ¢ sin x 1 2
I=—-f-x—v—-[l+§+0(v )de+0<l)

(46)

_%c{;g sinuif, [1+2 + o(w)]ag + o(1)

16




Applying the results of Egs. (29), (30), (31), and (33) gives

s ©
2. 1 gin Sx
T o~ = K (%) dt + == dx
2 M g O( " ¥s £ x (x= +1)
o(1) I8
+ qf g t K, (t) at (47)
2 8 1 ms, o) 45 1
NWJ“ pmtdterS(g)JrJL g t (3) at B

where the asymptotic forms of the Bessel functions for small argument as
given by Egs. (9.6.8) and (9.6.9) in Ref. 9 have been used. Evaluating the

integrals in Eq. (L7) gives

I, =- %ﬁ on (98) + 0(1) . (48)

Collecting the results of Egs. (40) and (48) gives the asymptotic behavior

of A for {§ -+ O with § finite as

ho - B ) . (19)

1Iv. THE MODIFIED DELTA-GAP ADMITTANCE

In order to compare the admittance derived in Section II with a conven-
tional admittance expression, the admittance derived from the admittance of
an infinite cylindrical antenna excited by a delta-gap source is considered

in this section. The current at the driving point of a eylindrical antenna

~

excited by a delta-gap voltage source V6 is

asv o isb
B o e ay
¢ cz v Kolaw
o]

ds (50)

17



where the singularity has been "subtracted out" by calculating the current

at a distance "b" from the feed point and v is the quantity used in Eq. (6).

It follows that the normalized admittance is given by

~

6T ST 4 U Rgy)

%? £ cos &y —'Egkﬁ%%j at . (51)

The behavior of Aé for \S! -+ 0 can be derived in a similar manner as

used to determine the small S behavior of A, i.e., as IS\ -+ O the major con-

tribution to the integral in Eq. (51) is made at small values of §. Thus,

we write A6 a

A = = 25 3 _cos & a¢
o (&2+82)r s

cos s Ko<u)
I §2+Sz i K, (u) * @fl(s)}‘dg

= 2+ o(ls)) (52)

where the asymptotic form of the integrand in Eq. (51) for small u has been
used.
The large S behavior of A6 can be derived by using the large u asymp-

totic form of the integrand in Eq. (51). The result is

hy~ B[ skt g By () (53)
o /&2+8%

18




for |8| + = with ¢ > 0 is

for |¢S| -+ «. Thus, the asymptotic form of by

Ny ~ 22 Ko (48) ~J%§- L (51)

By comparing Eq. (54) with Eqs. (37a) and (37b), it is clear that the
large 8 asymptotic behaviors of A and Aé are significantly different. As
|S| + «, the valie of A approaches a constant equal to ¢t whereas Ag

approaches zero for |arg 8| # 7/2 or infinity for |arg 8| = 7/2.

V. RESULTS

The normalized admittance A is plotted as a function of complex fre-
quency in Figs. 3 through 12a with { as a parameter. The soiid curves were
obtained by numerically integrating the integral in Eq. (14) with a rela-
tive error of less than 0.1%. The large and small S asymptotic forms of A
are shown as dashed lines. The small S asymptotic form was obtained from
the first three terms in the expansion given by Eq. (27), and the large |s|
asymptotic form was obtained from the first three terms in Eq. (37a) for
|arg S| < 7/2 and from the first term in Eq. (37b) for |arg 8| = /2.

The normalized modified delta-gap admittance A@ is shown in Fig. 12b
as a function of real §. These curves were obtained by numerically inte-
grating Eq. (51) with a relative error of less thaen 0.1%. A comparison
between the delta-gap and finite-gap admittance functions shows a slight
difference for real S less than 0.5 as shown in Fig. 12. In Fig. 13, j\6
is plotted as a function of real S over a larger frequency range. For
larger values of real S, there is a significant difference as shown by

comparing Figs. 11 and 13.

19
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To compare the effects of applying A and Aﬁ to traﬁéient>pfoblems,

consider the indicial admittances

aet/a) - 1 {12 (55)
and S : AR ‘
ayletse - { ) (56)

where L 2{f(s)} is the inverse Laplace transform of f£(s).
Since the early time responses are of interest, it is convenieht to

expand the admittance functions as

-
I
[\
w
s
for]
ur

Z . sin &y [ % (u) 1 1
! & [Kom - 81?)]

Lol .1 s K, (¥8)
tyome gy Lo ) e

- (% - Eﬁ£§5> f KO(WT) ar (57)
< |
and
o8 { & 1 1.
A6=T{‘£d§co§§ﬂ/[§;§%-(l+ﬁ- =

R L e (58)
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where the large u asymptotic expansions of the Bessel function have beon

used. The indicial admittance A(T) can be expressed as

2 1, 1 1@
A(T) = T A (T) +{¥ + Eri W} u(T)
1y T sec~1(T/L) b o7 - 1y2
LT L2 el () oy
where U(T-{) is the unit step function given by
0 T<y
U(T-y) = - (60)
I
and T is a normaiized time variable given by
ct ,
T=—= . (61)
The function A(T) is given by
® . K. (u)
_ -1 sin & [T1 _ 11
MT) = L 3\[‘ € 5 [Ko(u) (l *5g 8u2>]§ ‘ (62)
: Lo
The indicial admittance Aé(T) can be expressed as
2
B () = 2 (o)
2 1 W2 - g2
+3\—/-T2=_7+ 5 -—Wi— U(t-4) (63)
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where .

1 <u> \
Mo(T) = L ﬁfﬁsﬁiﬁPTT (l‘%-gédf - <&)

Note that the time response of Aé(T) is delayed until T = w:r This is
due to the propagation time required for the antenna current to reach the
distance b from the origin.

Now congider the early time asymptotic form of A(T). As T - O,

10 T°
w x(T) , W,U(T) (65)

‘where the theorem in Ref. 8 has been used. Thus,

1

A(T) ~ 7 u(r) . (66)
And as T-§ = O,
2y ~ & (1) 0l2-9) GG
and
A (1) ~ —Ee— (1) (68)

As can be sesen from Eqgs. (66) and (68), there is a s1gn1flcant difference

between the early time behaviors of A(T) and A5(T). The indicial admittances

are shown for ¢ = 1.0 in Fig. 1.
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VI. SUMMARY AND CONCLUSIONS

In this note, an expression has been derived for the input admit-
tance of an infinitely long, perfectly conducting, cylindrical
antenna driven by a uniform distributed source. It was found that the
small complex frequenc& asymptotic behavior of the admittance is in-
versely proportional to the logarithm of frequency. Aléo, it was found
that the admittance asymptotically approaches a constant as the ampli-
tude of the freguency becomes large.

The admittance of an infinite cylindrical anﬁenna excited
by a delta-gap source has been derived in a modified form which sup-
posedly removes the singularity. . The finite-gap and delta-gap admit-
tances are in good agreement for small frequency amplitudes but are
»signifiqantly different for large frequency amplitudes. This implies
that the early time results in a transient problem employing the.antenna
‘admittance can be significantly dependent on the admittance function
chosen for the calculation. The indicial admittanceé of the two admit-
tance expressions have been considered to examine their transient charac-
teristics. It was found that the time history of the delta-gap indicial
admittance is initially singular whereas the finite-gap indicial admit-
tance is initiaily equal to the inverse of §. The two indicial admit-

tances are in reasonably good agreement for late times, ct/a > 10.
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