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ABSTRACT

Some of the computational aspects which may affect the validity and
applicability of a numerical solution for a thin-wire structure are
considered in this paper. These include: (1) structure segmentation,
(2) current expansions, (3) the thin-wire approximation, (4) matrix
factorization roundoff error, (5) near-field numerical anomalies, (6)
multiple junction treatment, (7) wire-grid modeling, and (8) computer
time required. The discussion will be based upon results obtained from
a subsectional-collocation and point-matching solution to the thin-wire
integral equation, but the implications which arise are of a more aeneral
nature. Minimizing the possibly deleterious impact of the above on
performing practical calculations will be discussed.
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INTRODUCTION

Some of the computational aspects which may affect the validity and

practical applicability of a numerical solution for a wire structure

obtained from a moment method treatment are considered in this dis- .
cussion. The results presented are, unless otherwise indicated, -
obtained from a sub-sectional collocation solution using point matching
and a three-term current expansion of the thin-wire electric-field v
integral equation
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where
g = e—ikR/R,
k = wJﬂ;E;
and
R = |7+ 3(F)|

with t(¥) the tangent vector to the wire at r, EI the incident field,

a(r') the wire radius at r' in the direction t(r') x (r-r') and the

(suppressed) time variation elwt. The reader is referred to Harrington

(1968) for the general approach and to Poggio and Miller (1970) for

specific details. Where possible the findings which derive from this

particular solution procedure are generalized to permit identification

of the broader implications pertaining to similar numerical methods.

Recommendations for aveiding possible pitfalls and more fully realizing _
the potential of such methods are also discussed. .




IT.

NUMERICAL EXAMPLES

Some of the various aspects to be considered here include; A) current
expansions; B) structural segmentation and boundary condition matching;
C) multiple junction treatment; D) thin wire approximation; E) matrix
factorization round-off error; F) near field behavior; G) wire grid
modeling; and H) computer time requirements. Each of these items is
discussed in turn below. The order of presentation is essentially that
in which these various factors are encountered in an actual calculation.

A.  Current Expansions

The type of current and charge basis function expansions used in the
numerical solution is perhaps one of the most important and at the
same time one of the most inconvenient factors to vary for numerical
comparison. Computation of the impedance matrix elements is intimately
related to the form chosen for the current variation. Thus in con-
trast to the relative ease with which the effects of varying the
segmentation, boundary condition matching, etc., which require only
minor program modifications, can be achieved, varying the basis
function expansion will instead generally involve major changes.

In spite of these difficulties, some studies have been performed
(Richmond 1965 and Neureuther, et al. 1968), concerning the impact
of using various kinds of current bases function expansions. Some
of their results will be summarized below.

Before getting into specific numerical results, however, let us
consider the general question of current basis function expansions
appropriate for thin wire structures. We can basically divide the
current expansions into two types: 1) complete domain representations
and 2) sub-domain representations. A complete domain representation
is one wherein the current expansion is applied over the entire wire
structure. Such a complete domain representation for example, is
typified by the use of a Fourier series for the current on a Tinear
wire antenna. In this case the parameter of expansion is the number
of ‘expansion functions used in the Fourier series. The sub-domain
representation is by contrast applied over sub-section portions of
the entire structure. An example of this case is the pulse approxi-
mation for the currents on a Tinear wire antenna wherein the current
on each of the N segments or pieces into which the antenna is divided
is represented as constant. The distinction between the two forms
becomes somewhat blurred as the segment size, and the number of

constants which maybe associated with that segment, increases.

It is worthwhile to summarize some of the kinds of complete domain
and sub-domain current expansions which have been or might be
employed for wire antenna analysis. In Table I below are shown
complete domain representations based on Fourier, MaclLauren,



Chebyshev. Hermite, and LeGendre polynomial series [Richmond
(T965)]. Results obtained by Richmond from using these expansions
for analyzing the current excited on a 1inear dipole by a plane
wave at broadside incidence are also shown in the Table. Richmond
comments that the expansion based on the Chebyshev and LeGendre
polynomials may be most promising for further investigation. For
many reasons complete domain current representations have not been
extensively employed in wire antenna theory.

TABLE I. Polynomial Series Current Expansions
(After Richmond, 1965)

Fourier:

1(z) = I, cos mx/2 + I, cos 3mx/2 + I, cos 5mx/2 + +
MacLaurin:

I(z) = 1 ¥ 1x2 F Lyt + o+

1 2 3

Chebyshev:

I(z) = I1T0(x) + 12T2(x) + 13T4(x) + o+
Hermite:

I(z) = I]Ho(x) + 12H2(x) + 13H4(x) + 4
LeGendre:

I(z) = I]Po(x) + 12P2(x) + I3P4(x) + o+
where

x = 2z/L

Coefficients for the Current I(z) for an Incident Plane
Wave: L = 0.5A; a = 0.005Ax; ei = 90°

Mode No.
n Fourier MaclLaurin Chebyshev  Hermite LeGendre
1 3.476 3.374 1.7589 8.2928 2.2763
2 0.170 4,037 1.5581 14,3644  2,1005
3 0.085 3.128 0.0319 4.4135  0.0€55
4 0.055 4.101 0.0112 0.3453 0.042}1
5 0.040 1.871 0.0746 0.0073 0.0372




Sub-domain representations seem to be more popular because they

are apparently easier to use and generally speaking provide
comparable accuracy with shorter calculation times. One possible
explanation for this situation is that a complete domain repre-
sentation in a series form such as illustrated above, requires
integration over the entire wire structure for each of the N terms
in the series. The sub-domain representation, however, involves
integration of the term or terms used for the current representation
over only a small part (one segment) of the entire structure.
Furthermore by choosing the appropriate kinds of expansion functions
it may be possible to perform such integrations analytically.

Before considering specific sub-domain expansions which have been
employed let us consider some of the general implications of the
sub-domain expansion function itself. For simplicity suppose we
consider a simple isolated wire having no multiple junctions and
divided into N equal length segments. Furthermore let us assume
that the goal of our solution method is to obtain a numerical repre-
sentation for the structure in terms of at most N samples for the
currents on the structure. Let us then consider the implications of
using one, two and three or more terms in the current expansion on
each of the N segments.

1. One Sample Per Segment

The use of one expansion function per structure segment is
generally realized via the pulse approximation. In this case
the current on each segment is viewed as a constant, and, there
being N segments, N unknowns or N sampled current values are

the result, thus leading to an Nth order system for the nu-
merical solution. The equations which are typically used in
this case are obtained by point matching the boundary conditions
at the centers of the structure N segments. This is achieved

by the use of delta function weights. The nth segment expansion
function and mth segment weight function can be represented in
this case by

=
—~
wn
—~—
n
O
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where s. is the midpoint coordinate of segment i. The con-
vergence rate which is typically achieved using the pulse
approximation for the currents can be quite slow. In Figure 1
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we present results due to Thiele (1970) which depict the input
impedance of the half wave antenna as a function of N. It may
be observed that a rather large number of segments is required
per wave length before the input impedance stabilizes to what
appears to be a useful numerical value. Further comparisons

of the pulse approximation with other kinds of current ex-
pansions will be given below. The results of Figure 1 should
not be taken to indicate however, that the pulse approximation
is not a useful one for antenna analysis. What must be con-
sidered is not only the current expansion itself but the specific
integral equation form and the weight functions used in reducing
the integral equation to a Tinear system.

Two_Functions Per Segment

There are understandably a considerable number of functions

which might be employed in a two term expansion on each structure
segment. Some of those which have been investigated include

the piecewise linear, and piecewise sinusoidal forms employed

by Chao and Strait (1970) and Richmond (1969) respectively. But
note that the use of two terms per segment implies that two
constants per segment are associated with the current expansion.
For an N-segment structure this leads to 2N unknowns. Additional
effort is thus required to reduce the system to the order of

N unknowns in the final matrix representation for the structure.
The most obvious procedure to employ for this purpose is that of
matching currents at each of the N-1 segment junctions which
exist on the N segment structure. This reduces the number of
unknowns to N+1. With the two additional conditions that the
current on the two open ends of the wire must vanish N-1 unknowns
are then obtained for the N structure segments. These N-1
unknowns can be taken as the current amplitudes at the N-I
junctions of the N segments. For closed structures having N
segments (a wire loop for example), N unknowns are obtained.

Since there are only N-1 unknowns on an open ended structure
having N segments the method of matching boundary conditions

on the N segments is no longer so obvious as for the case
previously considered. We might derive N equations by computing
the electric field at the centers of each of the N segments but
we then have an over determined system for the N-1 unknowns.

This could be reduced to an N-1 system by the method of regu-
Tarization which is frequently employed in numerical methods.
However, this procedure requires an N3 operation before even
obtaining the matrix from which we compute the antenna admittance
via a subsequent inversion or fractorization. It could conse-
guently be rather time consuming and inefficient. Instead we
might- consider computing the field values at the centers of the N

segments by then performing a course intearation which



involves adding each of these N equations together a pair at a
time, and generate finally an N-1th order linear system. This is
in fact essentially what Chao and Strait (1970) do in their use
of the piecewise Tinear current approximation except that they
compute the field at two points per segment rather than at a
single point at the segment center. Richmond on the other hand
employs Galerkin's method whereby he integrates the electric
field on the antenna using as weight functions sinusoidal terms
which are the same as those employed for the current expansion
itself. The Chao and Strait approach it should be noted is also
essentially a Galerkin's method since the weight functions
employed for the boundary condition matching are the same piece-
wise linear forms as used for the current expansion. Note that
it may not be advisable to compute the fields at the N-1 segment
junctions because it is at these points that the current distri-
bution has discontinuous derivatives which can result in poorly
behaved field values (as discussed further below).

The expansion functions (1inear and sinusoidal) and weight
functions employed for the two term case are as listed below

, sink(s'-sn+An/2) sink(s’-sn-ﬂn/Z)
In(S ) = An (s‘—sn+An/2) ¥ Bn (s'—sn—ﬂn/Z)

or equivalently

sink(s'-sn+An/2)
n ) = n (s'-sn+An/2) Un(S "Sn)

sink(s'=s ..=A ./2) |
n+l “n+l :
* { Unﬂ(s _Sn+1)

(5" -5 p4717204172)

J

Also -
sink(s—sn+An/2)
wm(s) B Un(s'sn) (s-s + A /2)
n “n
U (ses ) [s1nk(s—sn+1-An+]/2)
n+l n+1 L (S'Sn+1"An+1/2)
where Ai is the length of segment i and
(1/sinkAn
! -A /2 <s' - s < A /2 ’
U (s' =s,) =1 /8, f noon
0 otherwise ‘
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Three Term Current Expansions

The most often used current representation employing three

terms per structure segment is the so called sinusoidal

expansion which involves a constant, sine and cosine term on

each of the structure segments. This particular form was
evidently first employed by Yeh and Mei (1967) and Andreason

and Harris (1968). Obviously since there are N total segments

on the structure, 3 N constants are associated with the current
distribution. In order to reduce the system to on the order of

N unknowns, approximately 2 N conditions on the current expansion
must be derived.

Two approaches have been employed for this particular sinuscidal
current expansion. One involves interpolation of the current on
a given segment to its junction with the neighboring segments
where the current amplitudes and derivatives are matched. Since
there are N-1 junctions this procedure results in 2N-2 boundary
conditions. A final two boundary conditions which require that
the current be zero at the open ends of the wire then leads to a
total of 2 N conditions on the current expansion functions. Thus
N unknowns for the sampled current values on the structure can be
identified for the subsequent linear system solution. For
convience the N current samples generally used are the current
values at the centers of each of the N structure segments. Note
that since the current expansion on a given segment involves
relating the three coefficients in its expansion with those of
the segments connected to either of its ends, that a 2N by 2N
Tinear system of equations is obtained from the 2N Tinear wire

or circular Toop and hence easily solveable. However, for
general structures where there are multiple segments some
additional complications can arise. Consideration of this point
is deferred to Section V below.

An alternative approach for determining the 2 N equations
required for reduction of the 3N system to Nth order was suggested
by Yeh and Mei (1967). It involves writing the current on a
given segment in terms of the current samples at the centers of
its neighboring segments. This procedure also generates two
equations for each of the structure segments. Furthermore the
equations thus derived involve only the center current samples
on the segments to which a given segment is connected. It is
thus possible to solve for the expansion coefficients in terms
of the unknowns (the center current samples) which will appear
in the reduced Nth order system on a segment-by-segment basis.
This procedure then bypasses the reqguirement for solving a 2 Nth
order interpolation matrix prior to generation of the Mth order
linear system. However, it is not as physically meaningful as



the first method suggested, and furthermore permits both current
discontinuities and slope discontinuities at the junctions of
adjacent segments. This possibility can give rise to rather
poorly behaved fields along the structure as will be discussed
below.

Another current expansion that might be considered for the three
constant case is that of polynomial expansion involving constant,
Tinear and quadratic terms. Such expansions, generally speaking,
have not been as widely pursued as the sinusoidal expansion for
at least two reasons: 1) the currents used in the sinusoidal
expansion permit analytic intergration of all but one of the six
field terms required per segment; 2} the sinusoidal expansion
involves the kind of current behavior found on lTong wires and
transmission lines where traveling wave currents exist. Since
the basis functions used should resemble as closely as possible
the actual current variation on the structure, it is obvious

that the sinusoidal expansion is desirable from this viewpoint.
However, in the Timit of short structure segments we can conclude
that the polynomial approximation to second order is essentially
equivalent to the sinusoidal expansion since the latter also
contains terms of second order for small argument.

A summary of the three term current expansions and associated
weight functions {s included below.
{s1nk(s -sn) cosk(s —sn)

i (s'-s.) J * (s'-s )2

In(s ) = An + Bn

and

Four or More Expansion Functions Per Segment

There has evidently been 1ittle or no effort made to continue
this sequence of current approximations by using four or more
expansion functions per segment. The increased compiexity
which results from the need to obtain more relations between
neighboring segment expansions, the selection of points for
boundary condition calculations, etc. indicate generaltly that
rather than using a single segment with four, five or more
expansion functions, it may be preferable to instead use a
segment of half the length with three expansion functions on
each of the two halves, an essentially equivalent procedure.
This basic approach has been found, for example, to work well
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in developing adaptive numerical quadrature schemes wherein the number
of integrand sample points per interval is limited to some maximum
such as three or five and the increased sample densities required

for rapidly varying parts of the intergrand are realized by using

more intervals, rather than by employing Tonger intervals with greater
numbers of integrand of abscissa samples and higher order quadrature
rules per interval (Miller, 1971). We thus conclude our consideration
of higher order of current expansion at this point.

While extensive examples demonstrating the relative desirability of
the various current expansions discussed above are not available,

some comparisons have been made and are included here to demonstrate
the effects of varying the current expansion function used for a

given application. In Figure 2 is shown the real part of the input
admittance of a 1inear dipole as obtained from Hallen's and Pocklington's
integral equation using various kinds of current expansions due to
Neureuther et al. (1968). On this figure are shown the computed input
conductance as a function of the number of segments per antenna for
constant, linear, quadratic and sinusoidal current
expansions in Hallen's integral equation and the
sinusoidal current expansion for the Pocklington

equation. We see as might be expected, that for the

Hallen integral equation, the results tend to improve with the change
from the linear to quadratic to the sinusoidal current forms but the
sensitivity to the kind of current expansion used is not great. This
is as expected since the Hallen integral equation contains only a
Tower order spatial variation in its kernel and therefore is not too
sensitive to the differentiability of the current expansion employed
for the solution. In the case of Pocklington's equation however,
where a second order derivative appears on the Green's function, this
is not the situation so that in proceeding from a constant or pulse
approximation for the current to the sinusoidal expansion, considerably
improved results are obtained (compare with Figure 1 for example).

Results somewhat similar to those of Neureuther et al. are presented
in Table II again for a straight wire, but for the scattering case,
and for wire lengths of 5.422, 11.2 and 14.57 wavelengths. Also
varied in this calculation is the number of segments used to model
the wire (for the 5.422 X case). Both the backscatter cross section
o (in units of A2) and the matrix fill time are shown. The Tatter
is for a CDC-6600 computer and includes the time reduction made
possible by the matrix symmetry exhibited by a straight wire.

The relative agreement of the three methods can be seen to be very
good, even in the case where N = 10 for the 5.422 X wire so that

A ~ M2, The Hallen integral equation results however change Tess

as the segment lengths become longer than do those obtained from the
Pocklington equation. Matrix fill times for the Hallen pulse current
expansion and the Pocklington three term expansion are comparable.

11



TABLE II. COMPARISON OF POCKLINGTON'S AND HALLEN'S
INTEGRAL EQUATION SOLUTIONS

Pocklington's Equation Hallen's Equation Hallen's Equation ‘
3 Term Pulse 3 Term
No. Of Integration Time | o/A? o/3% |Integration Time| o/A%
Segments | (Sec) W/Sym. (dB) Time (Sec) W/Sym.| (dB)} |[(Sec) W/Sym. (dB) -
5.422) -
35 ~ 0.3 8.131 0.37 7.784 0.76 7.864
30 ~ 0.725 8.119 0.31 7.788 0.65 7.868
25 ~0.2 8.109 0.26 7.809 0.54 7.879
20 ~0.2 18.131 0.20 7.927 0.42 7.974
15 ~0.18 8.283 0.15 8.075 0.32 8.094
10 ~0.17 18.899 0.11 8.015 0.23 7.965
11.2x |
70 0.8 11.710 0.86 11.755 L TP
14,572 *
100 ~ 1 21.448 1.34 21.248 2.7 21.965

12
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For other geometries, however, the Pockiington approach will generally
be more efficient in this regard.

In Figures 3 and 4 are shown some computed results which compare the

pulse and sinusoidal current expansions for solutions to Pocklington's

integral equation for two separate scattering calculations. In the

first the backscatter cross section for axial incidence on two v
coaxial circular rings is shown as a function of frequency.

This result was obtained from the Pocklington integral equation using -
both the pulse approximation and the three term expansion for the

current. Obviously the three term current expansion provides much

more accurate results for the same total number of current sample

values in the integral equation. The pulse approximation, while not

being accurate and actually missing the anti-resonance in the back-

scatter cross section will produce more accurate results as the number

of unknowns is increased, but obviously at the expense of increased

computer time as well.

The other backscatter example, shown in Figure 4, depicts the radar
cross section two dipoles crossed at an angle of 60° for a plane wave
incident perpendicular to the dipole plane. In this case results are
shown as a function of the number of segments on the two dipoles,
again for the pulse approximation and the three term expansion. The
results obtained for the latter converge with relatively few unknowns
compared with the pulse approximation results which change rapdily

and monotonically as a function of number of segments. The latter
result has not converged to a stable value even with the maximum of
120 segments on the two dipoles. While we cannot state which result
is the more accurate because we have no corroborating experimental
data, it is obvious that the three term expansion provides more stable
numerical results and hence might be reasonably expected to be more
accurate than the more rapdily changing pulse approximation calculation.

Two things should be kept in mind however, when comparing calculations
such as these. First, it is not only the current representation which
is important to the overall numerical accuracy but the integral
equation itself, from which the current solution is obtained, which

is vitally important. For example, the results in Figure 2 show that
the Pocklington integral equation with the pulse approximation provides
very inaccurate results compared with the Hallen integral equation
using the pulse approximation. Therefore generalizations on the basis
of calculations derived from one kind of integral equation should be
cautioned against. Second, a factor which is also very important, at
least in practical applications, is the computer time required to
obtain a given numerical accuracy. Obviously an approximation for the
currents which is easier to integrate and which thus requires less
computer time might be preferable to a more accurate current repre- g
sentation which requires more extensive computation to obtain the

14
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impedance matrix. Therefore the overall computation time to obtain
a desired accuracy is perhaps ultimately more important than the
number of current samples alone required for a given computational
accuracy. The question of actual computer time requirements will
not be discussed here but is deferred to Section H below.

Structural Segmentation and Boundary Condition Matching

There are two general aspects which must be considered when employing

a moment method treatment for the solution of Maxwell's equations in
integral-equation form. First, the current basis function expansion

to be used and the possible segmentation of the structure into a set
of approximate subdomains must be considered. This question was
discussed in the previous section in connection with various kinds

of current expansions which have been employed for wire structure
analysis. Second, we must specify the way in which the boundary
conditions on the field are to be numerically satisfied over the
structure surface. These two questions are not unrelated since it

is often convient to refer the current expansion and the boundary
condition match points to the same set of coordinates on the structure.
In employing subsectional collocation for example, we actually collocate
the field match points and the current sample points. Even where the
boundary condition matching is more general as in the approximate
Galerkins method employed by Chao and Strait (1970) in connection with
the piecewise linear current expansion, the field match points are
referred in a fixed way to the current segment. Thus, when we speak
of developing a numerical model for a wire structure we must simul-
taneously consider the impact of approximating the current distribution
in an acceptable way as well as matching the boundary conditions on

the total field along the structure. In the subsections which follow,
we consider first the convergence rate of the numerical solution as a
function of the number of segments for a variety of wire structures.

We next discuss the impact of structure segmentation on boundary
condition matching in the source region of antennas, and conclude with
the effect of impedance loading on boundary condition matching.

1. Structural Segmentation

The development of a suitable numerical model for a given wire
structure is of vital importance in obtaining efficient and
accurate numerical results. For simpler structures such as the
straight wire, circular ring, etc. there is not too much
judgement required on the user's part. What is primarily required
is a determination of the sample density necessary per unit wave
Tength on the structure, at which point the development of a
numerical model 1is straightforward and rather obvious. When
however, the structure being considered is more complicated, a
Rhombic antenna for example, or conical spirals and other more
general kinds of antennas, the parameters of the numerical model
to be used are no Tonger so clearly defined.

17



Some rule of thumb guidelines have been developed however, for

a spectrum of representative structures encountered in practical
applications. Such studies, one of which is summarized in
Figures 5a and 5b due to Miller et al. (1971) have shown that,
on the order of 6 to 20 samples per wave length are required to
achieve an accuracy on the order of 10% or better in computed
radar cross section results, antenna input impedance, etc. In
addition it has been found that where practicable the segments
on a structure ought to have as nearly equal lengths as possible.
In actual application this is quite frequently not achieveable,
for example, the feed region in a complicated antenna may be
very small relative to the antenna size. Clearly one would not
1ike to use small segments over the entire structure since this
increases the computer time quite drastically. What is required
in that case is some compromise, possibly using smaller segments
near the feed region and letting the segments become Tonger as
the distance from the feed region increases. However, this is
too broad a question to answer in general and cannot be resolved
without-considering the specifics of a given problem.

Boundary Condition Matching

The use of equal length segments is intutitively acceptable and
apparently mathematically desirable too for most problems. By
matching the boundary conditions at segment centers (using sub
sectional collocation) or some equivalent approach, the use of
equal length segments ensures that the boundary match points are
equally spaced along the structure as well. However, there is
no necessity for collocating match points and segment centers.
If the condition on the field match points is relaxed to allow
the match points to be located at evenly spaced points along

the structures while varying segment lengths are used to accomo-
date more rapid current variations in the vicinity of junctions
and sources, possibly a more efficient numerical procedure might
be developed. This kind of approach has not been investigated to
any significant extent however. Care must be exercised in con-
sidering this more general approach incidentally; since field
match points should not be located near discontinuities in the
current or its derivative.

Besides the requirement that the total tangential field be zero
at points on the structure away from the source, it is vitally
important in performing antenna calculations to properly introduce
the exciting field in the calculation. This is generally associ-
ated with the one (or more) segments on the structure which act
as the source region. Such source segments thus serve to induce
currents over the entire structure. Before computation of the
antenna input admittance or impedance is possible however, the
voltage associated with the source must be established. If all
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2. Circular Ring > 1.05 9 7.28953 x 107"
1/4

3. V Dipole PN 0.5 9% 3.82747 x 107"
120°

~ > 1200
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3/8
1/4| \120°

7. Equiangular Quadrafin 1.0 120 5.11386 x 107!

120°

V2 44 126 6.33890 x 10°

N
9. Conical Spiral /6} ~1.0 % 1.16791 x 107"
\r=2.55
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8. Squirrel Cage
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All Dimensions 1n Wavelengths
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FIGURE 5a Structures evaluated in segmentation study (after
Miller,et al. (1971)).
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FIGURE 5b Relative error vs segments/wavelength for various structures
(after Miller, et al. (1971)).
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equal length segments are used in the structure it is generally
accurate to consider the applied voltage on a given source
segment equal the product of this segment length and the electric
field value at its center. This however is an approximation
which may not always be satisfied and which may furthermore be
extremely sensitive to the structure segmentation.

As an example of the potential problem associated with structure
segmentation and boundary condition matching we present in

Table III some results obtained from a systematic variation of the
model employed 21 equal length segments on the dipole with the
center segment serving as the source. The tangential electric
field on the source segment is taken as the negative voltage
divided by the segment length, i.e. E = -V/8. For convenience

we let V equal 1 volt.

Three variations from the nominal model were studied. In the
first the center, or feed, segment was systematically shortened
relative to the remaining 20 segments on the antenna so that the
ratio R of the feed segment length § to the Tength A of the
remaining 20 equal Tength segments varied from 1 to 1/64 with the
results shown in Part A of Table III. There we see that the

input admittance defined by Y = Ifgeq/(-ES) rapidly changes as

a function of R, thus generating some skepticism as to the accu-
racy of the numerical results. While the dependence of the input
susceptance of an antenna upon the feed region geometry is well
known (Miller, 1967) it also is equally well known that the con-
ductance should be relatively independent of the feed regijon
geometry, contrary to the present results. Therefore, we conclude
that something has been made invalid as a result of varying the
feed segment length relative to the uniform segment lengths on the
remainder of the antenna.

A part of the explanation may be due to the fact that the actual
antenna input voltage is no longer really one volt. Recall that

a tangential field is used as an exciting source, with the subse-
quent driving voltage derived by multiplying the field strength

by the length of the excited segment. Since we have no control
over what happens to the electric field between the match points
on the antenna, we might suspect that by changing the feed segment
relative to the others, the field variation between the segments
has changed in a way which has caused the driving voltage defined
as above, to be incorrect.

One possible way to maintain more control over the feed region
field variation is to use segments on either side of the feed
segment which are equal in Tength to it, so that the field
becomes zero at one segment on either side of the applied
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TABLE III. SEGMENT-LENGTH VARIATION FOR CENTER-FED DIPOLE

Q=15
N = 2] I
Y= Ifeed/('E 8)

A. Single Variable Feed Segment of Length &

L = %-= (N-1) & +6 , .
R =8/A Y Mi111imhos
i 9.55 - i 5,16
1/2 11.74 - i 6.31
1/4 14.13 - 1 7.57
1/8 15.99 - i 8.55
1/16 17.98 - i 9.60
1/32 23.53 - 1 12.56
1/64 41.36 - § 22.08

B. Three Variable Length Segments at Center

L= %= (N-3) &+ 38

R =8/A Y Mi11imhos
1 9.55 - 1 5.16
1/2 9.57 - i 5.13
1/4 9.67 - 1 5.76
1/8 10.13 - i 5.39
1/16 11.45 ~ i 6.08
1/32 14.06 - 1 7.45
1/64 16.19 - i 8.57

C. Two Variable Length Segments (n = 5,17)
L=2x/2=(N-2) &+ 28

R = 8/4 Y_Hi114imhos
1 9.55 - 1 5.16
1/2 9.57 - 1 5.16
1/4 9.57 - 1 5.16 )
1/8 9.57 - 1 5.16
1/16 9.57 - i 5.16
1/32 9.57 - 1 5.16 .
1/64 9.57 - 1 5.16
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electric field itself. The results of this parameter variation
are shown in Part B of Table III where the center three segments
on the antenna now have the length § and the remaining 18
segments the length A. The results are again shown as a function

of R == . 1In this case we find that as R becomes smaller, the
input aémittance remains relatively stable until R reaches a
value of 1/32 or so. Beyond that point, there is again found the
variation of input admittance previously demonstrated in Part I
of the Table.

Finally, in Part C of Table III we examine the influence of
placing variabie length segments away from the feed region. The
positions chosen are five segments from each end or the dipole.
Again we denote the Tengths of the shortened segments by & and
the remaining segment lengths by A with R = §/A. The input
admittance in this case is relative insensitive to the variation
of R. This is significant in that it shows that unequal Tength
segments located near, or in, the feed region have a much more
profound influence on the caiculated input admittance of an
antenna than segments of unequal length Tocated farther away.

It has been mentioned that the reason for this variation in the
input admittance as a function of the source segment Tength may
be that the applied field no longer results in a one volt source
across the center of the antenna. The possibility that this is
the case may be studied by integrating the electric field along
the antenna in the vicinity of the source segment. We therefore
present results in Table IV corresponding to those of Table III
but where the input admittance is now defined to be the ratio of
the feed point current divided by the integrated electric field,
ie., Y= Ifee /-JEd2. Part A again corresponds to the case of

a single var1ag1e length segment and Part B to three variable
length segments. In contrast to the previous case where sig-
nificant variations of input admittance were found as R became
smaller we now find that the input admittance remains relatively
insensitive to R. The integrated voltage value used to define
the input admittance changes in such a way as to compensate for
the input current variation, and thereby yields a nearly constant
input admittance value. It should be noted that the integration
range extends over approximately the center third of the antenna,
and is terminated when the last segment integrated changes the
voltage value by Tess than one percent.

This is an interesting and potentially useful result. While in
practical cases we would naturally want to avoid the additional
expense involved in integrating the electric field along the
antenna to obtain a valid input admittance, at the same time
knowledge that this might be a method whereby the input admittance
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TABLE IV.  SEGMENT VARIATION FOR CENTER-FED DIPOLE

15
21

Ifeed/

0
N

Honon

(-/E(s')ds")

A. Single Variable Feed Segment of Length 6 -

§/A V = -fE(s')ds" Y Mi111imhos
. Volts

1 1.000 + i 0.015 9.46 - i 5.3
1/2 1.227 + i 0.019 9.48 - i 5.29
1/4 1.476 + i 0.022 9.49 - § 5.27
1/8 1.670 + i 0.027 '9.49 - { 5.27
1/16 1.876 + 1 0.030 9.50 - i 5.27
1/32 2.456 + i 0.039 9.50 - i 5.27
1/64 4,321 + 1 0.069 9.49 - 1 5,26

B. Three Varjable Length Segments at Center

§/A V= -fE(s')ds’ Y Mil11limhos
- Volts

1 1.000 + i 0,015 9.46 - i 5.31
1/2 1.001 + i 0.021 9.45 - i 5.32
1/4 1.006 + i 0.022 9.49 - i 5,33
1/8 1.052 + i 0.023 9.51 - i 5.33
1/16 1.187 + i 0.026 9.53 - i 5.33
1/32 1.454 + 1 0.031 9.55 - i 5,33
1/64 1.675 + i 0.037 9.55 - i 5.33
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could be obtained is worthwhile. Furthermore we know that
calculations for radiation pattern, etc. which may not depend

on knowing the input power or input admittance of the antenna
could also be valid. It might therefore be concluded that

for reasonably simple antennas useful input impedance and ad-
mittance data can be obtained by first deriving the current
distribution and then obtaining the equivalent driving voltage
from an integral of the electric field, procedure essentially
equivalent to the classical emf method. Actual field variations
along the antenna are shown below in Section F.

It is also worthwhile to determine the influence of segment Tength
variations on the calculated input admittance for the antenna
where the structure has a multiple junction. An antenna con-
sisting of a straight center section and two outward point V

loads having a 60° included angle symetrically Tocated on each

end of the center section was studied. In the nominal configu-
ration this antenna had a total of 39 equal length segments; 3

on the center and 9 on each of the four arms. Two segment Tength
variations were investigated for this particular structure. In
the first, results of wnich are summarized in Table V, Part A

the segment lengths on the center portion of the antenna were
systematically shortened by using 5, 7, 9, etc. segments in place
of the original 3. Corresponding input admittance results are
indicated also in Table V, Part A where the variation of the

input admittance obtained from an assumed applied voltage of one
volt is seen to be significant as the number of center segments,
and hence the ratio R, is varied. 1In Part B are summarized the
results wherein only the center segment was shortened by replacing
it with 3, 5, 7, etc. segments and exciting the center of those
segments. Results obtained here also exhibit a variation in input
admittance but not as marked as the previous case, indicating
perhaps that unequal length segments at the multiple junction play
a significant role in the admittance variation.

This study was repeated by defining the input admittance as a

ratio of the feed current to the integral of the applied electric
field in the vicinity of the source region. Results obtained
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A.

B.

TABLE V.

SEGMENT LENGTH VARIATION FOR CENTER-FED

60

8/4

3/3
3/5
3/7
3/9
3/11

Divisions of

8/n

1
1/3
1/5
1/7
1/9
1/11

*Results obtained by employing Curtis'

DIPOLE WITH V END LOADS

L/13

N

39
iy
43
45
47

— O ~NTTw

INCE RS ACT AN B

3L/13
J

1
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N 0O~ WO
MG~ — ~
{1+t
—te —de —ds —de o

—DU‘I-&-ON
(.A)kDNOI’\)

Y Millimhos

Q =2 %n L/a = 15.4096
%—= 2.798 x 10”4

L _ _

T = 0.75 = (N-M)A+MS

- 1
V= Ifeed/('E 8)

M Equal Length Segments on Center Section *

the Center Segment Into M Equal-Length Parts

N

39
41
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45
47
49

1=

— O N U1 W —

1
1
1
1
1
1
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NN PO PN
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(1972) charge treatment

for the junction together with the 3 term current vary only
slightly over the §/A range shown.
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are summarized in Table VI. In a manner similar to the linear
dipole example discussed above we find that the applied voltage,
shown in Table VI does vary systematically as the feed region
geometry is changed, and in a way which leads to the relatively
stable value of input admittance as found for the linear dipole.
These results indicate that integrating the electric field to

define the antenna input admittance is apparently a valid procedure
for general geometries. Note that the necessity for doing so is
evidently sensitive to the multiple junction treatment used, as the
admittance variation found here does not occur in results obtained
by Curtis (1972) and Strait (1973), nor in time domain calculations
which exploit the junction symmetry [Landt (1973)], which are further-
more obtained using V = -ES rather than an integral definition of V.

There are it should be noted, other procedures whereby the exciting
field or source can be introduced in the antenna calculation. One
of those which have been developed and which is being applied to
practical antenna problems is due to Andreason and Harris (1968)

who introduce the exciting voltage at a segment junction. This is
done by specifying a relationship between the current derivative
discontinuity (charge) and the applied voltage, in terms of a bicone
antenna model for the junction {Schelkenoff, 1952).

Another alternative to the tangential electric field source is to
specify the current at the input segment to be of unit amplitude,
permitting all other structure currents to be evaluated in the
usual way. The antenna input impedance itself then must be found
as above, from an integral of the resultant electric field over
the antenna in the vicinity of the source current. This procedure
has the disadvantage of course in requiring an expensive electric
field integration.

Impedance Loading

Not all wire structures that are of practical concern can be con-
sidered to be perfectly conducting. There are two ways in which
the effects of finite wire conductivity may become important. The
first and most obvious occurs when the wire does indeed have a
finite conductivity or where the skin depth is Targe enough
compared to the wire diameter that the assumption of vanishing
electric field along the wire is no longer strictly valid. This
particular situation can be characterized as equivalent to a
distributed load along the wire. The second occurs due to impedance
Toads located at discrete points along the wire. These might be
included to modify the structure's resonant characteristics or to
provide matched operation, e.g. the load on the end of a two wire
transmission Tine. In the latter case then, the effect of the
Tumped impedance load is confined to a particular localized
point(s) on the wire structure.
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TABLE VI.

SEGMENT LENGTH VARIATION FOR CENTER-FED

DIPOLE WITH V _END LOADS

a/x

-

>~

15

1l

0.75 = (N-M) & + M§

I.f:eed/("fE(Sl )C[SI )

A. M Equal Length Segments on Center Section

s/8
3/3
3/5
3/7
3/9
3/11

N

39
41
43
45
47

1=

—oOo~NoOw

B. Division of the

8/8

1/1
1/3
1/5
1/7
1/9
/n

N

39
41
43
45
47
49

—~Oo~NoOTw -

~fE(s')ds' Y Millimhos

1.25 - i 0.26 13.13 + 1 12.46
1.30 - 1 0.48 13.3%9 + i 12.35
1.27 - 1 0.89 13.06 + 1 12.5]
0.92 - 1 1.33 13.02 + 1 12.47
0.34 - 1 1.44 13.18 + 1 12.74

Center Segment Into M Equal-Length Parts

-JE(s')ds’ Y Millimhos

1.25 -4 0.26 13.13 + 1 12.46
1.25 -1 0.25 13.21 + 1 12.58
1.25 -1 0,25 13.08 + 1 12,54
1.25 -1 0.26 12,94 + 1 12.33
1.25 -1 0.26 13.16 + 1 12.67
1.27 -1 0.26 13.05 + 1 12.54
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Either of these two cases is suited for treatment via the
perfectly conducting wire integral equation (1) presented
above by a suitable modification of the boundary condition
matching along the wire. In the context of the point
matching solution to the integral equation we generalize the
boundary conditions by allowing for the additional effect of
the voltage drop at each match point, in terms of the par-
ticular value of impedance located there. A distributed
impedance load will in general then be modeled using a non-
zero load impedance for each segment of the wire structure.
In the case of lumped loading, on the other hand, only a few
segments will have an associated impedance.

In either case then, the integral equation (1) may be modified
to give

where the Z; I term added to the right hand side of the integral
equation accounts for the effects of the added voltage drop _
associated with the non-perfect conductivity of the wire at r.
Note that the loads introduced here are what can be termed self
loads. Mutual impedances which might characterize transformers
coupling different parts of the structure can also be considered
but for this discussion we confine ourselves to the self-impedance
type Toad term only. In the two sections which follow we first
consider the particular steps involved in applying the concept
of impedance loading to imperfectly conducting and dielectric
coated thin wires which we characterize as distributed loading,
and conclude with a discussion of Tumped impedance Toading.

a. Distributed Impedance Loading

Our treatment of distributed impedance loading due to either
finite wire conductivity or the presence of a dielectric

sheath will follow the basic development presented by Cassidy
and Feynberg (1960). Their approach was based on the treatment
of a dipole scatterer. Here we will generalize the procedure
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to the case of a wire structure excited as either an antenna
or scatterer, and allow for the presence of a dielectric
Tayer as well as for finite conductivity of the wire itself.

The basic procedure followed by Cassidy and Feynberg is to
decompose the incident and scattered fields of a TM wave
normally incident on a thin circular cylinder into the usual
Fourier harmonics. By further assuming that the cylinder is
small compared to all relevant wave lengths involved, only
the zero order terms are then significant. Finally by
relating the tangential electric and magnetic fields on the
surface of the cylinder it is possible to define a surface
impedance, which can in principal then be used in the wire
integral equation to account for the finite conductivity of
the circular wire. The formula presented by Cassidy and
Feynberg for the case they considered is for a wire of radius
W given by

in. J_(k w)
T Yo'y - (2)

Z = T
s 21w JO (kww) W

with ky, = k, Ve, and Ny = No YEpy the wave number and
impedance respectively of the wire whose complex relative
permitivity is epy. The prime on the Bessel function of
order zero, J, denotes differentiation with respect to the
argument. Cassidy and Feynberg validated the results of
this approach by comparing their calculations with experi-
mental data for scattering from fine platinum wires with
generally good agreement between experiment and theory.

By further extending the procedure above to allow for the
effect of a thin dielectric Tayer of radius s on the circular
cylinder and to subsequently define the surface impedance in
terms of the tangential E and H at the surface of the die-
lectric-free space interface, it is possible to obtain a more
general impedance formula which accounts for the effects of
both finite wire conductivity and a sheath upon the scattering
or radiating properties of a thin wire. The resulting
expression, obtained in precisely the same manner as that
discussed above for the uncoated wire, is

Z, = Z(kw,ks) - Z(k k)t Z, (3)
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W(s*,w+)

_in, Wissw') - Wis,w)(n /n (3, '/d,)
ka) T 2rs W(s,w') - w(s',w)(na/nw)KJw'/Jw)

g2k s)

1]
(o}

and the superscripts * and + corresponding to the primes
denoting differentiation with respect to the argument.
The sheath wave number and impedance are k and n
respectively. S S

Note that the above expression is normalized with respect
to the ratio of tangential E to H at the surface of the
dielectric sheath when the sheath permitivity is allowed
to approach that of the external medium. This is required
since for non-zero sheath thicknesses, a non-zero value of
sheath impedance would otherwise be obtained were the
sheathless ratio of E to H not subtracted from the final
results. Note in addition that the above formula exhibits
the proper behavior as the sheath thickness becomes zero
or the sheath permitivity becomes that of free space,
becoming in each case Zw, the impedance of the uncoated
wire,

The above approach provides what appears to be a viable
approach for including sheath and finite conductivity
effects on the radiation and scattering properties of

wire structures. The basic procedure has not been well
vaiidated however, because of the difficulty of obtaining
corroborating experimental results. However the surface
impedance approximation has been widely applied in similar
problems involving two and three dimensional structures
with generally good results when the assumptions necessary
for the concept of a surface impedance to be validated are
satisified. For a more general discussion of surface impedance
see Senfor (1960) or Mitzner (1967).
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Alternative analyses for treating dielectric coated thin
wires have also been examined. Richmond (1972) has
considered the possibility of modeling the sheath in terms
of the radially directed displacement current which is
produced in the sheath by the radial-electric field. The
electric field in turn can be related to the change density
along the wire, and is thus derivable from the current
distribution via the continuity equation. By using a Green's
function in the integral equation appropriate to the
external medium outside the wire-sheath combination, the
sheath displacement currents can then be written in terms of
the dielectric contrast between the sheath and the external
medium and the sheath radial-electric field.

Similar problems have also been treated in connection with
antennas immersed in a plasma where the ion sheath which
forms about the body at floating potential in plasma is
modeled as an effective capacitor between the antenna and
the external medium. For short cylindrical antennas it is
possible to express the input impedance of the antenna as

a linear combination of the plasma impedance and sheath
impedance (Balmain, 1969). A confocal sheath in the prolate
spheriodal geometry has also been found useful (Lytle 1968).
Thiele (1969) has used a treatment based on the actual
current distribution in a finitely conducting wire to
determine conductivity effects on scattering.

Lumped Impedance Loading

The approach for handling lumped or distributed impedance
loads on a wire structure are not significantly different
insofar as the numerical reduction of the integral equation
itself is concerned. In either case a modified right hand
side is obtained which involves the voltage drop on the
particular structure segments whose impedance is non-zero.
For the case of self impedance loads, only the diagonal
elements in the impedance matrix are changed from the no-
load case. This matrix can of course be subsequently
solved by the usual method to allow for the effect of the
specific loading arrangement,

However, the rational for specifying the value of impedance
loads due to sheath and finite conductivity effects and for
actual impedance loading are quite different. For the

former, a procedure for determining the effective impedance
load in terms of the physical parameters of interest, such

as wire conductivity, sheath thickness, and sheath permitiivity

is required. For the latter, the impedance values need not
be derived but are merely specified. There may thus be less
uncertainty associated with the modeling of Tumped impedances,
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An additional factor which affects the nature of lumped
impedance loading analysis is that only a few of the
structure segments will generally be involved. It is
possible to more efficiently perform a parameter variation
involving the Tumped impedance elements than would be true
of distributed loading. Consider, for example, the case
where a single structure element is loaded. The matrix
version of the integral equation, written as

Z_ij Ij=E_i _(S]-L Z,i Ii; 1,J=-|,--n,N (4)

where 61& is the Kroenecker delta function and L is the

segment loaded with impedance Z| may be seen to be modified

only by the self impedance entry for the observation equation

involving the loaded segment, We can therefore solve for the

}%aged structure current I(Lj in terms of the unloaded solution
as

(L) _ . (L) 5
I, YU. EJ. ajL zj Ij (5)
. () (L)
11 Y1J ajL ZJ Ij

so that the effect of the impedance load can be summarized

U
L) IE)
v

( .
;1 =1L (6)
L 1 + LL ZL

L U
iy ]

L)

it

; 1 #L

Consequently, once a solution for the unloaded structure

has been obtained it is possible to study the effect of
loading by simply modifying the unlocaded current as shown
above. This avoids the necessity of reinverting or
refactoring the impedance matrix for each new parameter

case of interest which is required in the case of distributed
loading. In general, when i = L,...,M of the structure
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segments contain impedance loads, the procedure above for
the single loaded segment can be generalized to obtain

(L -y (W) .
Ii —YiJ IJ T, Js_]s---,M (7)

i i ij 737
j=1, .M
where
Y. = [6.. + V.. Z.]']
1 1) 13 J

Thus so Tong as M is much much less than N it is more
efficient to develop a solution for the impedance loaded
structure in terms of the unloaded solution and the auxilliary
matrix Y of order M.

Lumped impedance loading is of interest in connection with
transmission lines, antennas connected to receijvers, size
reduction of radar scatterers through reactive loading,
etc. While the calculations are readily enough performed,
it is of considerable value to determine the validity of
the Tumped impedance term in the integral equation.
Unfortunately, there are relatively few cases where
independent solutions exist or where valid experimental
data can be obtained. There is one case, that of the

two wire transmission Tine however, which is amenable to
solution via the thin wire electric field integral equation
and where analytic solutions are expressable in terms of
impedance Toads connected to the line. This is the case
we will use to validate the impedance load feature of the
integral equation solution.

Consider a two wire transmission 1ine having characteristic
impedance Zp and terminated by load impedance Z|. We are
able to obtain an expression for the current and voltage

at the load in terms of the load impedance and as function
of distance from the generator as




assuming the transmission Tline is excited by a matched impedance
generator of yoltage Vg' The voltage and current along the Tine
may furthermore be expressed as

—
—
[72]
~—
Hi

IL cos ks + i (VL/ZO)sinks

=

—
w

~—
[

V| cos ks + i ILZO sinks (8)

with s representing the distance from the load.

Let us check this well known analytic result with a model based

on the thin wire electric field integral equation. We can develop
a thin wire model for the two wire transmission Tine in a rather
obvious way. For convenience, we will use segments on the line
equal to the Tine separation. Our model for the transmission Tline
is included below (Figure 6a). We may obtain solutions for various
values of load impedance for direct comparison with the analytic
solutions given by equation (8) above.

- .

. N, X, 2 - -
Lo o o - - - T

FIGURE 6a Numerical model of transmission line.

Plots of the current amplitude along the line obtained from the
integral equation solution and compared on the same graph with

the analytic solutions are shown in Figures 6b, 6c, and 6d, for
various values of Toad impedance. There is seen to be excellent
agreement between the integral equation solution and the analytic
expression, independent of the Toad impedance value itself.
However, because the 1ine is considered to be of finite width in
our model, the variation of the current along the Tine may be
slightly shifted because of the added distance which the load size
itself represents.

It is also of interest to determine the current on the Tine when
rather than using a load impedance of high value to simulate the
effect of an open circuit, we omit the segment representing the
Toad in the integral equation model. Results obtained from this
viewpoint are shown in Figure 6e below. Except for a slight
shift in current varjation along the 1ine, there is no essential
difference between this result and that obtained when a Tumped
load was used to simulate the effects of an open circuit.
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This brings us to the practical application of impedance
loading for modeling insulators. In many Tow frequency
antenna problems insulators are employed to electrically
isolate the antenna from its support structure, to make
the guy wire system electrically small to minimize re-
radiation, etc. In either case it is of interest to know
the effective voltage drop which appears across these
insulators for design optimization and to permit realistic
maintenance schedules. Varijous alternatives are available
to us to determine the actual insulator voltage drop. We
might for example, use an impedance load of high value at
the point of the insulator location and determine the
voltage drop across the insulator from the product of the
current times the insulator impedance value along the loaded
segment. Or perhaps we might use the value of electric
field at the center of the segment and multiply this by
the segment Tength to approximate the insulator voltage
drop. Alternatively we might, as in the case of the open
circuit transmission 1ine above, leave a physical gap in
the structure at the insulator's position and then sub-
sequently compute the electric field along the location

of the missing insulator to obtain a voltage drop. The
voltage drop along the insulator could also be approximated
by the product of the field value at the center times the
insulator length.

There are obvious advantages to being able to employ the
lumped impedance load insulator model. Perhaps most
important is the fact that once the solution has been
obtained for the structure, the voltage across the insulator
can be readily approximated in terms of the current on the
insulator impedance. Furthermore the effect of varying the
insulator impedance values on the structure characteristics
can be readily assessed to determine the effect of a
deteriorating insulator on the structure's electromagnetic
characteristics. Such information would be especially
valuable for determining when maintenance schedules should
be set up. It is however, not clear that a value for the
insulator voltage drop obtained in this way will be entirely
valid because in our model the current will essentially
vanish or become small at the point of the load itself but
in general will be non-zero over the rest of the load as
demonstrated by the transmission line results already
presented.
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While the gap insulator model may on the other hand
represent a more realistic version for the insulator,
evaluation of the insulator voltage drop will require
additional field computation(s) which are less efficient
than the current determination and thus more time
consuming.

In order to assess the relative advantages of modeling
insulators via physical gaps versus lumped impedance loads
we have performed the following computations. The first
pertains to the two wire transmission Tine model already
discussed while the second set applies to the case of a
Tinear dipole antenna. Several insulator voltage drop
values are presented.

The results of the calculations are presented in Table VII.
Part A is for a 600 ohm transmission 1line mode, for which
we know the true analytic results for the voltage across
the terminating load resistor. It can be seen that we
essentially obtain the correct result whether we integrate
the tangential electric field across the loaded segment,
or multiply the current evaluated at the center point
location of the loaded segment times the Toad resistance
value.

Part B of Table VII is for a Tinear half wavelength dipole
with two symmetrically located insulators centered 1/8
wavelength from each end. The insulators were modeled in
three ways: (1) with Tumped resistive loading on segments
5, 6, and 16, 17, (2) with the loaded segments replaced by
a physical gap, and (3) with a 1 segment Tong physical gap,
such that the gap end points coincide with the current
match points of the first.

We see from the results presented in Part B of Table VII
that we can obtain an approximate measure of the integral
of the tangential electric field across a gap insulator
by simply computing the IR drop for the resistively Toaded
segments. A comparison of the results obtained by the
Toaded segment method versus the 1 and 2 segment physical
gap insulator model, shows the result to be somewhat
conservative, however. If the end points of the gap
insulator model are made to correspond to the current
match points for the resistively loaded case, we also
find very little perturbation in the antenna's input
impedance between the two models. Figures 7a through 7c
show the total and tangential electric fields along the
antenna in the vicinity of the insulator region for each
of the models analyzed. Figures 7d through 7i show the
real and imaginary currents along half of the dipole used
for each of the cases. '
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Table VII Insulator Models

A. 600 Chm 2-Wire Transmission Line

11
Termination .jE(s Jds _ LR
Matched Load (RL=6OOQ) 0.46 Volts 0.48 Volts
Open Circuit (R =10'%2)  0.97 Volts 1.03 Volts
Short Circuit (RL=OQ) 0.002 Volts N. Volts

B. Half Wavelength Dipole with Insutators

101% 10'% 1010 1910

2 Segment A A SN
R. Load ~\VWY

Q

©

2 Segment 7N _
Gap “(B/
1 Segment (m) e
Gap \EU
2 Segments Loaded 2-Segment Gap 1-Segment Gap
J%(s’)ds’ ;321 Volts 113 Volts 105 Volts
ILRL : 192 Volts
E L . 192 Volts 37 Volts 36.4 Volts
Tvid 9
7. : 12.1-1678 OHMS - 10.0-1761 OHMS 12.8-1663 NHMS
in
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€,  Multiple Junction Treatment

The current expansion discussed in Section A above considered the case
of simply connected structures having two wire junctions only. When
junctions of three or more wires must be treated, special methods may
be required., In this section we briefly outline some of the procedures .
which may then be used.

Clearly the kind of approach used to handle the multiple junction will
depend on the current expansion itself. For example, the pulse approxi-
mation for a current can be used everywhere on the structure with no
special treatment of the multiple wire junction itself required, at least
for the Pocklington integral eugation. The two term current expansion
(piecewise linear, piecewise sinusoidal, etc.) require somewhat more care
in their extension to the multiple junction. Chao and Strait (1970)
report a procedure based on the generalization of the two term piecewise
linear current expansion, whereby the junction is viewed as an overlap of
open ended wires. The procedure basically leads to M-1 additional current
unknowns at the junction of M wires. This method formally allows for
variable Tength segments at the junction and has not been found to be
sensitive to segment Tength discontinuities such as those previously
discussed in connection with the three term current expansion and the
V-wire antenna solution [Strait, (1973)].

The piecewise sinusoidal representation employed by Richmond (1969) has
evidently not as yet been applied to multiple junctions. However because
of its close simijlarity to the piecewise linear expansion employed by
Chao and Strait it appears that the piecesise sinusoidal expansion could
be applied to multiple junctions in much the same way.*

It should be noted in this regard that the procedure developed by Chao
and Strait for multiple junctions depends essentially upon two factors
for its success: 1) the current expansion involves functions which are
zero at opposite ends of the given wire segment. Therefore overlapping
the segments in the fashion suggested by Chao and Strait means that the
current at the junction of two segments overlapped by another open-ended
segment is unaffected when the end of the overlap segment coincides with
the junction. 2) The procedure used is based upon a Galerkins method
and involves the electric field integrated over two segments to obtain
one equation in the linear system. Because of this the overlapping of
segments does not result in the redundant equations which would be the
case were a point matching procedure applied in this particular way.

Alternative multiple junction schemes have been reported by Andreason
and Harris (1968) et al. and Gee et al. (1971). Both treatments
utilize the three term current expansion, but differ in their treatment

*Prof. Richmond has recently provided the authors with multiple junction
results obtained in a similar, though perhaps more elegant, fashion.
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of two wire junctions in that the former use matching of current
amplitude and derivative at segment ends whereas the latter employ
an extrapolation to adjacent segment centers. For the multiple
junction case, Andreason and Harris employ the concept of a gap
current associated with the end of each wire and an associated
driving voltage as well. By matching the discontinunity in current
derivative on a g1ven wire with the sum of the current derivatives
on the connected wires, the effective app11ed voltage between a
given wire and ground can be specified, '
The approach used by Gee et al., (1971), on the other hand treats
the multiple junction by extrapolating the current from one segment
across the multiple junction to the sum of the sampled values
of the M-1 currents of the other segments at the junction. This
procedure has been found to work quite satisfactorily, for most cases
to which it has been applied, but as shown above may encounter
problems at multiple junctions of unequal 1ength segments. It is not
entirely clear whether the difficulty there is due to the feed point
problem of determining the applied electric field or to invalidation
of the interpolation process as the junction segment length dis-
continunity ratio increases. It appears from some recent results
that the latter is the cause of the problem,

|

An alternative approach has been suggested by Curtis (1972). He
employs the general treatment developed by Chao and Strait (1970)

in terms of the electric field explicitly derived from the vector

and scalar potentials, and employs a pulse current approximation

for the current representation At the Junct1on he represents the
current derivative (charge) in the usual wayivia finite differences
involving the current samples. However, he makes the assumption

that the total charge on the wires or1g1nat1ng from a common junction
is distributed among the wires according to the ratio their surface
areas. The total charge is computed from the total current on all
junction wires. A similar approach has been described by Sayre
(1973).

While several different methods have been thus derived to treat the
multiple junction problem there is re]ative1y Tittle data to compare
their particular attributes. Therefore it is not now possible to

say which of these approaches may involve a more physically realistic
modeling of the wire current at multiple Junct1ons, although results
for the V-dipole indicate the procedure used by Chao and Strait, and
Curtis to be reliable.

|
The Thin Wire Approximation %

There are two potential problems which one may encounter using the
thin wire approx1mat1on One of these is its unsuitability for
application to wires more than a small fraction of a wave length in
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diameter. This is caused by the fact that in deriving the thin wire
kernel the azimuthal variation of the current around the wire is
ignored as well as the azimuthal variation of the kernel in the
integral equation itself. Both are replaced by the mean values.

The other potential problem which arises from using the thin wire
approximation is based on the numerical method used for solving

the integral equation. The problem involves the use of segments
whose lengths are shorter than several wire diameters. In this case,
the nature of the integral equation kernel may produce non physical
current oscillations near junctions and source regions which are
numerically generated. We will discuss each of these problems in
turn below.

Experimental checks on the maximum size of a wire which may be
regarded as thin can be rather readily performed. One might, for
example, compare the computed cross section of a circular wire
scatterer with that which is measured, as a function of the wire
size relative to the wave length. When the wire size becomes
appreciable compared to the wave length, the computed and measured
results will begin to depart in a significant fashion thus es-
tablishing a definite upper 1imit on wire size for the thin wire
approximation to be valid.

However it is also possible to accomplish this without resorting

to absolute comparison between measured and calculated results.

One could instead measure the backscatter cross-section aspect-
dependance of a thin wire strip, i.e. for edge-on or broadside
incidence, as a function of strip width relative to the wave length.

A measurement of this kind can be related to the thin wire approxi-
mation in that a static solution for the strip can be shown to
approximate the static solution for a wire diameter of half the strip-
width., Experiments conducted along this 1ine have demonstrated that the
wire strip is aspect insensitive for wire diameters on the order

2/10 wavelengths. Therefore an experimental upper T1imit on the

order of 2/10th wavelengths for the wire diameter may be postulated

in the scattering mode.

The question of segment size relative to the wire diameter can only
be resolved of course via numerical computations. We have determined
the input admittance and current distribution on a rather fat (0 = 8)
half wave antenna as a function of the number of segments. Results
obtained are summarized in Table VIII and Figure 8. We present in
Table VIII the computed input admittance for this antenna as a
function of the ratio of the wire radius (a) to the segment length
(A). The input admittance results which are obtained exhibit a
conductance which is insensitive to this ratio, but the susceptance
may be seen to vary dramatically and become obviously invalid as

this ratio is increased. The reason for this occurrance is dramatized
by the current distributions of Figure 8 where the real current is
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TABLE VIII SHORT SEGMENT ADMITTANCE

L/x = 0.5 Dipole

a/x = 0.00916
Q=8
Yging = 10-6 - 1 3.6
N a/A Vo= Lo og/(-E8)

21 0.38 7.7 - i 3.3
81 1.48 7.5+ 1 0.97
181 3.32 7.2 + 1 343.2
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FIGURE 8a Current on a half wavelength dipole modeled with short segments
(@ = 8, 181 segments, frequency = 1 MHz)
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FIGURE 8b Current on a half wavelength dipole modeled with short segments
(@ = 8, 181 segments, frequency = 1 MHz).
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seen to exhibit an oscillation at the end of the antenna. The
imaginary current also exhibits an oscillation near the end of
the antenna, but in addition one much more pronounced near the
feed region itself. These results are for the extreme case of -
181 segments or an 2 ratio of 3.32. The imaginary current oscil-
lation near the feeé region is seen to have values on an order of
100 times larger than the mean current away from the feed region. v
Obviously any attempt to define an input susceptance on the basis

of a current that varies so rapdily near the feed region is question-

able at best. However, if one smoothly extrapolates back to the .
feed region from the antenna current away from the osciltlatory portion,

one does obtain in all cases a reasonably stable and consistent input
susceptance. Therefore while the current distribution itself contains

obviously invalid behavior it is still possible to derive what seem

to be valid admittance results. Furthermore the antenna radiation

pattern is essentially unaffected by the oscillatory current since

the current oscillation naturally tends to cancel out and thus

disappear from the far field calculation itself.

Thus while one should be alert to the potential problems involved in
using what are sometimes termed pancake shaped segments, i.e.
segments shorter than a wire diameter or so in length, it is still
feasible to obtain useful calculated data if one is careful to
define input admittance in terms of an extrapolated current.

Matrix Factorization Roundoff Error

It is sometimes surprising to those unfamiliar with the matrix
treatment of electromagnetic problems that Tinear systems on the
order of several hundred unknowns are routinely solved with a
computer. Of course, one expects that matrices of this large order
would be prone to severe numerical limitations because of the
inevitable roundoff which occurs as the matrix is solved by factor-
jzation or inversion and a solution is subsequently obtained.

In order to demonstrate in a controlled way the result of matrix

roundoff error on the final numerical result a series of computations

has been performed for various types of wire structures. Results of

these calculations are summarized in Figure 9. There we plot the

error in calculated input impedance for several cases as a function

of the number of bits in the elements of the impedance matrix. Two

structures are shown. One is a straight wire having 7, 21, and 121

segments. The other involves two different versions of the sectional-

jzed LORAN transmitting antenna, having 237 unknowns and 240 unknowns
respectively. The initial impedance matrix is computed for all cases

in the usual fashion. A modified matrix is then obtained by systema-

tically truncating each matrix (mantissa) word entry and retaining the

number of bits indicated on the plot. The truncated matrix is then .
factored to obtain the antenna current distribution and input impedance.

The error in the input impedance is then defined relative to the value

obtained for the non-truncated case. ,
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As expected, the solution accuracy increases as the number of bits
in the matrix word size is increased. The relationship is es-
sentially a logarithmetic one, i.e. the numerical accuracy is
exponentialiy related to the number of bits in the impedance matrix
coefficients. Furthermore, as is also expected, the accuracy de-
creases as the number of unknowns, or Tinear system size, increases.

The data shown on this figure may be roughly summarized in the
following equation .

E = EO exp [-sd]

where Eq is a reference error and d is a structure dependent co-
efficient with s the number of bits in the matrix elements. Using
the data shown d may be given the approximate value 0.77.

On the basis of these calculations we can conclude that it is
possible to treat antenna problems having at least 200 unknowns
using word sizes on the order of 21 bits or more, if 10% accuracy
is the minimum acceptable. This is a rather agreeable finding
since it indicates that roundoff errors on most modern computers,
which have word sizes generally exceeding 21 bits, would not be of
paramount importance. We cannot extrapolate these results to
general matrix solutions since a matrix which is iil-conditioned
may be extremely more sensitive to roundoff error than those con-
sidered here. However, this finding is useful for our purposes
since most problems we might expect to encounter would have similar
kinds of matrices and therefore generally exhibit the kind of
behavior found here.

Near Field Behavior

The basis for all numerical modeling via integral equations in electro-
magnetics is the computation of fields due to current and charge
sources. Presumably then if one obtains a valid solution as measured

by the accuracy of input admittance, radar cross section, etc. it

must have required the calculation of numerically valid fields in
originating the impedance matrix itself. Yet the demonstrated

accuracy of input admittance, radar cross section, etc. is no guarantee
that the overall solution can be accepted as being physically realistic
or correct. As a matter of fact, various aspects of the calculated
results may be obviously invalid, but without a negative impact on the
overall usefulness of the calculation. One example of this is demon-
strated above in connection with the oscillatory nature of the

imaginary part of the antenna current near the source region. Ancther ‘
example of this possibility is demonstrated here where we pay particular
attention to the near fields in the vicinity of the antenna.
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The near fields around antennas are of significant interest with
respect to corona discharge assessment, determining insulator
voltage requirements, EMP vulnerability assessment, etc. Conse-
quently, we have a legitimate interest in their behavior. However,
inaccurate artifacts may be introduced into the field calculation

by peculiarities associated with the current basis function ex-
pansion as shown by the following results derived from the examples
of Section C above. In Figures 10a-10d we plot the field strength
along a Tinear antenna for some of the cases considered in Section
C. The real and imaginary components of the tangential electric
field along the antenna are shown in Figure 10a and Figure 10b

the corresponding radial electric field components for the nominal
case of 21 equal length segments. The integral of the real electric
field along the source segment together with that along the adjacent
two or three segments is approximately equal to -EIs, or 1 volt.
Note however, the electric field variations associated with each
segment junction due to the discontinuity in current amplitude permitted
at these points using the three term current expansion and current
extrapolation to the adjacent segment centers. Radial field vari-
ations are also associated with the segment junction current dis-
continuity.

To demonstrate more clearly the tangential field varjation along the
antenna we present the magnitude of the tangential and radial electric
fields on a log plot in Figure 10c. There we see that the electric
field is a rather rapidly varying function along the antenna but that
the magnitude of the field discontinuities associated with the segment
ends is generally small compared to the source region field except
near the ends of the antenna.

For comparison purposes, field plots corresponding to
those already shown are presented for two additional
cases in Figures 10d and 10e. The results of Figure 10d
differ from those which precede it only in that the
current amplitude and derivative in the latter case are
matched at segment junctions as opposed to the extrap-
olation to adjacent segment center used for the former.
A much smoother and smaller error field is seen to be
the result.

In Figure 10e we modify the approach used to obtain the
data of Figure 10d in two ways: 1) the antenna has 20
rather than 21 segments; and 2) the exciting source is
introduced as a slope current discontinuity rather than
a tangential electric field. The relationship used for
a source between segments n and n + 1 is
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is the impedance of a bicone whose length (&) and radius (a)
correspond to the parameters of the two segments across '
which the voltage is applied. The near fields which

this source model produces are essentially identical (except
for the segmentation change) from those just presented in
Figure 10d except in the source region where the slope- :
discontinuity source is much narrower and in fact resembles
a delta function.

To conclude these nominal geometry results, we present in
Figure 11f the current distributions for the three cases just
discussed, all for sources which are intended to be one-

volt (i.e., -8Bl = 1 for the tangential field sources,

and V = 1 for the slope discontinuity source). The general
current behavior for all three cases can be observed

to be essentially the same except in the vicinity of

the source itself. There we find that the current slope
variation changes significantly. The distribution for

the current extrapolation model only poorly approximates
the slope discontinuity assoclated with a delta source.

When segment junction current amplitude and slope matching
are used, the current distinction more nearly approaches

a slope discontinuity in the region despite causing a
tangential electric field source. Finally, as expected,

the slope discontinuity source itself.provides the

most realistic appearing current variation near the

source. Note that the current amplitude differs slightly
in the latter csse from the former two, due to the fact

that the integrated tangential electric field which

results in this model with V set equal to one, 1is actually
about 0.9 volts. This indicates a need for more accurately
characterizing the feed region geometry in terms of a .
bicone description so that the proportionality between

the voltage and current slope discontinuity 1s numerically

accurate. . ' >
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In Figure 12 we present results similar to Figure 10a for the case
where the feed segment is 1/16 that of the other antenna segments,
i.e., R =1/16. The feed region electric field is now about 16 times
larger than that of Figure 10a, and in addition the electric fields
associated with the segment ends are now significantly large three
segments or more away from the feed. It is the integral of these
fields which provides the effective voltage drop used to define the
input admittance in Table IV. Therefore while these segment-end
fields could logically be regarded as errors because they represent
electric fields which do not match the boundary condition on the
total tangential electric field along the antenna, surprisingly
enough their integral provides a stable value for the antenna input
admittance, as discussed above. In Figure 13 a result similar to
Figure 10a is plotted for the real component of tangential field

for the case where the three center segments are 1/8 of the remaining
18 segments on the antenna, i.e. R = 1/8. 1In this case the region
of non-zero electric field is seen to be confined more closely to

the center of the antenna and allows therefore the effective feed
voltage to be obtained from the electric field at the center feed
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FIGURE 10 a Tangential electric field along half of a half-wavelength dipole
(@ =15, N - 21 segments).
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FIGURE 10a' Tangential electric field along half of a half-wavelength dipole
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FIGURE 10b Radial electric field along a dipole (@ = 15, N = 21).
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(Current amplitude, and derivative matched at

segment junctions.
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FIGURE 12a' Tangential electric field for dipole where feed segment is 1/16 that
of the other antenna segments. Frequency = 100 kHz for all cases.
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FIGURE 133 Tangential electric field for a 21 segment dipole (Q = 15),
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82



(IMAG) -~VOLTS/METER

TANGENTIAL FIELD

-0}

-4.5-

-5.0

E-01

0.0
0.5
0
5
5
3.0
5
0
.5
5.0
5.5
6.0
6.5

E+02

POSITION ON SEGMENT--METERS
FIGURE 13a' Tangential electric field for a 21 segment dipole (Q = 15),
where the three center segments are each 1/8 of the other
segments, i.e. R = 1/8, frequency = 100 kHz.

83

7.0—
2

8.0



segment multiplied by the segment Tength itself. A worthwhile
extension of this study would be to examine the influence of
independently varying the boundary condition match points and the
segnent lengths on the linear antenna.

Calculations similar to these just presented have also been performed
for the fields along the V-dipole antenna previously discussed in
Section C above. We present in Figures 14a-14c below the tangential
field along the nominal V-dipole model and various models containing
unequal segment lengths in the source region. These results demon-
strate that even for the nominal case where all segment lengths are
equal there are significant non-zero tangential fields in the vicinity
of the V-junction. These tangential fields become even more pro-
nounced when there is a discontinuity in length between the segments
on the center section and those on the V-arm as shown by Figure 12b.
When however, the shortened segments are confined to the source
region itself while maintaining equal Tength segments at the V-
junction, the near field anomonaly is not as nearly pronounced, as
shown by Figure 12c. As in the case of the linear antenna, it is
the tangential fields shown in these plots which are integrated to
obtain the effective driving voltage and to subsequently define the
input admittance for the V-dipole antenna. For completeness we also
present in Figure 12d the current distribution along one-half the
V-dipole antenna for the nominal geometry case. There we see as
expected, the halving of the current flowing along one of the
symmetric V-arms relative to that on the center section, as required
by Kirchoff's Law at the multiple junction.

The multiple junction results presented for the V-dipole antenna
demonstrate the extreme variation which may be encountered in both
the tangential and radial electric field components near a multiple
wire junction. While we have demonstrated that the tangential field
variation itself, may, when integrated, provide in some cases a
numerically stable value for the input admittance, it is not clear
that the radial field, which is in general much Targer, is meaningful
in terms of determining the propensity for corona discharge of the
antenna. There are many practical applications of course where it
is very important to obtain an accurate indication of the near field
especially in the vicinity of wire bends, multiple junctions, etc.
to determine whether precautions are required to eliminate corona
discharge, which can of course have a significant negative impact

on antenna performance. We therefore require a reliable indication
of the radial electric field along the antenna, particularly in the
vicinity of multiple junctions, if the computed near field results
are to be at all useful.

In order to study this problem we have performed some calculations in
the vicinity of a simple multiple wire junction. For convenience we
have chose to use a dipole having a linear center section and a perpen-
dicular wire connected at each end so that one-half the dipole resembles
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FIGURE 14b Tangential electric field for V-dipole (&/A = 3/7)
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FIGURE 14b'' Tangential electric field for V-dipole (8/A = 3/11)
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FIGURE 14c Tangential electric field for V-dipole (8/A = 1/7)
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a tee. A sequence of calculations were performed for this geometry

to obtain the normalized electric field intensity as a function of
position along the wire in the vicinity of the junction equally spaced
match points were used but with their separation distance a parameter.
Results for the nominal geometry case are shown in Figure 15a, where

60 segments were used to model the entire antenna giving a segment
Tength (A) to wire diameter (d) ratio of 100. The fields are evaluated
along the top of the tee (as shown in the Figure) and extended 10 wire
radii along the tee or cross wire. The uppermost Tine corresponds to

a path along the wire surface with each successive 1ine occuring at one
radius step from the surface to a maximum distance of 20 radii. Ue see
that the fields can increase by several orders of magnitude between the
Jjunction and the nearest match point,

A guestion we now wish to consider is to determine whether these field
variations in the vicinity of the junction are real or are numerically
generated because of the current basis function expansion or point
matching procedure used in the program from which these results were
obtained. A possible approach to answer this question is to segment

the antenna more finely so that the match points can be brought arbi-
trarily close, within a wire diameter or so, of the junction. However,
the small wire radius used to obtain these results in order to emphasize
the near-field behavior in the vicinity of the junction precludes our
using the number of segments this would require if the entire antenna
were to be modeled with such short segments. Therefore, as a compromise,
we have chosen to examine smaller and smaller portions of the antenna
near the tee junction by successively decreasing the segment length and
total wire length while maintaining a constant wavelength and wire
diameter. In order to remove the near field dependence upon the
changing impedance this procedure leads to, we again plot field in-
tensities normalized to the maximum value, as in Figure 75 . Results
for the two cases where A/d = 10 and 1 are shown in Figures 15 and 15

We find that the region of Tlarge field value is always confined to
within a half-segment length of the multiple junction. Furthermore,

as the segment lengths themselves become smaller relative to the wire
size the growth of the fields in the vicinity of the junction is reduced.
When the segments become one wire diameter in length the field no Tonger
significantly increases even in the vicinity of the junction and is thus
seen to be reasonably well behaved. -
From these results we can conclude that in the vicinity of either two
wire or multiple wire junctions there is no significant increase in
field value on approaching the junction until within a wire radius or so
of the junction itself, a region in which our numerical results based on
our thin wire model do not apply. But we also might hypothesize that it
is permissible to smoothly extrapolate across the junction to determine
the approximate near field behavior along the wire and to thus

avoid the angmaly associated with the current discontinuity in the
vicinity of the junction itself.
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To conclude, we present a simple expression for determining the
volumetric extent of the current discontinuity perturbation. The
anamalous field due to the current discontinuity at a junction may
exceed the actual field within a spherical volume of radius R given
by [Miller and Deadrick (1973)].

r1 |1/2

where A is the Tength of the segments connected at the junction and the
bracket term represents the normalized current discontinuity at the
Jjunction.

Wire Grid Modeling

Wire grid meshes find many uses in applications where the effect of a
solid conducting surface is required but the weight and/or wind re-
sistance of the latter must be avoided. They may be used, for example,
to fabricate radar antenna reflectors, and as shields to screen sensi-
tive equipment from stray fields. Their successful substitution for the
solid surface depends upon the fact that as the mesh size becomes smaller
relative to the shortest wavelength of concern; the mesh supports a
surface current distribution which approaches that on the continuous
surface. This phenomena occurs because of the trdnsverse nature of electro-
magnetic fields, and does not hold for an acoustic field, which is longi-
tudinal, for example. :

Exploitation of wire grids as substitutes for solid surfaces need not be
confined to actual practice, however, but can also be advantageous for
the analytical study of certain problem types. Many problems of practical
interest, for example radar cross-section studies, antenna analysis and
EMP interactions, involve hvbrid geometries which have features of both
solid surface and wire-1ike structures. As such, these geometries are not
well suited for treatment via the magnetic field integral equation (MFIE)
(although this equation is apparently superior to the electric-field type
for structures consisting only of solid surfaces). Furthermore, the
magnetic field integral equation is not suited for the analysis of shell-
Tike solid surfaces, such as thin plates and spherical shell sections.

The thin wire approximation to the electric field integral equation (EFIE)
however, offers a formulation which can in principle be used for treating
all these geometries, by modeling the solid surface parts of such
structures with wire grids. By extension of course, wire grids might then
be used as well for the computer modeling of solid surface structures
which might normally be treated via the MFIE.

As a matter of fact, wire grid models have already been quite widely used
for a variety of problems and geometries. Richmond (1966) was apparently
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the first to report on the application of the thin-wire EFIE to the
analysis of wire grid models for circular disks and spheres. He
demonstrated satisfactory agreement between his wire grid results and
independent analytical or experimental back-scatter cross-section
data presented as a function of frequency.

Subsequently, other wire grid results have been described by Tanner and
Andreason (1967), Miller and Maxum (1970), Miller and Morton (1970),

Thiele (1970), Diaz (1970), and Poggio and Miller (1970). These studies
included the modeling of airplanes and helicopters, (Tanner and Andreason,
Miller and Maxium and Diaz), a flat-backed cone, (Thiele), and flat plates,
(Miller and Morton). Representative wire-grid model structures are depicted
in Figure 16, with sample numerical results shown in Figure 17. In all
cases, there was generally found to be reasonable agreement between theory
and experiment for a far-field quantity such as the radar cross-section

or antenna radiation pattern with the agreement relatively independent of
the excitation (e.g., flat plate scattering was equally good for edge-on
and broadside incidence).

These studies, while illustrating the applicability of wire grid meshes

as models for solid surfaces in terms of their far field electromagnetic
behavior, are not entirely convincing as to the use of wire grid models

to determine near field quantities, such as charge density and surface
current distributions. Preliminary studies in this regard to compare the
results obtained with analytical models Tike spheres and circular disks
with their wire grid counterparts are not yet conclusive. Such comparisons
should do much to more clearly define the areas of application and 1imi-
tations of wire grid models.

One particular test case which has been investigated and which does shed
some light on the potential problems inherent in using wire grid models
concerns a simple Tinear dipole antenna. The dipole antenna considered
had an @ value of 6 and is thus not suited to treatment via the thin wire
integral equation because of the dipole's thickness. Therefore, Burke
and Seldon (1972) have developed a simple wire model of this particular
antenna by representing it with four equispaced, parallel wires, whose
centers Tie on the dipole's circumference. In order to determine the
sensitivity of the results to the end of the antenna two sets of calcu-
lations were performed; one with the thin wires open-ended and the other
with the wires cross connected at the ends of the dipole.

The input impedance was obtained as a function of frequency for the two
models, results for which are presented in Figure 18. These impedance
values were obtained for two different kinds of excitation, symmetric
and asymmetric. In the former, the center segments on all four wires
were excited with the same electric field, corresponding to a one volt
source. For the asymmetric excitation only one of the four wires was
excited, again with the field corresponding to a one volt source. The
input admittance in each case was defined to be the sum of the currents
on the center segment of the four wires. Both models yielded the value
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for input impedance shown by the solid curve on the figures. This result
is in fairly good agreement with that presented by King, whose values are
aiso shown.

A significant difference is seen however in the individual wire currents
for the two excitations. The variation with frequency of the individual
currents on the three wires as indicated on the figure differs markedly
from their sum. As a matter of fact that individual wire currents can
become as large as two orders of magnitude greater than the resultant
current for the four center segments. This situation evidently arises
because the two pairs of wires effectively act as transmission lines whose
currents are thus oppositely directed and of nearly the same magnitude.

In order that the sum be that for the symmetrically excited configuration
the individual wire currents can consequently become very large. Since
the impedance characteristics of open and short-circuited transmission
lines are phase shifted by A/4, the wavelength region where this large
excursion in individual wire currents occurs differs by half a wavelength
for the two models. This result indicated that asymmetric excitation of
the wire grid model for a solid surface may produce individual wire currents
which are significantly different from those which would occur on a solid
conducting surface itself. While in this case the composite effect did
not exhibit a significant error, such happy circumstances can of course
not always be guaranteed. A similar behavior has been found on other
kinds of wire grid models for solid surfaces, e.g. by large circulating
currents which are found to occur on the interior wire loops or mesh of
wire grids (Burke and Seldon 1972).

Computer Time

In prior discussion we have not dealt in any specific way with the actual
computer time requirements, or what is equivalent, the expense of per-
forming a given calculation. Results such as those presented above in
Section C are useful to demonstrate the convergence rate of a numerical
solution as a function of the number of segments and to develop application
guidelines. Such results do not in general however, indicate what method
might offer the greatest efficiency to obtain a given accuracy in any
particular application. The reason for this is that while the number of
samples required per wavelength to achieve a given accuracy is one indicator
of numerical efficiency, that alone does not provide a complete basis for
comparison with other methods. 1In addition to the convergence rate itself,
we must be concerned with the computer time required to compute the matrix,
since it is this factor together with the convergence.rate which de-
termines the overall efficiency of a particular method —--

The computer time associated with the moment method or matrix solution of

an integral equation for a wire or surface structure can be obtained from
the following equation:

= Al o+ oend s CNBN, + DN
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where N is the order of the 1inear system, or the number of unknowns,
N; is the number of incident fields or source configurations, and Ny
is the number of observation points in the far field. The corre-
sponding coefficients A, B, C, and D, represent the computer time
associated with computing the impedance matrix, factoring or inverting
it, computing the currents from the specified incident field and
computing the far field, respectively. Obviously, a comparison of
two different methods for solving a given problem is incomplete with-
out considering both the number of samples, N, required to obtain a
given accuracy from each and the timing coefficients associated with
their use, i.e., we must compare t1/ty rather than Ny/N, alone. Note
that the coefficients A, B, C, and D, depend upon the method used and
are thus both algorithm and computer dependent.

It is thus necessary when comparing alternative methods to have
available the timing coefficients associated with their application
referred to a common computer. Unfortunately such data is not easy
to obtain. The various programs have generally been developed for
use on different computers, have not been optimized and have not been
used to analyze the same set of problems, information required to
form a valid basis for comparison. We have however, been able to
extract from published Titerature matrix fill time data for the program
developed by Chao and Strait (1970) at Syracuse and that developed

by Richmond (1969) of Ohjo State. Let us further assume that the
matrix factorization times will be generally comparable since there is
relatively 1ittle variation associated with this particultar operation,
and that the current computation and far field evaluation times are
relatively minor in terms of the overall computer time. We then
obtain the following computer (CDC-6600) time requirements for the
programs mentioned, and for the program utilized in obtaining the
results presented in this report. These results are shown in Table

IX below.

For convience, we have given the matrix fill time coefficient, A,

for each of these methods and in addition the representative computer
time required to solve a problem with N = 50, 100, and 200 segments.
Generally speaking, there is not a substantial amount of difference
between these various methods. It must be recognized that these
computer programs are probably not optimized and that furthermore the
details of the computation and consequent relative running times may
vary from structure to structure. These data however do provide some
indication of the computer times involved in using such programs.

Before concluding it is worthwhile to comment on the impact which
symmetry has on the overall computational efficiency. Symmetry may
be exploited in both the computation and storage requirements
associated with an integral equation solution. Two distinct types
of symmetry exists, mirror symmetry and rotational symmetry. Mirror
symmetry may involve from one to three mutually othogonal planes
about which structural symmetry occurs and can be characterized by
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TABLE IX

Some Typical Calculation Times (seconds)
on a CDC-7600

Matrix Fill Time

Matrix/Solve
3 Term Piecewise Linear Piecewise Sinusoidal
A=a.q1 (Syracusg) - (Ohiq State)r
N x 10 A=2.6x10% A=3.7 x 1074 B = 2.2 x 10"
50 1.0 0.7 0.9 0.3
100 4.1 2.6 3.7 2.2
200 16.0 11.0 15.0 18.0

110




the parameter M = 2™ where m =1, 2, or 3 is the number of planes

of othogonal symmetry. Rotational symmetry can be either discrete
or continuous. Continuous symmetry is exhibited by a circular

ring whereas discrete symmetry of order n is exhibited by an n sided
regular polygon., It is possibly more useful to exploit discrete
rotational symmetry over continuous rotational symmetry since the
former can be employed for structures which are both continuously

or discretely rotationally symmetric, whereas continuous rotational
symmetry can of course be rigorously used only for structures with
continuous symmetry. Note furthermore that discrete rotational
symmetry is identical to mirror symmetry withm =1 or 2. A structure
can of course possess at the same time both mirror and discrete
rotational symmetry, e.g. a square having an even number of segments
per side. Discrete symmetry is characterized by n = 2n/a, with ay
the minimum angle through which the structure must be rotated to
reproduce itself,

The solution time exhibited by the equation above becomes, for a
symmetric structure,

t o= ANS/M + BNS/ME + CNZNI/M + DN N, /M

where

M= n2"

and the = is used since the actual time reductions realized depend
upon the particular problem. Matrix storage requirements can
furthermore be reduced by the factors m and n respectively for
mirror and rotational symmetry. Taken together the effects of
symmetry can significantly reduce the expense associated with a
given computation and greatly enlarge the scope of applicability
of the numerical solution procedure.

The mathematical aspects of symmetry exploitation are briefly
summarized below. The symmetric matrices encountered using the
moment method are called circulant, and are special forms of the
more general Toeplitz matrix. A Toeplitz matrix has the form

1 1 Z,
7 = Z I L
Za L I 3
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i.e., all entries in a given diagonal are equal. Straight wires
yield Toeplitz matrices and can consequently be very efficiently
modeled [Lytle and Lager (1973)]. The individual elements Zy, Z,, ...
may themselves be matrices in which case Z is called block ToeplTtz.

When the matrix is circulant, then it takes the form

Ly L Zq
L= L, 4 L, I,
ERR . .

so that not only are the diagonals composed of equal entries, but
the rows are repeated as well, though sequentially shifted from row
to row. This property of course reduces the storage by 1/n. The
inverse of a circulant matrix is also circulant. It is by making
use of this fact, that we can reduce the number of cogputations to
find the general inverse or factored form of Z by 1/n=. This is
possible since the matrix product

-1
7 = IN

with IN the unit matrix of order N, can be written

A N S BEITE I S S F
Zy Iyt Iy Iy o+ +Zy L' =0
Z, I;' + I3 L'+ +7, L' =0

where the inverse matric elements are denoted by the pr%mes. Note that
this set of equations occurs n times in the product ZZ°
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Upon systematically combining the product equations it is possible

to express each Zi' in terms of a Tinear combination of the Zj.

Since this equation is of order N/n, it can be factored (or inverted)
in, ~ (N/n)3 operations. But_there are n of the Z; so that the total
operations are ~ n(N/n)3 or N3/nZ,

The procedure may be summarized as follows:
Let SJk = exP[.l(ZW/n)(J'-I)(k'])Ja ja K = ]s ceey N

Form the matrix product (with ~ denoting the complex conjugate of
the transpose).

T

s727'S = 1

N

from which we define the submatrices

n
S; = Z;szj i=1, ...,n
J:

We can then show that

~

.
Z,' =+ S35

I~

i
—)

J

Note this operation is similar to a fast Fourier transform. Each

of the Sj matrices corresponds to a single discrete mode. The source
and current vectors can be similarly factored in terms of the same
modes.

OBSERVATIONS AND CONCLUSION

The preceding discussion was intended to not only demonstrate some of the
capabilities inherent in wire integral equation analysis, but also to
emphasize some of the pitfalls and problems which can be only too easily
encountered in its use. Some numerical anamolies such as negative input
resistance for an isolated antenna, a current oscillation related to the
sampling interval rather than the wavelength, or the divergence of a
numerical result with increasing sample density, are obvious enough to alert
even the inexperienced used to question a given result, although their recti-
fication may not be equally obvious. The more subtle the probiem however,
the more difficult identification of its occurence and estimation of its
impact on the validity of the calculated data. Consequently as a necessary
adjunct to the sequence of operations involved in the overall modeling
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procedure: (1) theoretical formulation, (2) mathematical manipulation;
and (3) numerical computation, is (4) validation of the calculated result.
It is probably safe to say that this last step may absorb as much time in
the course of using a given program as the former three.

If it is concluded that validation is a key element in permitting a numerical X
method to be reliably and confidently used, we must then ask how this can best

be realized. There are two obvious approaches: (1) experimental--comparison

of the calculated results with measured data; and (2) numerical--comparison .
w;thkﬁndependent theoretical results and/or internal numerical consistency

checks.

Experimental validation is generally the most convincing, but measurement has
its own difficulties which quite often frustrate its effectiveness in this
role. While comparison of experimental and computed data in an absolute sense
is probably preferable, much can be done on a relative basis, by for example,
comparing the difference between calculations for two numerical models with
corresponding measured data obtained from two similar experimental models.
Also on a relative basis, two experimental models might be measured. The
first should correspond as closely as possible to the numerical model, to
provide a check on the numerical validity of the calculation. The second
should resemble the real problem as closely as possible, to provide a check

on the physical validity of the numerical model, which for all but the simplest
problems wilTl incorporate some degree of approximation, or which due to the
formulation may completely alter the problem description. As an example of
the former, we might use circular cylinders and flat planes to model an air-
craft, while in the latter instance we might instead use a wire grid model.

As an addition or alternative to experimental validation we might choose a
numerical route. Comparisons with independent theoretical results can involve
quite similar steps to those discussed above in connection with experimental
validation. We might for example compare wire grid results with analytical
solutions for disks, spheroids, etc. The other area is that of internal con-
sistancy checks. Some possibilities are:

1) Determine whether the bistatic scattered fields and mutual admittances
satisfy reciprocity.

Evaluate the degree to which energy is conserved.

Insert the numerical solution into the original linear system.
Increase sampling density.

Plot current and charge distributions.

Examine the tangential fields to see the degree of boundary

condition accuracy between match points.

[S) Gy I = O I V]
e Mt S e et

Of the above, (1) and (2) are necessary but not sufficient conditions for

solution validity. The third provides a check on possible matrix roundoff

while (4) should provide an indication of the numerical convergence. Item y
(5) may indicate faulty results through obviously non-physical current and

charge distributions. The sixth could probably be the most definitive, but
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at the same time, most expensive to use. In addition, as has been shown
above, the fields along the structure can exhibit obvious errors while the
solution retains good accuracy. ‘

An additional check we have not mentioned is physical intuition, a sometimes
useful resource, but one unfortunately of uneven quality. It all too
frequently happens that suspicious looking numerical (or for that matter
experimental) data can after a time be explained on plausible physical
grounds, followed then by discovery of the computational (experimental)
error which was really the culprit.

In spite of the various kinds of checks to which the validation of computer
produced results can be subjected, perhaps the best check of all is careful
attention to detail in computer useage, both in the development of an

algorithm and its subsequent application. A commonly heard truism in computing
is "garbage in — garbage out". Certainly, the computer can provide no better
output than the instructions and input which are given it. It is then
extremely important to keep an open mind if the computer is to be most
effectively exploited, both to question results which appear wrong, and to

seek an explanation for results which conflict with our preconceptions.
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