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Abstract

A scattering-matrix formalism is presented for
analysis of transmission-line sections consisting

of an arbitrary number of conductors.

multiconductors, transmission lines




- ABSTRACT ®
Following a review of the properties of TEM field distributions on
multiconductor transmission lines, the scattering matrices for sections &
consiéting of an arbitrary number of conductors are derived in a close
analogy with the well-known formalism for single transmission lines. It
is shown that the so-called one-by-one modes are of more general use than
the odd-and-even modes. The formulas for scattering matrices of two=-sided
and one-sided sections are expressed directly in terms of the induction
coefficient matrix. These formulas are well suited for numerical
evaluation on a digital computer. The analytical treatment is also
possible and practical for two conductors above the ground, Examples of a
directional coupler and an all-pass network are carried out in detail, A
simple design procedure for the maximélly-flat phase shifter having

arbitrary phase concludes the report,




PREFACE

This report is revised and extended edition of the report entitled
"Scattering Matrix Approach to the Multiconductor Transmission Lines',
originally published by the Department of Electrical Engineering in
December, 1970, It treats the steady-state response of single-velocity
waves on the multiconductor transmission lines (abbreviated as MTL). The
presentation is of a tutional nature although also some original material
is presented, which has not been pubiiéhed elsewhere, The time and space
limitations prevented this report from including the treatment of

multivelocity waves,
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Section 1.

ELECTROMAGNETIC FIELD ON MULTICONDUCTOR TRANSMISSION LINES

The final goal of this report is establishing useful circuit relationships
for microwave circuits consisting of multiconductor transmission lines
(abbreviated MTL). The best way to derive the circuit relationships is to
start from the knowledge of the electromagnetic field distribution between
conductors. The field distribution is, in turn, determined by the Maxwell's
équations and the particular boundary conditions., In this first Section, we
will give a brief review of the properties of the electromagnetic field
distribution on the MTL. However, the properties will primarily be merely
stated, without an attempt to derive them exactly,

A simple example of the MTL is shown in Figure 1.1, This particular
line consists of a rectangular shielding cylinder and two conductors of a
circular cross section. The space between the conductors is filled with a

homogeneous and isotropic dielectric, e.g. air.
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Figure 1.1



The system of coordinates will be oriented so that x and y describe
transverse variations, and z is bointing in the direction of energy
propagation.

The eléctromagnetic field inside this structure for guiding electro-
magnetic waves must satisfy the Maxwell's equations and the boundary
conditions. As we are considering t?me-harmonic fields, the electric and
magnetic fields will be governedABy Helmholtz's vector wave equation
(see eega'['ls}',p,o 373): | B

Vz E + kz E =0 ; Vz

where k is the intrinsic propagation constant of the medium:

k= w\fu_- e (102)

Assuming that the wave propagates along the z.direction with a propagation
constant vy

s

R > Yooz
E (X,Y.Z) = EPCXJY) e XE

(1.3)

we may partition the operator v? into its transverse and longitudinal parts:

"2 2 32 2 2
v m Y + omen ®» Y L] . 1.4
xy ¥ 53 xy * Y (1.4)

(1.1) thus becomes

) - - ->
PoEe (v ek T a0 He (Y ¢+ Hwo (1.5)

v
Xy Xy

For given boundaries (e.g. the boundaries chosen in Figure 1,1) there is

a large number of solutions satisfying (1,5), As it is well known, one
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can classify these solutions into TEM, TE, TM and HEM types (see [5]). The
last three types may have infinitely many distinct solutions for a given
structure of conductors. Each solution which alone satisfies given boundary
conditions is called a mode.

The fields with which this report is concerned are TEM waves. These
waves have a common property in that their propagation constant y is equal

to the intrinsic propagation constant k of the medium between the conductors;

v+ k2 =0 or y=sik . (1.6)

Strictly speaking, the pure TEM field may exist only on a system with perfect

conductors. Practical transmission lines have conductors with only finite
conductivity. Any current density Jz flowing along the conductors in z
direction will produce the z component of the electric field E, according to

Ohm's law

J, = oF, (1,7

where ¢ is the conductivity of the material, Therefore, if Ez ¥ 0, the
field is not a TEM, Usually the zecomponent is so small in comparison with
transverse components that the actual field configuration, although not a
pure TEM; is a good approximation of the TEM type of field,

When (1.6) is substituted in (1,5), one finds that the electric and
magnetic fields of a TEM wave satisfy Laplace's equation in the transverse

plane:

v E=0 and vzx H=o0 . (1.8)

Xy Y

From the above we conclude that the transverse distribution of the TEM field



even at microwave frequencies, is the same as that of the static field, which
has the same boundaries,

On_a MTL consisting of N « 1 conductors (the " + 1" conductor is the

shielding cylinder in the case from Figure 1.1), there dare N distinct TEM

modes possible, This property may be derived from the principle of super-
position as follows, z

The differential operator vzx from (1.8) is a linear operator, i.e,

y

| , |
Viple £ (oY) v 8 £ 0] =a Vi £ v BT 5 @y . (19)

Suppose that one has found two functions ( = modes) fI and f2 which inde-

pendently satisfy the differential equation of the type (1.8):

2 2
7 ey fzl (x:y) =0 and V' £, (x,y) =0 . (1.10)

Due to the linearity of the operator szy, any linear combination of

f1 and f2 will also satisfy the differential equation, The physical meaning

of this statement can be illustrated with the example shown in Figuré 1.2,

Figure 1,2
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In Figure 1.2 one can see two different excitations of a two-conductor-plus-
ground system. In Figure 1,2(a) conductor 1 is held at the potential +1

Volt above the ground, while conductor 2 is held at the ground potential.
Likewise, in Figure 1.2(b) conductor 2 is held at the potential +1 Volt,
while conductor 1 is grounded. The two different problems shown in

Figure 1.2 have to be solved separately, starting from Laplace's differential
equation and from the given potential distribution on the conductors., Let

us assume that we have found the solutions to these two problems, and denoted
them by ¢; (x,;y) and ¢, (X,¥):
¢ (x,y)—-epotentlal dxstributlon on the MTL when conductor 1
is at +1V and conductor 2 is at zero potential,

¢ (x,y)---potent1a1 distribution on the MTL when conductor 2
is at +1V and conductor 1 is at zero potential.

Once we know these two solutions, ¢1 and ¢29 for a given (2 + 1) conductor
system, we can use them for expressing the most general distribution of the
potential in this system, For the sake of example, Figure 1,3 shows the
same system of two conductors driven in such a manner that conductor 1 is

held at the potential -«0,5V and conductor 2 is at +2.5V,

Figure 1.3



In order to find the potential distribution ¢3 for the situation shown in
Figure 1.3 we do not have to solve again the differential equation subject
to the new boundary conditions, We will simply use the superposition of

the two basic modes ¢l and ¢2 as follows:

¢3 = -0’5 ¢1 + 205 ¢2

The same reasoning may be extended to systems with any number of conductors.
In order to find the general solution to the field distribution on the
system of N + 1 conductors, it is necessary to solve N separate problems;
each problem consists of one of the conductors being held at the potential

1 Volt, while all the other conductors are at zero potential, Each of the
solutions is a mode for a MTL at hand. The best name for these modes

seems to be 'the one-by-one modes.'" These one-by-one modes will be

compared with the odd-and-even modes in Section 6.
A convenient property of the TEM field is that it is possible to

define the voltages between conductors as the line integrals of the

electric field. For the voltage of conductor 1 with respect to ground
( = shield) in Figure 1.1 we have

l—h o
Vig==[gE-dl . (1.11)

As long as the integration path lies in the (x,y) plane, there will be
no magnetic flux crossing this plane (since Hz = 0 for a TEM field), so
that the result of integration in (1,11) is independent of the chosen

path (compare e.g. [18], p. 267). Therefore, is a meaningful,

\%
10
unique number, which is called the voltage of conductor 1 with respect to
the ground.
As far as the currents on conductors are concerned, the TEM field

has a nice property that the currents flow only in z direction, That is,

the transverse component of the surface current on a conductor would
require the existence of a z-componént of the magnetic field, which is
zero by the definition of the TEM type of the field, As is well known,

10




the boundary condition which relates the surface current and the tangential
magnetic field in the vicinity of a perfect conductor is the following

(sce e.g. [18], p. 257):

- — —>
AxH=J . (1.12)

As has already been mentioned, the resistivity of conductors is one reason
why the actual field on MTL cannot be of the pure TEM type. Another important
physical situation which prevents the existence of the pure TEM field is the

inhomogeneity of the dielectric material between the conductors, When one

portion of the cross section of the MTL is filled with a dielectric material
different from that of the rest of the cross section, a pure TEM field cannot

satisfy the boundary conditions of such a system, as the following example

shows,

Figure 1.4

The same configuration of conductors as in Figure 1.1 is again shown
in Figure 1.4 with the addition of filling the right-hand portion of the line

with a dielectric €, which is different from sle It is well known that




Maxwell's equations require that the tangential component of the electric

field at the interface of two mediums must be continuous:

Fr1 ™ Fra (1.13)
This condition must be satisfied for every point on the interface, which
means for every z, Now, if the propagation constants in mediums €, and e,

follow from (1.6) we must have

By = w\uge, and B, = wUG;E; ; (1.14)
If ¢ # €, then also By ¥ B, so that the propagation consténts of pure
TEM waves in two mediums are different. The continuity condition (1.13)
would require

-jBz -szz
Etl (xo,y) e = Et2 (xo,y) e . (1,15)

Obviously, when E_. and Et2 have any non-zero values, (1,15) cannot be

tl
satisfied for every z. Therefore, pure TEM waves cannot exist on a system

with inhomogeneous dielectrics. The field which will be actually established
on such a MIL will have the same propagation constant B in both mediums. For

the case that €1 < €,, the propagation constant will be situated somewhere

between the following limits
quel < B < w"usz (1.16)

The field configuration will contain a non-zero component Ez’ so that the
field will be not a pure TEM, However, as long as the transverse dimensions
of the line are small in comparison: to the wavelength, Ez is very small in
compari§on with transverse components of E. This is the reason why such a
case is often referred to as the ''quasi-TEM" field distribution. An important

case belonging to this class of field is the field on a microstrip transmission

line,

12
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Inequality (1,16) states only that the propagation constant B will have
a value somewhere between the values corresponding to two dielectric constants
€ and €,e When the system with inhomogenous dielectrics from Figure 1.4 is
driven in a way indicated in Figure 1,2(a), most of the energy will be stored
in the left part of the line, so that the propagation constant of this mode
will be close to the value w/ﬁEI. On the other hand, the mode from Figure 1,2(b)
would have most of the energy located in the dielectric €, SO that the corre-
sponding propagation constant will be close to the value w/ﬁE;. In general, it
comes out that each quasi-~-TEM mode on the MTL with inhomogeneous dielectrics

has a slightly different propagation constant., This situation is often re-

ferred to as multivelocity waves, and it will be mentioned again in Section 3.

We have established the fact that the electromagnetic field on the micro-
strip transmission lines is not strictly TEM., Therefore, in order to find the
exact solution to the field distribution one has to use Helmholtz's equation
(1.1), and not Laplace's equation (1l.8). However, most of the investigators
use Laplace's equation because it is simpler, and it is still a good approxi-
mation for practical use, The best known solution of Laplace's equation for
the single-conductor microstrip transmission line is by WheelerIEQl], which
reference also contains a number of useful diagrams. Another solution of the
Laplace's equation for the microstrip transmission line is by Yamashita and
Mittra [23]. They use a variational formulation which is very simple for
practical computations., For the two-conductor microstrip system, Laplace's
equation has been solved successfully by Bryant and Weiss (the method of solu-
tion is explained in [2]; many additional diagrams are published in [16]).

The exact solution to Helmoltz's equation on a microstrip transmission
line was first published by Zysman and Varon [22], They showed that in order
to satisfy boundary conditions for inhomogeneous dielectrics, the field must

be of the HEM type (hybrid electromagnetic i.e, a combination of TE and TM

13




fields)., Their numerical results indicate that the propagation constant
exhibits a dispersion, However, this effect is negligible below the fre- .
quency 2 GHz (for the alumina substrate of thickness 0,05"). More recent
solution of the Helm holtz's equation on microstrip has been presented by

Mittra and Itoh [24],

14



Section 2. : - .

COEFFICIENTS OF POTENTIAL, INDUCTION, AND CAPACITANCE

The electric field of the TEM wave‘on a multiconductor traﬁsmission line
(MTL) satisfies Laplace's equation in the transverse plane. Therefore, the
computation of capacitance coefficients may be borrowed from the books (ealing
with electrostatic problems, The fact that the capacitances were computed for
a static situation does not make the microwave application of the MTL any less
accurate or less exact. As long as we are having TEM waves, the use of static
capacitances is legitimate and exact, because the transverse distribution of
field is governed by Laplace's equation., It is well known that for the given
boundary conditions, the solution of Laplace's equation is unique; therefore,
the microwave TEM field and the static field look the same as long as they

"both have the same boundary conditions,

Figure 2.1

15



Figure 2.1 represents the system of N straight conductors of arbitrary
shape above the ground plane. We want to investigate the distribution of ‘

potentials and charges on such a system, Denote:

Qy oec line charge of i-th conductor (in Coulombs/meter)

t

Vi «co Voltage of i=th conductor w.r. to ground, v

If one takes the potential of the ground plane to be zero, then the
potential of the i-th conductor is also equal to Vio This potential is a

linear function of all the charges:

Vi = P19 29, NN

The constants of proportionality Pij are called coefficients of

- Pi + ==c & Piiqi H omme & Pi for i = 1,2, === N. (2.1)

potential (see [18], p. 315}, They are determined solely by the geometrical
configuration of conductors (their shapes and distances). Except for a few
simple cases, the exact computation of coefficients Pi' is a difficult
problem for which there is usually no closed form solution, so that numerical
methods must be used. But if the analytic solution is too difficult one can
always build the physical model and determine the coefficients pij

experimentally.

For a system of linear equations such as (2.1) the matrix notation is

of great advantage. We define the Nedimensional voltage vector:

lvs = v ] (2.2)

and the charge vector:

|q> = q, . (2.3)

16




Their relationship is determined by the N X N square matrix P of induction
‘ coefficients

Pll Plzc'aplN
E's ¢ ¢ ¢ ¢ 9 o » N (2«:4)

PNI pNZ,.gpNN
The equation (2.1) can be cast in a more compact notation
- | V> =P |q> . | (2.5)
This kind of notation originates from Dirac and is widely used in
physics to describe linear systems (see [15], p. 245), The advantage of
this notation in comparison with the common matrix notation is in the fact
that one can immediately tell whether a given algebraic form represents a
- column vector, row vector, matrix (=operator), or a scalar; e.g. the column
vector |q> has its dual row vector which is denoted by <q| (transpose
- conjugate of |g»)
’ <a| = (q¥, 9% <+« Q) -
One can obtain interesting results with this notation when he attempts

- to compute the stored energy in the system of conductors from Figure 2.1,
The stored electrostatic energy per unit length of such a system is (see e.g.
[18], p. 103) N

Uy = %121 v, (2.6)
According to the rules of matrix multiplication (row vector times column
vector), (2.6) can be written as

U = = <q|V> , (2.7)
since qi's are real numbers. When the value of vector |V> from (2.5) is

¥ ’ substituted in the above scalar product, one obtains

1
U; = 5 <alPle> . (2.8)



The stored energy of the electromagnetic system from Figure 2.1 is equal
to the work required to move the charges from the ground plane (= zero potential)
to their present positions above the ground plane, Every charge is resisting ‘
this movement, due to its image which is attracting it toward the ground plane,
The total work done is positive, no matter what combination of charges q; is

there. A matrix which always gives a positive result to the expression (2.8) -

0 < <q|P|g> for any |q> (2.9)

is called positive definite. Such a matrix P has a property that all its
eigenvalues are real and positive, A positive definite matrix with real
elements may be divided into a symmetric and an antisymmetric part. By using
the property of reciprocity of the electrostatic field it can be shown (see

e.g. [4], p. 205) that matrix P has only a symmetric part, i.e.

i = Pji . (2,10)
In matrix notation
P=r, (2.11)

where the superscript T denotes the transpose of a matrix,
A positive definite matrix always has an inverse, Therefore, one can

find the inverse relationship to (2.5)

lq> = 2;1[V> =K v . (2.12)
The inverse of P was denoted by K. In the expanded form (2.12) can be written
as

q.

i = Kilvl + Kizvz + aos Kiivi * e KiNVN for i =1, 2,...N . (2.13)
As we can see, the coefficients Kij represent the constants of proportionality
between voltage and charge. The units in which Kij's are expressed are
Coulombs/VoltsMeter = Farads/Meter, However, it would be erroneous to call

Kij's capacitance coefficients. The proper name for them is coefficients of

(electrostatic) induction (see again [18], p. 315). In order to define the

capacitance coefficients Cij’ one must use a linear relationship of the

18




following form

q.

i = Cil (Vi - Vl) + Ciz (Vi - VZ) vee * Ciivi + e CiN (Vi - VN)- (2.14)

It is important to observe that Cij's are coefficients of linear relation-
ship between charges and mutual voltages between the i-th and j-th
conductors. If we want to find the relationship between K's and C's we
have to group together the terms containing Vi in (2.14);

qi = =CilV1=CiZV2 Toe + (Cil + C.

12 +e"" Cii s¢ce + CiN) Vi -CiNVN.(Z.ls)

cee

By comparing (2.15) and (2.13) we find the following relationship

N

diagonal elements: K., = ) Cij s (2.16)
j=1

Off-diagonal elements: Kij = - Cij for 1 # j . (2.17)

'_'ngg C%f“
h DIL fin

L i i 777

e
i DlN
_qN

—C%Z
Figure 2,2
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For a system of straight conductors of a circular cross section above the
ground plane as shown in Figure 2,2, there is a very simple approximate method
of computing the elements of the matrix P (see e.g. [20], p. 124}, In books
dealing with the power transmission, this method is widely used, but it is
frequently explained in a lengthy, and sometimes confusing, way. The
confusion is usually caused by the attempt to compute matrix C directly, with-
out first computing matrix P and inverting it afterwards. Such a direct
computation of C is possible only in some special cases, when the conductors
are located ir certain symmetric positions. We are going to show that the
step-by=-step computation which starts with the matrix P is very straightforward
and general, so that it includes also all the special cases of symmetrically
placed conductors, %

According to the principle of images, the distribution of the electric
field above the ground plane in Figure 2.2 cam be computed by removing the
ground plane and introducing the image line charge -q; for every conductor.

For the observer located at point P, the potential produced by a pair of
charges q; and =q; is given by (see [ijg P 11§)77

. D .
Vv . = =35 1n (—afif-) (2.18)
1 .

pi  2le D
There is no added constant in this expression, since we choose that the
ground plane has zero potential, When the point P from Figure 2.2 is on the
ground plane, dpi becomes equal to Dpi and the resulting potential is zero,
as required.

Equation (2.18) is exact for the ideal line charges of zero thickness.,
When the observer'’s location P moves closer and closer to the charge s
distance dpi goes to zero and the potential vpi from (2,18) approaches
infinity. This unpleasant situation is corrected by introducing something
called quasi line charges. That is, one of the equipotential lines around

the ideal line charge q; may be chosen to coincide with the actual metal
boundaries of the i-th wire. As long as other conductors are not very close
to the i-~th conductor, the equipotential line is very closely approximated
by a circle centered at q; Therefore, a wire of a circular cross section
with radius r and charged with the amount of q; Coulombs/meter will produce

the same potential distribution as an ideal, infinitely thin, line charge Q.

20




This is the reason for the name quasi line charge. When the observer P is

placed on the surface of the i-th quasi line charge, the distance d_, becomes
equal to the wire radius o and the distance D i from the observer to the
image charge becomes equal to twice the height hi above the ground,

(2.18) becomes

. oy
In (=) (2.19)
1

i

Vit T The

The total potential Vi of the i-th quasiviine charge is found by the
superposition of all N potentials caused by pairs of line charges and their
images, The expression obtained for the total potential Vi is a sum of the
form (2.1), where the individual coefficients pij are given by

1 L .20
Pij = 5= 1n (-_2_3 for § # 1 (2.20)
jl
and
1 2hy |
Py "o 1n () fords (2.21)

1

(2.20) gives the off-diagonal elements of matrix P, and (2.21) gives the
eleients on the main diagomal, These two formulas ére_all the formulas that
we need, When P has been computed from these two formulas for a particular
geometry at hand, matrix K is obtained on any computer by simple inversion of
matrix P in a matter of seconds (or even milliseconds). Elements of the
capacitance matrix C can be computed afterwards by using (2.16) and (2.17), if
necessary, We will see later that the study of wave propagation on MTL'’s
requires only the knowledge of P or K, so that C is not needed at all.

For a certain system of conductors of 1rreguiar shape, the computation
of elements of matrix P may be too difficult, and we may decide to measure
these elements. This is performed by taking the appropriate length d of
the MTL and measuring the capacitance of the i-th conductor to the ground,
as shown in Figure 2.3, During this measurement we usually connect all the

other conductors to the groundp as shown in the same figure.

21
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Figure 2,3

If the measured value of capacitance is Cme s we have

as

T S Cip T Cptee F G eeee # G T K

The measured value of capacitance per unit length is equal to the induction
coefficient Kii’ and not to capacitance coefficient Cii as one is often misled
to think. By repeating the same measurement on any other conductor while all
the remaining conductors are grounded, we can get all the elements on the main
diagonal cf matrix K., One will recall from (2.17) that the off-diagonal ele-
ments of induction coefficients Kij are the same numbers (with negative sign)
as the mutual capacitances Cij‘ These elements should be measured with the
special capacitance meter which allows the ungrounded operation of the two
conductors between which the mutual capacitance is to be measured. However,
the need for the special instrument may be avoided by measuring capacitances
of several conductors joined together in various combinations and solving

the resulting system of linear equations afterwards.

22
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Figure 2.4

At this place it is appropriate to introduce the magnetic induction

coefficients, Figure 2,4 represents a system of N parallel conductors

above the ground plane. Each conductor is supposed to carry a constant
D, C, current (e.g. current Ii on the i=th conductor). All these currents
are returned back through the ground plane.

- The magnetic field produced by the current IN in the N-th conductor is
also indicated in Figure 2.4, The closed lines around the N=-th conductor
represent the field of the magnetic flux density BNe The magnetic flux
over the area A under the i-th conductor, and produced by the current Iy
on the N-th conductor,may be found by computing the surface integral of
the flux of field BN across the area A. The length of this area in 2z
direction is taken to be unity, so that we are talking about the magnetic
flux per unit length. The total magnetic flux3W§ (per unit length)
belonging to the i-th conductor (i.e. the total flux across area A} can
be computed by summing up all the individual fluxes caused by currents Il
through IN°

N

98

L) Lis 1 (2.22)
j=1

The coefficients of proportionality between the currents and corresponding
fluxes are denoted by Lijo They are called magnetic induction coefficients.

23



In the matrix notation, (2.22) becomes

¥'> = L [I> . (2.23)

The coefficients of matrix L are determined solely by the geometrical
configurations of the MTL. In the case of a TEM field configuration, Lij
coefficients do not have to be computed separately, if we have determined
the coefficients Kij previously. Namely, matrix L is related to matrix K
as follows:

L= .1_2. 5_'1 , (2.24)
v

Therefore, we can save the labor of computing the elements of L from the
given geometry.

24



Section 3,

TRANSMISSION-LINE EQUATIONS

The discussion in the previous section was limited to the static electric
and magnetic fields, In Figure 2.4 we have seen the static magnetic flux
density BN produced by the D, C, current IN° The total flux over the area A
under the i=th conductor produced by all currents from I1 to IN‘was given
by (2.22).

Let us next consider the time-harmonic case, All the quantities like
current, vo;tageg flux, etc., are assumed to include the factor exp (jwt).

The well-known Maxwell’s equation

$E odl = -jufB - dS

tells us that the total magnetic flux W across area A multiplied with.
(=jw) is equal to the induced voltage V in the contour PQRS (Figure 2.4)

Vo= -je ¥, (3.1)

W denotes here the total magnetic flux across the area A, and not the flux
per ‘unit length as ¥” in Section 2,
In Figure 3,1 we see the differential length 4z of the i-th conductor

of a MTL, The corresponding area across which the magnetic flux should be

evaluated is denoted by AA. The corresponding induced voltage in the contour
of this area is denoted by Avi, The total magnetic flux across AA is denoted

by 4¥,. It-follows from (3.1) that

AV, = ~ju bY, (3.2)

25



Figure 3.1
]
Flux Awi across the area of length Az is equal to the flux Y% per unit
length multiplied by the corresponding length Az
aand

= g
¥, WiA z (3.3)

Wl can be expressed in terms of individual currents I, by using (2,22)

j

N
AV, = -jubz } L., I, (3.4)

I3
=1 -

Dividing by Az and letting Az become an infinitesimally small quantity,

we obtain
AV av, N .
i Tt cde oLy (3.5) |
j=1 !
In matrix notation
d . -
.a-;- l‘\]> z <ju l_,- II) (3.6)

This is the first of the transmission~line equations for the MTL., It is
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formally very similar to the equation for the single transmission line (see
e.g. [31, p. 83)

%% = =jw L I

The second transmission=line equation will be found by using the other

Maxwell's equation

$Hedl = [ 1.dS + juf DedS .

f;fd[L'

Figure 3.2

This equation will be applied on the closed path which is indicated by

the solid line in Figure 3.2.

preted in two ways:

1

The dotted surface consisting of two circular areas,
perpendicular to the z axis. As we are considering TEM
waves, the electric flux density-s is everywhere tangential
to the dotted surface, so that the total surface integral
of D is zero, Maxwell's equation gives

$ Hedl = I, = (I, + AL) = =AI, .
1l 1 1 1
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The surface enclosed by this path may be inter=
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2) The dashed cylindrical surface, wrapped around the wire.
There is no conduction current flow across this surface,
but there is an appreciable electric flux since D is
essentially perpendicular to the surface. The same

Maxwell's equation applied to this surface gives
> N
$ Hedl = jw [ DedS = juq Az (3.8)
In the second part of the above equation we have used Gauss' law which

states that the electric flux is equal to the total charge inside the volume,
From (3,.7) and (3.8) it follows that

AIi dIi
‘i-z?- > an— = "jw qi (3.9)

which is just another form of the statement of charge continuity (see
e.g. [6], p. 101). Expressing q by the use of (2.13) we get

dI, N
= = -ju } Kig Vs o (3.10))
j=1

This is the second transmission-line equation for the MTL, which in

matrix form becomes

& = -juk v, (3.11)"

Again we can recognize the close resemblance to the corresponding
equation for the simple transmission line

%‘i“'s"jwcv:
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However, the equation for the MTL has the matrix K in place of the capacitance
C. As discussed in Section 2, K's and C's have the same physical dimension
(Farads/meter), but the matrices E.and Q_differ considerably from each other.
However, for a single conductor above the ground, K and C are (1 x 1)
matrices, identical to each other.

Equations (3.6) and (3.11) represent the coupled system of two

differential equations in two dependent variables:

lv> = -ju L |I> (3.6)

&>

|I> = -ju K |V> (3.7)

S

This is the so-called Hamiltonian form of the coupled wave equations
(see e.g. [12], p. 4). One can eliminate one of the dependent variables
from each of the above two equations and obtain the so-called Lagrangean

form as follows

d* 2

— [v> = -0 L K |V> (3.12)
dz

Sl...f. ]1> = -wz KL [1> . (3.13)
dz

The straightforward way of solving an equation of the type (3.12) is
to rewrite it in a new basis in which the matrix L K becomes diagonal. To
do this we have to find the eigenvalues kiz and eigenvectors V; of the
matrix w L K, The matrix equation (3.12) is then reduced to N independent
scalar equations of the following form
A 2 1 .
-227—-= -ki Vi for i=1,2, ... N ., (3.14)
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The solution of each of these equations is an exponential function of the

o ¢
; + k2 Jk, 2 ' _

V.=V e +V] e \ (3.15)

In the most general case, the matrix w? L K for the system of N conductors i
may have N distinct eigenvalues. Therefore, we can have N different waves
with .different velocities to propagate in either positive or negative z

direction, Such multivelocity waves can take place for different reasons.

One reason is imperfect conductivity, which causes the electromagnetic field
to penetrate.inside the metal conductors, The examples of multivelocity -
waves caused by finite conductivity have been discussed in detail by many

of the power-transmission workers (see e.g. [1]). However, even if -
conductors are assumed to have a perfect conductivity, multivelocity waves
will appear when the dielectric material in inhomogeneous. Lines whose
cross-section consists of two or more dielectric materials cannot propagate
pure TEM waves. Therefore, multiconductor lines made in microstrip
techniques will propagate multivelocity waves, while MTL's made in strip-
line will propagate pure TEM waves (see Figure 3.3). Another situation

which seems to produce the multivelocity waves is a system of

82 (alf‘) 7 G L oL 27l L gL L il () (
]
>§2>55/ / -

S ST 4

/ 3

/5/ 2>§§5/\ %
(VO T NI D TETINTIES LD LTS TN / /////////////////////////////// o

. [] 1] .
microstrip stripline ,
—
Figure 3.3
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A\

perfect conductors which are curved in a form of circular arc (see [7]).

However, a straight section of a MTL with perfect conductors supports TEM
waves, which have the property to propagate with one éingle velocity., This
velocity is equal to the velocity of light in the dielectric medium of which
the MIL is made. This means that all the eigenvalues of wz L K must be
degenerate (equal to each other) and equal to the free-space propagation
constant:

k2 =k = o’ e for is1,2,...N . (3.16)

When the eigenvalues are degenerate, one has a freedom in choosing the

1
eigenvectors. In our case we can take eigenvectors Vi to be equal to the
original voltages vi" The equation (3.14) becomes

2
v, 2
-—-7 = -k vi for i'l’Z’COON L] (3'1‘2) .

dz

Comparing this with (3.12) we conclude that the single-velocity TEM wave must
have the matrix w? L K equal to.-the identity matrix I multiplied by a constant:

WCLr=k1 . (3.18)

Therefore, whenever matrix K is known, one can compute matrix L from it

2

Lokt e g ¢ (3.19).
w VTEM
where VirEM denotes the velocity of the TEM wave,

The solution to the system of equations (3.17) is in the form of incident
and reflected wave:

+ e-jkz

- Vi jkz

A +4v; e for is=1,2,,..N . (3.20) -

The constants v; and V; are determined by the boundary conditions at
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the generator side and load side of the MTL.. The manner of determining these
constants will be discussed in Section 4.
In matrix notation, (3.20) becomes

V> = e IKE|yFs 4 IKE |y, (5.21)-

The corvesponding solution for currents can be obtained by substituting
(3,21) into (3.6). We obtain

-jke K2 [v*s 45ke¥*? [V @ aju L D (3.22)
In analogy with the simple transmission lines, we define the matrices for
characteristic admittance and characteristic impedance

=1
Yo =%, = VK (3.23)

By using this notation, (3.22) can be rewritten as
=1 . =jkz [+ ikz (=
|1> =2 7" (e TS IRV (3.24)

which expression is a direct analogy of the corresponding formula for simple

transmission lines

I = %m(engZ v e IRE vy
o

The analogy between matrix formulas for MTL's and scalar formulas for

single transmission lines is summarized in Figure 3.3.
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Multiconductor ‘Single Transmission Line
Transmission Line (MTL)

<

/
/ - /
N L TVi(z) | Itz) LV(=)
L /
— EEEE—
Differential Equations:
'%‘;IV>==ij~_!I> _g%-=-jw.;11
d . dI .
«aaz-]I>==Jm£'V> a-z-=-JwCV
Solutions:
[v> = e7KZ |y*s L edkZ |y, Ve e dKZ yt, oJkz -
11> = £b=l (e=sz |V+> - esz Iv™>) I = %_ ( e-sz vt esz v
lo} 3
Velocitys
LEk=—S— 1L Lc =y
VTEM VTEM
Characteristic Impedance:
A Z, =
TEM VTEMC

Figure 3.3
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Section 4,

SCATTERING MATRIX OF A TWO-SIDED SECTION OF A MTL

£

hs /7 T, (3) gy — o 2,

~

Ll L2 @ Vz(?ﬁ/ Lr %_ﬁ
Zu / A, W'Zﬂ// R,ﬁ R

- —— L

//I /7 //
=0 . Z , Z [
Figure 4.1

]

, When a MTL is used in some microwave network, the circuit will look like
the one shown in Figure 4.,1. In that figure we have represented a three-
conductor line which is at both sides connected to outer transmission lines.
The characteristic impedances of the outer transmission lines connected to

33 those at the right-hand

left-hand MTL terminals are denoted by ZLI” ZLZS ZL

terminals are denoted by Zp1? ZRZ,J Z The outer lines are completely shielded

from each other whereas the section gg the MTL between z=0 and zs1 contains
mutual coﬁplings between different lines. The MTL in Figure 4.1 has only 3
¢onductors above the ground plane, but in a general case we will have N
conductors, It is obvious that a two-sided section of an N-conductor
transmission line represents a network with 2N ports., Our desire is to find

the properties of this linear, reciprocal, 2N-port. The most useful

representation of a microwave multiport is through its scattering matrix. In
this section we will derive the expression for a scattering matrix of a section
of a MTL of a length 1, assuming that the induction coefficient matrix K and
the velogity Vogy 8re known. As discussed in Section 2, knowing K is the same
thing as knowing the capacitance matrix C since they are simply related.

VrEM is the velocity of light in the dielectric medium surrounding the

conductors, and it can be easily evaluated from the relative dielectric constant
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-

er of the material

(4.1)

where ¢ is the velocity of light in free space, and u = uo is the permeability
of free space, VM is related to the angular frequency w and to the propagation
constant k as follows

(4]
VieM T X . (4.2)

The voltage of the i-th conductor with respect to the ground at the point z is
denoted by Vi(z)° Similarly the current of i-th conductor at the position z is

denoted by Ii(z)° Note that the direction of I;(z) is positive when pointing

in (+z) direction. For an N-conductor transmission line, we will define the

N=dimensional voltage and current vectors

’Vl(z)\ (Il(z)\
V,(2) I(z)
lV(z)> =|. s |I(2)> = |, o (4.3)
\VN(z)/ \IN(z)/

It was found in Section 3 that voltage and current are expressed as functions

of z in the following matrix form [see (3.21) and (3.24)7:

[V(z)> = e"IKZ [v*> + eIK? [v™> (4.4)

1(2)> = 270 (e K% v - oFF v (4.5)
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* = . . . .

[V'> and |V™> are N-dimensional constant vectors representing the amplitudes
of waves traveling in positive and negative directions of z, respectively.
Their form is the following:

+ -
V1 V1
V2 Vz
& o
lV > = . H IV > = 4 o (4.6)
&+ -
VN /~ \ V.

zo is a symmetric, positive definite, matrix with real coefficients. It can
be easily computed from the electric induction matrix K as follows [see(3.23)]:
=V k-

When we define the parameters of a multiport, we think of a black box.
Only voltages and currents at its terminals are of interest, the details of
voltage and current distribution inside the box are not of interest for the
user, The user of the black box wants only to know how the terminal voltages
and currents influence each other, This relationship is described by the
impedance matrix, admittance matrix, or- preferably for the microwave
engineer-the scatering matrix. The voltages and currents at the left-hand side
terminals will be denoted by column vectors [VL> and lIL>° Similarly the
right-<hand side voltage vector will be denoted by IVR> and the current vector

by IIL>‘ Note the current directions in Figure 4.l: in accordance with network

analysis, all the terminal currents are pointed into the multiport. In this
way, current I, is oriented in the opposite direction from L (z = 1). This
fact is important in choosing the proper sign in (4.17) below,

At z = 0, the voltage and current of a MIL are:

V> = V5>« v 4.7

|1, > = z;l (v's - [V, (4.8)
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In general case, each of the outer transmission lines has a different
characteristic impedance; e.g. i-th outer line on the left-hand side has

the characteristic impedance Z Each such line can support two waves: one

+
- Li’
away from the MTL, its amplitude being VLio At the left-hand side terminal,

Li°
propagating toward the MTL, its amplitude being V

and other propagating
voltage and current on all the outer lines can be represented by the
following matrix equations:

[VL> = IV;> + iv;? (4.9)

=1 + gt
|IL> =7 (|vL> - |VL>) . (4.10)

ZL represents a diagonal matrix containing all the characteristic impedances

of outer lines connected to left-hand side terminals:

y/

= diag, (ZLIQ Zsz eee Zpny (4.11)

4

" We will assume that alil ZLi“s are real numbers.

The rest of our derivation will be devoted to the elimination of parameters
which describe the situation inside the MTL ¢ IV+>~and [V©>. We desire to find
the relationship between parameters describing the outer network: [V£>g iVi>,
|V£> and ]V;>e From (4.7) and (4.9) we have

IVE> ¥ lv£> = lv*> + [V=> 0 (4,12)

From (4.8) and (4.10) we have

«] % =] - -1
2 WV ez v ezt

S

=1 -
> =z v . (4.13)

. + =
From these two equations we can express |V > and |[V™> as follows:

s =] + =] -
ZIV » = (L + az..o .Z..L ) ivL> + (}- < .Z.o Z.L ) iVL> (4c14)

2|Vs = (I -2 z“lj [Vi> + (1 + 2 z“l) [vo>
- =) 1—{, L o =) —L L ° (4@15)
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At the right-hand terminals z = 1 and we find from (4.4) and (4.5) the
following expressions for the voltages and currents of the MTL

|vp> = o IK! Vs + eIK? lv™> (4.16)
—‘IR> = Z';’l (emjk1 IV*> - ejk:l [v©>). (4.17)

It is important to note the negative sign of the current in (4.17).

We define the diagonal matrix of characteristic impedances of outer

Zr
lines on the right-hand side

= diagg (Z 9 ocew z (4'18)

Zp R1° ZR2 RN
The amplitude of the wave traveling toward the MTL on the i-th outer line on
the right-hand side is denoted by V;i, Similarly, the amplitude of the

wave traveling away from the MTL on the i-th outer line is V;io In matrix

notation, the voltages and currents on the outer lines at z = 1 are

1VR> = [V;> > IV;> (4.19).

1> =zt (Vi = [V (4.20)°

Just as we did for the left-hand terminals, we can eliminate IVR> and |IR>
from (4.16) through (4.20) and obtain

-5kl gt % T -1y (-
2e V> = @- L) Ve + L+ 2, 250 v (4.21)
jk1 - =1, + -1 - .
2e [V™> = (L + Z, Zp) [vR> + (L~2,22) [vR> . (4.22).
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Eliminate |V'> from (4.14) and (4.21)

Loz Ve @-z, 50 Iy -
k1 (-2, z&l) [V;> + eIk (L+2Z, E&l) IV§>V (4.23)
Eliminate |V™> from (4.15) and (4.22):
@) W+ @z 5 I -
@z g v e @z v (4.24)

The last two equations contain only the amplitudes of the waves on outer
transmission lines, as desired., It remains to arrange and normalize them
properly. '

First, we introduce normalized amplitudes of incident waves (traveling
toward the MTL):

' 5=1/2 1,4 , =1/2 +
la> = 27°% V> : lag> = Zo |ve> (4.25)
and of scattered waves (traveling away from the MTL):
=1/2 4= . e1/2 e
b > =27 V> s bp> = Zp V> o (4.26)

The amplitudes a; and b, have been chosen so that 1/2|ai|2 represents the
power of the incident wave on the i-th line, while 1/2[bi|2 represents the
power of the scattered wave on the i-th line. (see e.g. .18], p. 603). It
is important to mention that some outstanding authors define the normalized
wave amplitudes in slightly different ways (e.g. [10] is using r.m.s. values
of voltages and currents instead of peak values, while [9] normalizes a’s and
b*s in another way).

Further simplification in our formulas is possible by introducing new

symbols P and Q as followss

-1, ,1/2
- -1, ,1/2 H Pro=(1+2Z Z,7) 12 (4.27)
P L+ 25 47) Z; =R =0 =R 7 =r
_ -1, ,1/2 . - -1, ,1/2 . (4.28)
9 = L-Z, 40 %4 ; = A-L )%,
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In the new notation, (4.23) and (4.24) become

jk1

££ [aL> +Q lbL> = e (gR |aR> + P !bR>) (4.29)

- -~Jk1
Q. la > + Py lbL> e (Pp |aR> + Q [bR>) (4,30)
One can eliminate [b > from both equations by multiplying (4.29) by
'Jkl _Rl and (4.30) by eJkl gRI. Taking the difference of these two
equations we obtain

Jkl 1
Pr Q) b~ =

Jkl gR p

-jk1

= et e oM gt gy o> s @7t By - PR QY lape. (4.31)

Similarly, elimination of [bL> results in

Jkl QL p QR) lb s =

i} (951 b, - E;l o) la> + (e-3K1 251 b, - Kl g;l 0 lag - (4.52)

The system of equations (4.31) and (4.32) may be represented in a

new matrix notation extended to 2N dimensions:
'b> = §’la> . (4.33)

The new vectors |b> and |a> are 2N-dimensional column vectors

a> = . (4.34)
IbR> IaR>

[b> =

-
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S is a 2N x 2N matrix, partitioned in four N x N matrices as follows

s s
s =7 =R, (4.35)
Sre SRR

Equation (4.33) is the desired scattering matrix formulation for a
2N-port consisting of a two-sided section of an N-conductor transmission line.
Subscripts L and R refer to the left-hand and right-hand side of the network.
The partitioned parts of the matrix S can be written by inspection from (4.31)
and (4.32);

5, - (o3k1 g; ookl v QL) -1 =ik 2;1 b 1 9;1 o) .
S = (7 it e v e gyt (gt by - Bt Q) (4.37)
G el Pl DR S (4.59)
5. - (oIK g;l- P, - ‘emjkl l’.{l gR)al (e=3K1 E_;l . . Ikl 9le o) . (4.39)

The above four equations have a very broad use in dealing with MTL, These
equations give all the necessary information for a black=box description of

a section of a MTL which is incorporated in any kind of a microwave network.

The quantities that are needed in the computation of scattering matrix S are:
the electric inductance matrix K, the diagonal matrices ZL and zR of
characteristic impedances of left=hand and right-hand ports, the length of the
sectioh 1, and the TEM propagation constant k. The computation of scattering
matrix coefficients from the above formulas is also well suited for computer
programming. Finally, one should note that the above formulas require the
inversion of N x N matrices only, although the resulting scattering matrix is
of the size 2N x 2N,
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Starting with (4.29) and (4.30) we can arrive at the scattering matrix
S in a somewhat different way (see [13], Section 2,2)., Namely, by grouping
b's on the left-hand side and a's on the right-~hand side, (4.29) and (4.30)

become:
QLIbL> - Ik ERle> = - gL[aL> + eI QRlaR> (4.40)
zL[bL> PRI gRle> = - QL‘aL> + oK £R[3R> . (4.41)

In a 2N~dimensional matrix notation this can be written as

k1 jk1
Q -e Pp b, > -p e [aL>
= , (4.42)
-jk1 -jki
" L T MR N

Comparing (4.42) with (4.33) we conclude that the scattering matrix S

can be written in the following form:

e . -3kl : (4.43)

This form appears to be more compact than (4.36) to (4.39), but it
requires the inversion of a larger matrix, of the size 2N x 2N,
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Figure 4,2

An interesting case to which our formulas can be easily applied is
the half-wavelength section of the N-conductor transmission line shown
in Figure 4.2, Let us choose each characteristic impedance on the right-
hand side of the i-th line to be the same as on the left<=hand side,

namely ZLi = ZRio In matrix notation:
Z{‘ = _Z_R o ' (4944)'

Since kl = 7, we obtain from (4.36) to (4.39):
S8 5 Sp =L Syl o Spp=l (4.45)

0 denotes the zero matrix and I denotes the identity matrix. The 2N x 2N
scattering matrix of the half-wavelength section is, therefore,

S = . (4.46)
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This represents an interesting situation. Since the main diagonal of

S is zero, all the ports are internally matched. Furthermore, the wave
entering port 1 comes out of port N + 1 only (with 180° phase shift), the
wave entering port 2 comes out of port N + 2 only, etc. The situation is
the same as if all the N conductors of the MTL were completely shielded
from each other,
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Section 5,

SCATTERING MATRIX OF A ONE-SIDED SECTION OF A MTL

In the previous Section we derived the expression for scattering

matrix of a 2N-port which results from a two-sided straight section of a

MTL. In the present Section we will investigate the properties of the

N=port which is produced by terminating one side of a MTL section in a

known network T, as shown in Figure 5.1.

b, > ,bR>
<A\~ NN
N+/
/CL O-
N+2
2 o 7——
26 N%Bo
O e e ——— e e e
—~ NN =N\ N\—
[ > [cg>
777 A VA
Figure 5.1

We choose to terminate the right~hand side, which is denoted by a

subscript R,and leave the left-hand side available for use as an N-port,

The incident wave vector on the right=hand side of the MTL is denoted by

|ap>. For the metwork T, the same quantity [aR> represents the scattered

wave (going away from T), The network T has a known scattering matrix Ts

lag> = L Ibg

>

o (5.1)

Our intention is to find the scattering matrix of the N-port of the

left~hand side terminals designated 1 to N,
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(@.40) and (4.41), which are here repeated for convenience
Qlb> - e’ _Rlb >= =P la>+ e’ QRIa > (5.2)

by

-jk1

P Ibp> - e Qlop> = - qla> +e

ER[ ap> (5.3) -

We can eliminate IaR> from these two equations by the use of (5.1):

Qulby> + Bylep = T g v gD by (5.4 -
,_I_>_leL> + QLIaL> e 7K (gR P Ib > ., (5.5) _

For shorter notation, the terms in parentheses may be denoted by new
symbols G and H:

= + QRT ; U= QR + BT o (5.6)

Assuming that G and H have, thelr mverses, we can multiply (5.4) from the =
left by e =ikl _C_;_ and (5.5) by ejkl H and compare the, results:
-jk1 1 -1 jk1 . =1 -1, .
e ™ (6 Qlb> + 67 B la>) = () Plby> + B g fa>). (5.7)

Grouping IbL> and IaL> terms we arrive at the following

LI Ly s = (TR gl -3kl =1 _ . (5.8) e

-3kl -1 .
(g g T p) I = (T g T R e

We have arrived at the desired expression for the scattering matrix
relating |b > and [aL>, when the right-hand side of the MTL is terminated
in a known network T. Assuming that the matrix on the left-hand side of
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equation (5,8) has an inverse, we can write

|b,> = L ]aL> s (5.9)

L

where L is the wanted scattering matrix

951 o - k1 il p )7t

jk1
L=} ( =

RIS q - ekl g1 py, (5.10)

L= A

G and H are defined by (5.6), while P and Q are defined in the previous
Section by (4.27) and (4.28), The expression obtained for L solves
completely the '""Black box' problem of the one-sided MTL. The expression
is very well suited for computer programming and is valid for any N,

As an example, let us use (5,10) in order to find the scattering

matrix of a short-circuited section of a MIL, as shown in Figure 5.2.

Figure 5.2
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The scattering matrix of a short circuit at the right-hand side is the
negative identity matrix (reflected wave voltages at the short circuit

are equal and opposite to the incident wave voltages)

T=-I . (5.11) .
Then, from (5.6)
S=B-% 5 He% -l
or (5.12) -
6= K.
(5.10) therefore gives
 pomikl =1 jk1 =1 -1 . k1 1 -jk1 -1 -
L= (e G QL+e _(_3__P_L) (=e G Q-L-e [} EL).(S.IS)

s

G~ can be cancelled out:

jk1 jk

1
EL) {(5.14)

Q-

When the length 1 becomes equal to quarter-wavelength, kl = 7/2 and
(5.14) reduces to

Q + eJ E_L)'l (-e

_I:- L {(5.15)

Therefore, when the quarter-wavelength section is short-circuited at the -
end, the input side behaves as an open circuit., Since L in (5.15) is a
diagonal matrix, every incident wave at port i is reflected back at the -
same port, and none of its energy emerges at other ports. Therefore, the
quarter-wavelength section of a MTL behaves exactly as a group of separate
lines, shielded from each other; and short-circuited at one end. In a
similar way, the open-circuited quarter-wavelength section

¢

T=3{.
— S—

will result in a short circuit at the input: ‘

Lol
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An important application of the short-circuited MTL is the comb-

line filter shown in Figure 5.3, In order to make possible the propa-

gation of energy from port 1 to port N, we have to add the capacitances
C1 through CN at each port, and make 1 < A/4 (see [14], Section 8.13),
because we have just found that the quarter=wavelength section of MTL
causes complete decoupling between the ports,

In the design of comb-line filters it is customary to neglect
the mutual coupling between all conductors exéept the first neighbors.
Such procedure is quite justified for the purposes of synthesis, in order
to keep the algebra in manageable form. However, for computational
checking of the frequency response of the filter which has been synthesized
by this method it is possible to apply the more accurate matrix formalism
developed here. Thus, we can check the actual behavior of the filter by
taking into account all the mutual couplings, and not only between the

first neighbors.
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In order to use the scattering matrix L from (5.14) in the computation
of the response of a comb-line filter, we will follow the procedure
described in Ref, [17], Section C-1.2,

First we compute the reflection coefficients ri looking from each
port outwards. For the ports 2 to N=1 the only circuit element connected
to the port is capacitance Cio Its reflection coefficient is

1 ijiZoi

'y =77 Jac, 7o,

(5.16)

Zoi is the nominal characteristic impedance of port i.

For the first and last ports, the termination consists of a parallel
combination of resistance and capacitance. Therefore
1 -3 . -
JuCyZ5y = 2oy /2
1%01 * Z01/%,

17 T e (5.17)

The simplest choice is to take C1 =0 and Zg = Zol, so that Pl =0, A

similar expression is obtained for I,, when Zg is replaced by ZL’ etc.

N
Next, we form the diagonal matrix of all the reflection coefficients

T = diag. (Flg Ths oeo FN) . (5.18)
From matrix I which describes the outer network, and scattering
matrix L which describes our one-sided section of a MTL, we compute
the new matrix % as follows
-1
Z =(L-LD" "L (5.19)

Furthermore, we define the vector of all generators of incident waves

ag; toa . Since in our case only one generator exists at port 1, the

vector of generated incident waves is

asl

0
4]
a> =i . N-dimensional) (5.20)

©
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Then, the vector lb> of .outgoing waves at ports 1 to N is
|b> = E'[as> (5.21)

Since we are interested only in the output at port N, we have to compute

only the element I 1 of the matrix I, Element I . is the desired response

N N1
of a filter, since it gives the amplitude and the phase of the wave coming
out of port N when a generator of the incident wave is applied to port 1,
The procedure described can easily be programmed to a computer, the use

of which is unavoidable in filter design, anyway.

As only one element of matrix I gives the complete response of a
two~port filter, it is obvious that the described procedure may be used
to solve considerably more complex networks, like duplexers, multiplexers
etc. In general, one can attach to every of the ports a generator, or a
load. The matrix I contains all the information on transmission properties

of the resulting multiport network.
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Section 6.

TWO-CONDUCTOR TRANSMISSION LINES

By now, we have learned how to evaluate the scattering matrix of a

MIL consisting of N conductors above the ground. The numerical results
will be obtained on a digital computer in the following way:

Step 1. Define input datas

N ... number of conductors above the ground
kl ... electric length of the'MfL
K ... matrix of coefficients of electrostatic
induction, from (2.16)
ZL’ER .«o diagonal matrices of left-side and
right-side characteristic impedances,
from (4.11) and (4.18) '

Step 2. Compute the auxiliary matrices:

EL’ ER’ QL‘ and QR from (4.27) and (4.28)

Step 3. Campute the submatrices:

§LL’ §LR’ §RL and §RR from (4.36) through (4.39).
To perform this step one néeds some computer
subroutine for the inversion of a matrix with

complex elements.

Step 4. Print out the values of the resulting scattering
matrix S according to (4.35)

The above procedure remains unchanged, whatever the number of conductors
and whatever their shape. Although S is not given in an explicit form but
in the form of the step-by step procedure, the numerical results from the
computer will be all the information that we will need for a practical
design of a MTL device.
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For some simple cases, it is possible to obtain not only the numerical

results but also the explicit analytic expressions for S without going

into a prohibitive number of algebraic manipulations, Such is the case of

two conductors above the ground, which we will study in the present Section,

0dd-And-Even Modes vs, One-by-One Modes

A mode on a transmission system is an independent solution to the
Maxwell's equations, one which alone satisfies the boundary conditions of
the system in the transverse plénee The transmission system is assumed to
be uniform in the direction of propagation (usually taken to coincide with
the z axis of ‘a Cartesian or cylindrical system of coordinates). The most
general electromagnetic field which can exist on such a transmission
system can be expressed as a linear combination of the fields of individual
modes.

Just as we can talk about the modes constituting the total electric

field on the system, we can also talk about the voltage modes, constituting

the total voltage vector of the MIL, As long as we are dealing with the
TEM types of the solutions to the Maxwell's equations, the voltage of the
n-th conductor is defined uniquely as the line integral from the ground

to the corresponding conductor. Reviewing what we have done in Section 1,
we can easily visualize that our choice of voltage modes was a linear
vector space which had the following basis

V1 0 0
2
0
< ) L -] L4 L e 9 o ’
0 0 VN
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Each of these basis vectors represents one mode in which only one of
conductors has a voltage different from zero (with respect to the
ground) , while the voltages of all other conductors are kept at zero. A
few such modes are sketched in Figure 6.1. To give some name to these

modes, we have called them one-by-one modes, Obviously, there are N

distinct modes on a transmission system consisting of N conductors above

the ground.

Vi=/ VZ:O V3:O \/4;0 V=0 W=/ VZ>:0 ;/4:0 Vt;ﬂ V=0 [é:/ V‘;L:O

- rd?i@\o AN

7/‘//'/"/'/‘/ < g /'/»/// ",/ /// //'

Mode "'One" Mode ""Two'! Mode "Three!

Figure 6.1

For N = 2, the two voltage modes of the one-by-one type are the following:

v ,> =<é) and |Vp> = (Cl’) . (6.1)

A linear combination of these two modes is sufficient to describe any

actual voltage situation on this system of two conductors:
V> = A[VA> + Blvy> : (6.2)
where scalars A and B are the modal components of vector |V>.

As is well known from the theory of matrices and linear vector

spaces, one can easily choose another basis in which to represent the




desired quantities, In the case of two conductors above the ground, it is

possible to define a new basis as follows:

1 1

1 1 -
[Vo> = fg (-1) and |V > = f? (1> ‘ (6.3)

These two voltage modes are called odd and even modes, The odd mode

represents a physical situation in which the two conductors have equal
and opposite voltages with respect to the ground, as in the left side of
Figure 6,2, while in the even mode both conductors have the same voltage

with respect to the ground, as is shown in the right side of Figure 6,2,

= Ak

ST 7 ST T

0dd Mode Even Mode

Figure 6.2

The factor L in (6.3) is for normalization purposes. That is, the odd-

and-even basis is also orthonormal, as one can see from the following
< |v>= 1,
ol'o
<ve[ve> = 1,
<V |V>=<v|v>=0 .
o''e e o .
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By comparing (6.3) with (6.1) we find that the two representations are

related as follows

lV)-

L
° vz

1
V> =z o
Ve g

(IVA> - !VB>)

([VA> + [VB>)

Consequently, odd-and-even mode representation is just another linear

combination of voltages on individual conductors.,

The solution of any

circuit problem related to a two-conductor line may be found in either

one-by-one or in odd~and-even modes.

However, odd-and-even representation

is useful only in systems consisting of two conductors above the ground,

while the one-by-one representation is also useful for any other number

of conductors,

Since the one=by-one mode representation is more

universally applicable, we can completely ignore the odd-and-even mode

representation,

We need be aware of odd-and-even modes only because they

appear in the literature published by authors who prefer to use that

notation when they discuss directional couplers, phase shifters, and

similar microwave devices,

i =
Vv vy

Figure 6.3
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In Figure 6.3 we see two symmetric conductors (denoted by 1 and 2)

above the ground and their relative capacitances. When we say symmetric
conductors we mean that the cross sections of the two conductors are of
the same shape and size and that they are placed at equal distances from
the ground. This symmetry of the physical layout is not to be confused
with the symmetry of the corresponding K matrix. That is, the electrostatic

induction coefficient matrix K is always symmetric (Kij = Kji), regardiess
of whether the physical layout is s&mmetric or not, In other words,
matrix E_is symmetric even if C11 # C22, i.e, even if the conductors are
not symmetric,

According te (2.16), the matrix K of the two-conductor system from

Figure 6,3 is
(6.4)

Next, we will determine the characteristic impedance matrix goe For a
symmetric pair of conductors, Zo will consist of only two distinct

elements, denoted by Es and §m§

. (6.5)

According to (3.23), go is computed by inverting K. The inverse of
(6.4) is

=1 1 11 12 12

K =
== . 2 2
(€13 *+ Cypd7=C, Ci2 €11 * 2 (6.6)

11
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Therefore, the elements of the matrix Zo are

Gt W B (6.7)
s v Gy (G ¥ 2,

c | .

- 12 . (6.8)

n v C11 (C11 + 2C12)
Let us compare these values with the characteristic impedance of the odd
and-even modes, The usual definitions are (see e.g., [14], p. 193)

-

foe ™ T (6.9)
for the even-mode impedance, and
Zoo * TC L 5 (6.10)
11 12

for the odd-mode impedance., Comparing these two expressions with (6.7)
and (6.8) reveals the following relationship:

%cz £ ), (6.11)

S oe 00

(Zge = Z5o) (6.12)

N =
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Directional Coupler

Figure 6.4

The most common configuration of the coupled-line TEM directional coupler
is presented schematically in Figure 6.4. We will investigate its
properties from the scattering-matrix point of view.

When a lossless 4-port is acting as a directional coupler, its
scattering matrix should have the following form:

|
o s, | sy 0 . .
s, 0 10 S S SR
§. S |wrvesrmesvomws ﬁ}t, ============ = . e (6913)
S5 0 | O 12 Sa Sme
|
0 sy s, o

When the elements on the main diagonal are zero, the device is

internally matched (i.e. the device shows no reflections when terminated

at every port in an outer resistance equal to the characteristic impedance
of that port). The terms on the opposite diagonal are zero when the
device has a property of isolation between the corresponding ports (e.g.
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the energy of a wave entering port 1 splits into two parts which come out
of ports 2 and 3, with nothing coming out of port 4, etc.). 6

We are interested in determining the conditions under which the network
from Figure 6.4 has the properties of internal match andlof isolation.

According to (6.13), the internal match requires

S,, =S . (6.14)

For simplicity of computation, we choose that all ports are normalized to
the same characteristic impedance Zcu' Then, the matrices (4.11) and
{(4,18) simplify to

2, =Zp =1, = Z&Ll s | (6.15)

where I is the identity matrix., Furthermore, when Zs is expressed as in
(6.5), the auxiliary matrices Bzaﬁd Q from (4.27) and (4.28) become

Z + 2 Z ‘l!!

1 c S m
P, =P =P == (6.16)
=R e - \Z ’
QG =9 2" R " (6.17)
£~ L—)'i i ’ O ] —
Ve Z, Z, = Zg

From (4.36) and (6,14} we obtain

| y . . 0 1) -
jk1 le E-_ewjkl mjl gg"l e~k | Ikl 515 . (6.18)

T ‘ S\t oo

By noting that the inverse of the matrix on the right-hand side is equal -

av)

fe

to itself, i.e.

= ‘ . (6.19)
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we can rewrite (6.,18) in the following form

. o1
(e7IKL L Ikl =5, (e
10

KL gbp L g3l pl gy, (6.20)

Computation of (6.20)requires the inverse of matrices P and Q. For

shorter notation, the determinants of these two matrices will be denoted

by Dl and Dzs
2 2
} Dl = det (E-) = (Zc + zs) 'Zm 9 (6921)
D, = det (Q) = (2. - 2)° -z (6.22)
2 e s m ¢

After performing the matrix operations required on the right-hand side of
(6,20) and comparing the diagonal elements on both sides of this matrix

equation, we obtain the followings

0= (D eIkl | D, e~Ik1, (zi - zz + zi) . (6.23)

When this condition is fulfilled, the device is internally matched. Since

D1 is different from Dza the first factor in (6.23) cannot be made equal

to zero, Therefore, the only possibility for internal matching is

Z = Z - z [ (6924)

Next, we shall investigate the conditions for isolation between ports.
The device from Figure (6.4) will have ports 1-4 and 2-3 isolated when

the off-diagonal elements of matrix §LR from (6,13) are zero. The
expression for §LR is given by (4.37), which for the case under consi-
deration becomes

IS LRSS LS g

ete gt

Q@'r-pt Q=51 (6.25)

(
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From the requirement that the off-diagonal elements on both sides of the

equation are equal to each other we obtain °
JkL -3kl .22 2. -
(e © ) (Zc - Zs + Zm) 0. (6.26)

When the above requirement is fulfilled, the ports 1-4 and 2-3 are
isolated from each other, This time we see that, at least in principle,
there are two ways to achieve the isolation, namely, by making either the -
first or the second factor in (6.26) equal to zero. Obviously, when the
second factor is zero, the device will at the same time have the ports —
isolated and be internally matched. These two properties will be retained
regardless of length the 1 of the device,
The other possibility for achieving the isolation is to choose such
a length 1 that the first factor in (6.26) will become zero. This will
happen when 1 = (2n + 1) A/2. Such a case has been studied in Section
4, and it was found that not only ports 1 and 3 are isolated, but also 1
and 2 are isolated at the same time, so that all the energy entering
port 1 comes out of port 3. Such a device is certainly not useful as a
directional coupler, .
Referring back to the case when condition (6.24) is fulfilled, we may
ask ourselves the following question, If the directional coupler possesses
the properties of isolation and of internal matching regardless of the
length 1, why is it that every practical microwave directional coupler is
chosen to be one-quarter of wavelength long at the center frequency? We
can find the answer to this question by investigating the frequency
dependence of the coupling coefficient S

12°
In order to plot the frequency dependence of the element 812 of the

scattering matrix §LL’ we may use the'computer‘printout of the formula —
(4.36) , without even bothering to find the explicit analytic expression.
However, the algebraic manipulations of 2 x 2 matrices may be performed
in a straightforward way, and the analytical result of substituting (6.24)
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into (4.36) is found to be

-jkl
D1 D2 (e

22 7 (D
m ¢

- ejkl)

12 eJla + D, e

=j3
1 2 )

The above expression may be somewhat simplified by noting that at

kl = /2 the value of S12 is
il ‘Zm
512 (kl = 72-) =C = 'i—s- ¢ (6.27)

With the use of C, our expression for Sl may be put in the form

2

jC sin ki
S = e e ' 9
2
L V 1l - C2 cos k1l + j sin kil

which is the same as givén e.g. in [14], p. 778, The amplitude and phase

(6.28)

of 812 are plotted in Figure 6.5, as functions of the normalized frequency
f/fo. 1t is clear that the coupling between ports 1. and 2 varies

coﬁsiderably with frequency, except in the vicinity of the frequency f = fo’

where the length 1 is equal to one?quarter-wavelength. In the neighbor-

hood of this point, the coupling becomes stationary with frequency. This

explains why the design of every directioncl coupler is centered at 1 = A/4,
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All-pass Two-port

The all-pass network is an example of the one-sided section of a two-
conductor transmission line, The right-hand side of the network consists

of a simple junction of ports 3 and 4, as shown in Figure 6.6a,

2
!

T T v

(4) (4)

Figure 6,6

The network T, which is connecting ports 3 and 4, is indicated in Figure
6.6b, Assuming that ports 3 and 4 both have the same characteristic
impedance to which they are normalized, the scattering matrix of the
terminating network is [8]

0 1

T = (6.29)

1 0
The analytic expression for scattering matrix L of a two-port consisting
of ports 1 and 2 will be found from (5.10), Let us mention again that
for computation of numerical results we do not need to go through the
derivation which follows, because (5.10) is already useful for evaluating
the results on a computer, However, when we want to find the explicit
analytic expressions for scattering matrix L, we have to go through the

following algebra.,
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For simplicity, we again choose that the characteristic impedances
at all four ports be equal to each other, as we did in the case of the
directional coupler:

2, =2, =2 L . (6.15)

Auxiliary matrices P and Q are the same as in (6.16) and (6.17). The

other pair of auxiliary matrices G and H follows from (5.6) and (6.29):

) ZC+ZS-Zm ZC-ZS-O'Zm
GC = e
T Vzelz -z 4z Z +72 -2 :
¢ “s T “m ¢ “s " ‘nm
- + -
1 2o = 2g Iy 2o Eg m Iy
-}ilz .
VZe Zg * 2g = 2 Ze m L Iy

Substituting these values in (5.10) we may compute all the elements

of the matrix L. In general, since the network is reciprocal, le = L21

Furthermore, since we choose the same normalizing numbers at all ports,

and since the two conductors are chosen to be symmetric, L11 = LZZ. The

computation reveals that L11 is proportional to the factor

2

2 2
(Zc ind zs + Zm) .

By choosing this factor to be zero, as in the case of the directional

coupler (condition (6.24)), we can make L_, = L22 = 0, This means, that

11
the device is internally matched., When (6.24) is fulfilled, we obtain

2 2 . .
L. ZS - ?E cos k1l -j (Z,S - Zm) sin k1 . (6.30)
12 ' . .
Zs - Zm cos k1 +j (Zs - Zm) sin k1
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As the denominator is the complex conjugate of the numerator, the absolute

value of le is unity, This should be so because the network is lossless,
and L11 = 0, The phase angle 6 of expression (6.30) is
-1 Zg =y
6 = Arg L12 = <2 tan ( —r tan kil ) ¢ (6.31)
s m
The scattering matrix of the network is, therefore,
36 0 1
L=2¢ (| o) (6.32)

where 6 is given by (6.31), The network is internally matched, and it
transmits every wave unattenuated from port 1 to port 2 or in the opposite
direction, The phase of the wave passed through the network is shifted
by the amount of 6 radians. Therefore, this two-port is an all pass

network,

Scattering matrix L from (6.32) implies that if the all-pass two-port
is terminated in a matched load, the incident wave will be transmitted
through the two-port with an unchanged amplitude and with a phase shift
equal to 8, However, under normal operating conditions one may expect
that the load impedance will slightly differ from the characteristic
impedance. We want to investigate the error in the phase shift which is
caused by such'a mismatch, The network to be studied is shown in
Fig. 6.7. The all-pass two-port is indicated by a dotted line, the gene-
rator has a reflection coefficient Fg’ while the load has a reflection

coefficient PL. We define matrix I as

I' = diag (Fg, r) (6.33)

To compute the phase shift between incident wave a_, and outgoing wave

sl
b2 we will use the I matrix procedure as defined in (5,19) and (5,21),

The vector of generated incident wave is

> A7)
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Figure 6.7

The vector of scattered waves is
b> =2 ] a >
- s

If one knows the exact value of matrix [, I may be computed from (5.19),
and its element 212 will contain the desired information about the ampli-
tude and phase of the ratio bz/aslfrom Fig, 6.7, However, usually we know
only the bounds on lfgl and [T |, and we want to investigate what is the
resulting bound in phase and magnitude error. When

|Fg| << 1 and IFgI << 1
each term of the product L T in (5.19) will be much smaller than unity. In
this case, one can use the Neumann series for the inverse of identity plus
small operator [26]

$=(I-LDL=(+LI+LILT+...)L (6.34)

By using only the first three terms of this expression we obtain

f*L+LTL+LTLTIL, (6.35)

Substitute (6,32) and (6.33) into (6.35):

.~ 36 s0 1 120 4

P < ) P <I‘Lo>+e336< 0 rLrg). (6.36)

10 oT r.T

g L'g 9
The term of interest is
b
_ T2 . 46 . 538
Iy = 5y el +e rLrg, (6.37)

the graphical representation of which is shown in Fig, 6.8,
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[(mag.

Figure 6.8
From Fig. 6.8, maximum phase error A€ is
_ s =1 -

A8 = sin [rbrg[ ~|1"Lrg|. (6.38)
One can see from (6.38) that the generator mismatch and the load mismatch
have the same effect on the phase error. If each of FL and Fg is having a
magnitude 0.1 (corresponding to a standing wave ratio of 1.2), the result-
ing phase inaccuracy is about 0.6°, The same analysis can be applied also
to a more complicated case when the all-pass scattering matrix is not ideal
such as in (6.32), but it has some non-zero reflection coefficients on the

main diagional, Furthermore, the analysis is applicable to any number of

conductors.
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Maximally-flat differential phase shifter

The arbitrary phase shift between ports 1 and 2 may be realized by
inserting a simple transmission line between these two ports, as in ‘

Figure 6.9a. If the line is continuining on both sides into the lines of '

o~

N 2\ phase
/| oV difference
Y =G + ¥

- [L—AJ; O

(a) (b)

Figure 6.9

the same characteristic impedance, wave ay incident on port 1 will produce

a pure traveling wave which will come out of port 2 as b2:

b, = a eujw, where ¥ = kh, (6.39)

2 1

Obviously, this crude phase shifter depends greatly upon frequency, As the
propagation constant k is proportional to the frequency £, the phase shift

P varies linearly with frequency:
£k . )
¥ = kh +kh - =P+ A (6.40)
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We have denoted with f§ the frequency at which the phase shift has value
wo' (6.40) indicates that the phase shift is decreasing with frequency.
If we want to synthesize thedifferential phase shifter which has

essentially constant phase shift over a wide range of frequencies, we can
use the structure from Figure 6.9b, as proposed originally by Schiffmann
[l9].l The idea is to combine the phase shift ¥ of a section of a cable of
length h with the phase shift © of an all-pass network, as shown in
Fig, 6.9b, The phase difference 6 + Yy may be made virtually constant over
the range of frequencies, if the slope of 6 curve is made equal to the
slope of Y curve. Originally Schiffmann proposed to use such a device for
90° phase shifters only, and he did not give much information about how to
choose its dimensions. We will see that by using (6.31) we can derive
simple design formulas which are valid for any value of the phase shift,
and which result in a maximally flat behavior of the total phase shift.

' For shorter writing, we will use the following notation:

¢ = k& ... the electric length of the all-pass network, (6.41)

= 2-c . coupling ratio. (6.42)

1+¢C

Note that for very loose coupling of two conductors, m = 1. The tighter
the coupling, the smaller the value of m. In the microstrip technique it
is difficult to fabricate very strong coupling, Therefore, we desire that
our m will be reasonably large, of the order 0.5 or so. In other words,

if we have to choose between two possible designs, one requiring m, = 0.1

and the other m, = 0.3, we will usually prefer the larger omne, My

In the new notation, (6.31) becomes:

6 = -2 tan™> (m tan 6). (6.43)

When the frequency varies around the value fo’ ¢ will be presented as
f-f
o

f .
o

¢ = q>o *h¢ = ¢o * ¢o (6.4u)
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For reasonably small values of Ad¢, € can be expanded in the Taylor series

around the wvalue ¢° as follows:

2

6 =0 + 2% | Ad + %- Q—g- | 862 + ... (6.45)
o, ° o w0 e,

‘We will retain the first three terms of this expansion. The symbol [¢o

denotes that the quantity is to be evaluated at ¢ = ¢o. From (6.43) we

find the coefficients of the Taylor series as follows:

8] = -2 tan™t (m tan ¢) (6.u8)
%
g_e_ | = A -2m Y (6047)
d¢ ¢o 1-(1- m2) sin2 ¢°
2 2 .
3—9-[ _ =2m (1 - m") sin 2¢o . (6.48)

do ¢o [1 - (1 - m2) sin2 ¢;T§

Our design should give the following differential phase shift ¢wan between
ports 3 and l:

¢wan = 8+ VY., (6.49)

This desired value of the phase shift should be independent of fre-
quency, in the range of consideration. Substituting 6 from (6.45), Ad from
(6.44), and ¢ from (6.40) into the condition (6.49), we obtain an expression
in the form of a polynomial of the second order., Equating both sides of the
expression term by term results in three equations. From the constant term

we obtain the first requirement:

¢wan = 60 + wo (6.50)
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From the linear term in frequency we obtain the second requirement:

W
@ .2, (6.51)
d¢ o ¢O
o)
Finally, the square term results in the third requirement:
2
2 =o. (6.52)
do” ¢

o
Substituting (6.48) into the third requirement, we find that we must choose

the length of the all-pass network according to
sin 2¢O =0, or ¢o *n o forn = 1,2,3, «us (6.53)
As one can see, there are many possibilities for maximally-flat phase be-

havior: n = 1,2, .. etc, However, we will consider seriously only the

first two possibilities, namely n = 1 and n = 2,

From the first requirement, we obtain

) = =

L ¢wan +m forn = 1, (6.5u)
and

wo = ¢wan for n = 2. (6,.55)
Then, from the second requirement we obtain

m = T forn = 1, (6.56)

+
¢wan m
and
m = ____fﬂiﬂ___ forn = 2 (6.,57)
2‘”‘ . .

The last two equations determine the coupling ratio m, We see that for

¢wan = m, both equations give the same result: m = %u However, for
¢wan < T the case n = 1 will give a larger m (looser coupling), while for
¢wan > m, the case n = 2 will give a larger m,

From the definition of m (6.42), we see that the coupling coefficient C can
be computed as

2
C =-l—‘—'-—”l§~. ' (6.58)
1 +m

Since much of the published data on coupled transmission lines is given in

terms of odd-and~even characterisitic impendances, we will use (6.11) and
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(6.12) together with (6.42) to obtain

. (6.59)

oe

The other relationship between Zoe and Zoo is given by the requirement that
the all-pass be intermally matched, The condition is given by (6.2u4)

Z_ =\Z. - 2° ,

c s m
or, in odd-and-even notatiocn,

Zo = g Zog o (6.60)

In the above, we have derived the formulas which enable us to design

a maximally-flat phase shifter of the Schiffman type. The procedure is
as follows

(1) Givenvalues: ¢

and Z
wan c

(2) From (6.56) or (6.57) compute m and decide whether n = 1 or n = 23

n specifies the length of the phase shifter, according to (6.43).

(3) Choose the cross-sectional dimensions of the phase shifter so
that (6.59) and (6.60) are satisfied; namely

= -Z'—c- b . (6'61)

= ml .
(o} oe m

(o]0]

In order to check how good is the design, we may go back and compute the
total phase shift ¥ + 6 as a function of frequency. This time we should
not use the approximate Taylor's expansion for 6, but the exact function
from (6,43).

As an example, one has computed a 508, 120° phase shifter with the
center frequency fo = 1.,5GHZ, The length of the phase shifter is
% = 10 cm (for the air-filled transmission line), and the length of the
auxiliary line is h = 6.67 cm, Furthermore, the coupling ratio is
m = 0,333, and the odd and even mode characterisitic impedances are 16.67Q
and 150,09, The computed phase shift as a function of frequency is shown
in Fig. 6.10. As one can see from this figure, the phase shift deviates
from the design value for less than 5° in a wide range of frequencles

between 1,16 and 1.84 GHZ,
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Tigure 6,10
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