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ABSTRACT
In this note, the method of analyzing the scattering

behavior of intersecting wire structures using the Pocklington
integro-differential equation is presented. Unlike the often
employed Hallén equation, this form of the E-field equation
requires no additional boundary conditions on the current

in order to get a stable solution. As in previous straight
wire studies, it is found that with pulse function expansion
and point matching about five zones per half wavelength give

an accurate representation of the wire current.
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I. Introduction

In attempting to determine the currents and charges
induced on aircraft-like structures when exposed to an
EMP, it is often common to model the aircraft by a few
crossed wires. With such an approximate model, it is then
possible to formulate an integral equation for the total
current flowing on the wires and solve it using numerical
methods. Such a model is valid only at relatively low
frequencies, where it can be assumed that only axially
directed currents exist on the aircraft. At higher fre-
quencies, it is possible to develop a more complicated
integral equation which has as unknowns both orthogonal
components of surface currentclz% or it is possible to
model the aircraft by a number of interconnected wires
forming a mesh(llx

In both the wire mesh and the crossed wire models
it 1s important to insure that the numerical method employed
for the solution provides the chrect behavior of the
currents and charges at wire junctions. A number of investiga-
(3,4,5,6,7,13,14,15)

tors have looked at the junction problem in

the past. However, the majority of such research has been



related to the Hallén form of the E-field integral equation,
which requires that specific boundary conditions be
imposed on the wire currents in order to obtain a unigue
solution.

It is well known that the Pocklington form of the
E-field equation gives results which are almost identical
to those of Hallén's equation for a single straight or
curved wire(loz This is done, moreover, withbut making
use of explicit boundary conditions for ?he current. As
will be seen shortly, the same is true for intersecting
wires which are treated by the Pocklington equation. The
computed values of current at wire end points and at the
junctions can then be used to determine the accuracy of -
the overall solution, since their behavior at these points
is already known from Kirchoff's law and charge conservation.

Tﬁere is more than just academic interest to warrant
further studies of the junction problem. Since the ultimate
goal is to obtain the freguency domain and corresponding
time domain behavior of the induced charge and current on
the aircraft structure, it is necessary to have a computer
code which is efficient and rapidly converging. This is

(2,15) are used

(1,17)

true notc only if conventional FFT methods
to compute the transient response, but also if SEM
is used. Because the vector potential A is not oriented
in a single direction for a general collection of inte-
resting wires, the Hallén form of the E-field equation
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becomes tedious to program and time consuming to run on
the computer. The Pocklington equation, on the other
hand, is much easier to program and runs relatively
rapidly on the computer.

In this note, therefore, a brief study of the
application of Pocklington's equation to intersecting thin-
wire structures is presented. it is found that remarkable
convergence is obtained, but that a certain degree of con-
sistency must be maintained in numerically performing the
integrations and differentiations required in the process
of obtaining a solution. The interesting question of how
thick cylinders behave is not treated here, but certainly
deserves additional study, with special emphasis on the

junction.



II. Formulation

The starting point for formulating the Pocklington

integral equation for a scatterer is Maxwell's equations(ZO).

From these it is a well known fact that the E and H fields

can be represented by potentials A and ¢ in the following

manner:

E(”fo)= —ij(Fo) - V0 (Eo) (la)

-1 —

B(r,) = u_ v _xA(T,) (1b)

where fg is an arbitrary observation point shown in

Figure 1. A time dependence of ejwt is assumed and suppressed.

~

n

surface §

volume V

observation
point

origin

Figure 1.




The potentials A and ¢ are related to the current
density J and charge density p which exist in the region

where the fields are to be computed, and are expressed as

Axy) = ug ,/‘ J(x) G(rolrs) av, (2a)
sources
and
b (r.) = L j[ o(r ) G(r_ r ) 4av (2b)
o €5 S 0, s S !
sources

where Green's function G(f§ ES) is a solution to

14

and has the form

—jk[fé—fsi
G(xr.T) =% . (4)
0 —_ -
dm|r -

5!

It is now possible to insert (2a) and (2b) into (la)
to determine the electric £field produced by the current
and charge in the volume V. 1In typical electromagnetic
scattering problems,khowever, these guantities are induced
by the incident field and must be calculated. Instead of

determining J and p together, it is possible to use the



VXH Maxwell equation and derive the continuity equation,

which is
Ved = =jup . (5)

In addition to the volume charge density p, it is possible

(20)

to have a surface charge density P giveh by Pg

which satisfies
jwps = neJ (6)

where 5 is the outward normal from the surface S which
encloses the sources of charge and currents, as shown in
Figure 1.

With these relations, the electric field produced
by the currents and charges within the volume V may then
be expressed as:

E(r) = ~Jwug E(ES) G(?O,ES) avg

v VS-J(rS)G(rO rs)dVS - nuJ(rS)G(rorrs)dSS .

r

(7)




For an isclated body which lies completely‘within a sphere
of some finite radius, it is known that the normal surface
current is zero. Thus, the last term in Eg. (7) can be

omitted. However, if Eg. (7) is applied to only part of a
current carrying conductor, it is necessary to retain this

term.

observation e ~
point U

r ] neJ#0
(e} ] y) #
\ V)
\——"h’,
origin .V
noJ:

0

Figure 2.

Congider the example of two intersecting wires shown

in Figure 2, where it is desired to compute the E field at

ry s assuming that the currents J on the wires 1 and 2 are

known. If the entire structure is considered, the integral
over S vanishes since 3-3 = 0 at the ends of the current
carrying region. However, if only wire 1 is considered,
neF # 0 at the end near the junction, implying that the
additional term in Eq. (7) must be retained. However, the
total field at Eg is produced by currents on wire 1 and

wire 2, and it is easy to show that the contribution from



2+F on wire 1 cancels that of n+J of wire 2, provided
that the current flow is continuous across the junction.
This implies that if Kirchoff's current law hélds at
the wire ZJunction, the surface integral in Eg. (7} need
not be included if Eg. (7) is applied to each separate
leg of the wire scatterer and the results then summed to
get the total field. This result is easily extendable
to an arbitrary number of intersecting wirés.

Instead of invoking Kirchoff's léw and setting the
last term of Egq. (7) to zero, however, Eg. (7) can be

simplified by noting that for a scalar function ¢ and a

vector function a
v(pa) = (Vea)e + Voea . ‘ (8)

Integrating this over a volume V and using the divexrgence

theorem yields

n.a ¢ds - Voea dAv . (9)

(vea)d Av

Letting a2 = J and ¢ = G, and applying Eg. (9) to Eq. (7),
it is possible to transfer the VS operation from the
current over to Green's function, as well as eliminate the

integral over the surface S. Thus, Eg. (7) becomes
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v E(Es)-vs G(fg,?é) dVS . (10)

Note that Eg. (10) involves only the current densities J,
without added boundary conditions. This equation is valid
for the whole current carrying volume, or just a portion
of it. 1If it is used to form an integral equation for

the unknown currents J, the fact that Kirchoff's current
law must be obeyed at any junction is inherent in the
equation.

The integral equation for the unknown current J is
formed by letting the observation point fé approach the
volume of current and then relating the scattered field
to the incident field. Note that the integrand in Eq. (10)

becomes singular as—fa==>f The highest order singularity

S
is of the form l/r2 which is integrable within a volume V.
If only surface currents are considered, as in the case
of a perfectly conducting body, this integral is still
integrable. In many cases it is tempting to put the ?o

operation within the integral of the last portion of Eg. (10),

vielding
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— 1 [_ =\, ] - — 2= - —
E(r,) = Joe, J(rs) Vo Ve G(ro,rs) k“J G(ro’rs) dVS
v (11)
Noting that V G = - V_G, Eq. (ll) is written commonly as
B(E.) = + = JF(T)-T(F. F.) av (12)
o Jue s’ =70, s S
where the dyadic Green's tensor [ is defined as
o e—jk!ro—rsl
L(rolrs) = (V ¥V, + k71 —— (13)
dmir -r_]|

If Eq. (12) is employed to form an integral equation
by letting EE approach fS ;, it is seen that the integrand
now has a l/r3 singularity which is non-integrable. The
process of simply interchanging the operation Vo and the
integration is valid for points where 56 # Es' The treatment
of the case when ro=£s has been discussed by Van Bladel(Zl),
and involves taking the principal value of the integral in
Eg. (12), as well as adding an extra term J/3jwe for the
singular contribution. For the present study, however, the
less singular Eg. (10) will be employed to form the inte-
gral equation.

For a thin, intersecting wire scatterer it is possible
to make a number of simplifications in Eq. (10) in order

to derive the integral equation. By assuming that only the

total axial currents and fields are important and using

)

=inc =
7 sca

the condition ¢ + E

tan = 0 on the wires, Eg. (10)

12




yields the following integral equation

. inc, =, _ .2 - = =\ = T
-jweg Etan(io) =k I(ES)K(io’ES)EO'ESdgs

) = )
Y jrl(is) Y dES ' (l4a)

where 35 and §S are the distances from the junction to
the observation and source points, and the kernel K is
related to the integral of G around the wire circumference

and is given approximately by

e—jk'V7€O—€S)2 + a®

K(E, B, = . (14b)
V()% + a?

for thin wires(lo). In this equation, there are derivatives
on both the source and observation points, due to the fact
that the direction of the current flow is not always the

same on the wire structure. If this were the case, as in

¥

a straight wire antenna, Eq. (l14a) reduces to the well-

(17)

known equation .

. _ 2 —_ _ - -
~jwegBilC (B,) = K% + ﬁ%f 1(E,) K(E, EdE, . (15)
(0}



IIT. Numerical Technigue

The solution of Eqg. (l4a)is effected by using the
moment method<9). The expansion functions for the current
will be chosen to be pulse functions and the testing
functions are delta functions which implies a point-match
solution. Previous experience with the solution of
Pocklington's equation in this manner has shown that these
choices lzad to a reasonably rapidly converging and stable

solution for the current(l6’l7).

Instead of carrying out the derivative 5%— in Eg. (l4a)
s

explicitly, experience has shown that a finite difference

method for evaluating this quantity gives good results.

ij
l"
source ith observation
point point
Figure 3.
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The same holds for the ggé operation. Consider the two,
nonparallel wire segments shown in Figure 3, each of which
is divided into a number of cells of length A in which
the induced current is assumed constant. For the i Eh

observation point, and the jth source point, the matrix

element Zij is given by

e s
jA J .2 N
= S o B
1,3 7 Ge, R(E;,B)E4E ac
g
3772
A
s A A A A
Eat—5 O . S O .S
lAO AS
] -
i 2
A
s 3
gt A A A A
- K(al-—;%—i) —(K ai———z-‘i,a-—zf-)da
- y (16)
AS
b
j 2 /

where Eg and Eo have been defined simply as gj and g -
j i

Note that in these equations, a center finite difference

scheme has been used with sample points a distance of A

away from the gi and gj points.

1



By denoting each of the separate integrated kernel

terms in Eg. (10) by ®i,j R ¢i+,j+ , etc., Eg. (16) takes
the following form
A
- .8 - 1 - -
i3 T e (%3 T B0, [®i+,j+ Pie,g- 7 %io, e Y ®i—,j—}

(17)

Because the kernel K is non-singular, due to the thin-wire
approximation given by Egq. (14b), the values of ¢ are
readily determined by direct machine integration.

It is interesting to note that the above finite
difference expression is identical with that which would
be obtainad if Egq. (l1) were to be used, since 55 # ;s .
For the case when Es and Eo are at the same cross section
of the same wire, Egq. (17) will give the correct value for
the impedance matrix because the integration is performed
before the differentiation is carried out by the finite
difference method.

The method of zoning the scatterer near the ends
of a wire and in the vicinity of a junction is illustrated
in Figure 4. Near the end of the wire a sample point is
located such that it lies exactly at the end of the wire(g).
Denoted by i = 0, it is easy to show that the current in this

cell can contribute one row and column to the system impedance

matrix Z. Fowever, if one uses the a priori knowledge that

16




I = 0 at the wire end, it is possible to completely

eliminate these contributions to the matrix, thereby

requiring oniy cells 1, 2, 3, etc.

0 1 2

P---
(]
¢
)
beoe

h---.ﬂ
o ap a» 1
[ )

°
I r
®
S
.

b v 2ur e -
N

(b)

Figure 4.

Another way of treating the end, however, 1is shown
in Figure 4b where the zoning of the wire starts exactly
from the end of the wire. This method also gives good
results, although they are slightly different from those
obtained using the previous zoning method. The reason
is that by using pulse functions the actual length of
the scatterer is ambiguous to within a factor on the order
of the size of the cell A. Thus, as A becomes smaller,
the resulrs of (a) and (b) in Figure 4 tend to converge
as long as all integrations and other numerical procedures

are done consistently.
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The method of zoning at the wire junction is shown in
Figure 5. At the junction, the first cell starts right at
the end of the wire without a half-zone overlap. Note that
there is a small portion of each zone which overlaps adjacent
zones. For thin structures, this overlap appears to be of
no consegjuence, but és the radius of the wire approaches the
cell width, appreciable errors may be present. The treat-

ment of such problems still needs to be considered.

Figure 5. Zoning at the wire junction

There has been some concern expressed that, for
the types of zoning illustrated in Figures 4b and 5, the
gample points used for taking the finite differences to
approximate the derivatives in Eg. (14a) can lie outside
the metallic boundary of the conductor. This concern
may be justified if such operations were to operate on

the current, as in Eg. (7), but in the present case all

that one is interested in is the wvariation of the kernel

18




in space. Whether there is metal near one of the finite
difference points or not is unimportant. What is important,
however, i1z that the eventual matching point be located on
the metal so as to permit the enforcing of the proper

boundary condition at that point.
With these considerations, the resulting matrix

equation for the unknown current takes the form

[4)[x) - [v]

where the vector [V] represents the voltage drop of the

incident field across each cell and is given by

_ .inc
vy = E (E4) 45 (19)

for a point match solution. The solution for the current

is then obtained using standard matrix inversion algorithms.
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Y
IV. Computation Results and Discussion

To study the behavior of this particular formulation
of the E-field equation when applied to intersecting wire
structures, the planar, three-arm scatterer shown in
Figure 6 was iﬁVéstigat;d in some detail. In the cdmputa—
tions, no knowledgerregarding the behavior of the currents
at the junctionsrwas included in the solution, although
the fact that I = 0 at the wire ends was used implicitly
by choosing the zoning illustrated in Figure 4a.

It is of some interest to compare the solutions -
obtained for various sampling densities of the current.
Figure 7 shows both the real and imaginary parts of the

induced current on legs 1, 2, and 3 of the scatterer having

the paramzters Ll = L2 = L3 = .5, 81 = 90°, 82 = 120°,
Q=2 ln(Ll/a) = 10 (a=.0034)). From this figure it is

seen that the convergence of the solution as a function of

the number of sample points on each leg is remarkably good.
Even for three sample points on éach leg of the structure,

the current values are reasonably accurate. The trouble

with using only three points, however, is that it is difficult

to interpolate the current values between the known points.

Thus, a higher number of sample points must usually be used.

20
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Geometry of a planar, three-arm scatterer.

21



Wire 1 Wire 2 Wire 3
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Figure 7. Currents induced on three

92=120°, Q=24n(L,/a)=10.,

sampling points per wire.

intersecting wires with L1=L2=L3=.5A, 61=90°,

shown for various values of ND, the number of
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X » . —
£=0 34 . _5A -
\A T o
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Figure 8.

In Figure 7 it is noted that the cﬁrrents are
assumed to be positive when flowing away from the junction.
One estimate of the accuracy of the solution is to look
at Kirchoff's current law at the junction. Since the
current is not known exactly at the junction, it is
necessary to extrapolate its value from previously determined
values. Consider Figure 8 which shows the first three

cells on a particular wire., The current on the wire can

be expanded in a Taylor series as
1(5) = 10) + 10 + 0L g2 4 (20)

By keeping the first three terms and equating to Il ' 12

and I, at A/2, 3A/2 and 5A/2 respectively, the following

3

equation results
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2
A A
2 % L© !
1 35 géi I'(0) = I (21)
2 8 2
op 2
50  25A "
o7 e LY Lt
which can be solved for I(0). This gives the extrapolated
junction current as
157, - 101, + 3I
10) = — 2 . (22)

The junction currents for each wire have been com-

puted by this method and then summed to verify Kirchoff's

law. Figure 9 shows the magnitude of the sum of the

junction currents expressed as a percentage of the magnitude

of the largest current value found on the scatterer after

numerical
for three
law is as
the error

it

ccnvergence has been obtained. It is noted that
sample points on each wire, the error in Kirchoff's
large as the maximum value of the current, while
drops to lb% for fifteen points per leg.

is a bit puzzling to have such large discrepancies

in the junction current sum when the calculated values of

the wire currents appear to be fairly independent of the

number of

sample points, as witnessed by Figure 7. The

24




answer lies in the uncertainty inherent in the extrapolation

process.

For only three sample points on a particular

wire, it is not reasonable to expect that the three-point

formula for the junction current of Eq. (22) will give

accurate results.

100

90

80}

70

relative 60k
max. 50p
40¢

30

20

10p

0

—

o

.

K]

- .

34 5 6 7 89 10 1112 131415

Figure 9.

ND

Error in Kirchoff's current law at junction
as a function of the number of sample

points, ND.

One solution to this problem is to simply take more

sample points and then the extrapolated solution for the

junction current becomes closer and closer to the exact

solution.
not desirable

a minimum.

the A/a ratio decreases and eventually

Moreover,

mation becomes invalid.

In many instances, however,
due to the need to keep

as the number of

this procedure is
computer time at
cells increases,

the thin wire approxi-



A possible way to overcome this difficulty is to
determine the junction currents from the wire currenté
using the knowledge of Kirchoff's law at the junction.
Consider three intersecting wires, each assumed to have
the same radius. The currents on each are labeled as
I(£), J(£) and K(§) respectively. As done previously,
each current can be expanded in a Taylor series of the

form

I(g,)= 1(0) + CyE + czgf

J(E,) = 3(0) + CuE,+ CuE2 (23)
) 2
K(E5) = K(0) + c5£3+ C6£3

where Cl R C2 R C3 ’ C4 R C5 and C6 are unknown, as well
as are the Jjunction currents.

To find these values, it is possible to equate
Egs. (23) to the appropriate values Il, Iz, Jl ' J2 ’ Kl

and K, , giving six equations in nine unknowns. Another

2

independent equation is found from the Kirchoff current law

T(0) + J(0) + K(0) =0 . (24)
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The final equations come £from the derivatives of
the current at the junction. The surface charge at any
point on the wire is given from the continuity equation

as

S (25)

where J 1s the current density on the surface of the wire.

~

Since J is in the & direction only and is independent of
the circumferential direction, it's related to the total
current by J = I(§) g/Zﬂa, where a 1is the wire radius.
Thus, Eg. (25) for the surface charge density on the wire

becomes

o, = - L1 1 dr(e) . (26)

The physical argument that the surface charge density
approaches the same value as an observer moves along a
wire towards the junction regardless of which wire he is

on provides the additional equations

I'(0) _ J'(0) _ K'(0) (27)

aI aJ aK

where aI ’ aJ andAaK are the radii of the wires and the
symbol ' represents the derivative in the direction of

the wire.
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Thus, from Eg. (23) it is seen that the constants

C C, and C. are related as

1 7 -3 5
a
I
C, = —C
3 aJ 1
(28)
a
I
C. = — C .
5 aK 1

Collecting these equations together, they may be

expressed in matrix form as

2

A A

1 0 0 ol T 0 0 I(0) Il
I
30 9A? '

1 0 0 el = 0 0 7 (0) I,

2

A A

0 1 0 52~ 0 5 0 X (0) 3,
J

0 1 o =4 9 9a? 0 C = | (29)
2a 4 1 2
J

2‘

A A
X

0 0 1 =L 0 9? C X
2a 4 4 2
K

11 1 0 0 0 0 C 0

28



This may be solved and used to determine adjusted values
for the junction currents I(0)., J(0) and K(O)f

Figure 10 shows the interpolated values of the magni-
tudes of the junction currents as well as the adjusted
values using the above technique for the same structure
as treated in Figure 7. Note that as the number of sample
points increases, the interpolated and the adjusted currents
begin to converge, indicating consistency in the treatment
of the currents. Moreover, the adjusted values are very
stable as a function of ND, the number of samples. Thus,
with only five or six samples on each wire, good current
distributions can be obtained. Note also that Kirchoff's
current law is now obeyed exactly by the extrapolated
junction currents.

A further test of the validity of the numerical
solution is to look at the surface charge density along
the wire scatterer. 1In the present case, where the radii
of each arm are equal, it is sufficient to.plot 9I/3¢ as
done in Ficure 1l1l. This was obtained by taking finite
differences of the current I, once it was computed from
the integral equation (l4aL Note that at the junction
the slopes are very nearly equal, indicating good accuracy

in the numerical solution.
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Figure 11. Plots of the slope of the currents (dI/df) at the
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0,=120°, 9=22n(L,/a)=10,



In Figure L2, the computed results for anlinverted
T structure are presented for various lengths of the cross
members Lj and L2 (see diagram on Figure 12}. ‘In this case,
Ly = 5%, 8; = 8, = 90°, 2 = 2 In(Ly/a) = 10 and L, = L
varies from .071) to .5A. ©Near the points where L, and Ly = 0,
the Ly member resonates at its first natural resonance and
the currents increase in magnitude dramatically. In
addition, another resonance is apparent near the point
where L, and Ly approach .5) as the induced currents
again become larger.

Some final remarks are in order regarding the numerical
difficulties encountered in solving Pocklington's eguation
for structures with junctions. The whole reason for using
a finite difference scheme for evaluating the matrix
elements in Eq. (17) was to eliminate the need to integrate
highly singular integrands. If the source point is distant
from the observation point, it is then permissible to
express the matrix element as the E-field radiated by a

current element of moment IA. The fields produced by such

(8)

a current element are given as
IA -jkr Zo
E, = 5- € — * - cosb
r Jjwer
) (30)
. . Z
_ IA _-Jkr Jwu 0 1 .

Egy = I © — t oSt —— sin®

r jwer
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Figure 12. Plots of currents induced on inverted T structure.
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Figure 12. (con't.)
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Figure 12. (cont'd.)

35




for the current element and directions as indicated .in
Figure 13. Once the E field is computed at a particular
observation point, the component tangential to the wire

surface car be evaluated to form the matrix element.

Figure 13. Electric field produced by current element IA.

This method has been used successfully in another
problem<16)but it did not involve wire junctions. Pre-
liminary work for this junction structure involved using
finite difference operators for all matrix elements for
which both %“he source and observation points were on the
same wire and the closed form expression forrzij otherwise.
The results were very inaccurate and were traced to the
fact that if a source point were located in the first cell
of a junction, and the observation point located in one
cell on either side, one matrix element would be computed
by finite differences and the other by the closed form
method, leading to substantial differences. Figure 14
shows this pictorially for two straight wires meeting at

a Jjunction.
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Figure 14. Source point and two adjacent
observation points near the junction.

Similarly distressing results were obtained by
using finite difference equations for the whole structure,
but by using the surface integrated kerneflg) for the
"self" terms in the matrix and using the thin-wire kernel
for the crossed terms. Again, it was found that consistency
in how the matrix elements are caiculated as one moves
through the junction point is important. Figure 15 shows, as an
example of what can go wrong, the junction current on the
L, arm as a function of the number of zones. For this
structure, L; = L, = Ly = .25%, 6, = 90°, 8, = 120°, @ = lo.
The solid lines represent the current for the case when the
thin-wire kernel is employed consistently, both for the
self and the crossed matrix elements. The dashed line is
for the mixture of "exact" kernel and the thin-wire kernel

and shows a marked degradation in accuracy of the imaginary

part as the cell size decreases.
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Solid lines are for the consistent treatment

of the kernel, dotted lines for mixed kernel.
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V. Summary and Conclusions

Using the Pocklington E-field integro-differential
equation, the behavior currents on three intersecting wires
illuminated by a plane electromagnetic wave has been com-
puted. Unlike other formulations, it is not necessary to
use additional conditions or contraints on the currents
to obtain the numerical solution as Kirchoff's current law
and the condition of continuity of the charge is inherent
in the integral equation. Once the numerical solution for
the currents is obtained, the degree to which the junction
conditions are satisifed is an indication of the overall

accuracy of the numerical solution.

From the preceeding data and discussions, it is possible

to draw a number of conclusions regarding the use of
Pocklington’s equation for intersecting wires. These may
be summarized as follows:

1) As in the single thin-wire case, good numerical
convergence of the current is obtained using
pulse expansion functions and point matching

for as few as five zones per half wavelength.

2) The interpolation or extrapolation of computed
current values into other regions on the wire
leads to larger errors for fewer numbers of sample
noints. Thus, the calculation of the input
current at a Jjunction by these methods may yield
large errors if the current is not khown at these

points.
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3) Even though the continuity of charge and Kirchoff's

current law are not required as additional con-
straints for the numerical solution, they may be
employed 'in interpolating the known currents to
give a value for the junction currents. This
results in the ability to use fewer sample points
and unknowns in the numerical solution than would

be normally required.

4) It is important to maintain a consistent treatment
of the kernel of the integral equation, both in
terms of the numerical integration and differentiation
of the free space Green's function, and in relation
to the type of kernel used (thin wire, surface
integral, etc.). Although this is probably not very
important for source and observation points well
separated, it is very important for both located

near the junction.

5) It is generally conceded that the Pocklington formu-
lation will take less computer time than the Hallén
formulation for arbitrary wire structures (although
no data were presented here to confirm this).

The main uncertainty at the moment seems to be in
understanding how to treat the intersection of thicker
wires where the zone size approaches the size of the wire
radius. In this case there is not only a substantial over-
lapping of adjacent junction zones, as shown in Figure 5,
but a severe departure from the assumed condition of axially
symmetric currents right at the junction. As in the case

of obtaining a quasi-static correction term for the end-cap
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effects of thick wires, it may be possible to determine
a similar correction for Jjunctions whose size is

appreciable.

41



VL.

Referenuces

Baum, C.E., "On the Singularity Expansion Method for
the Solution of Electromagnetic Interaction Problems",

EMP Interaction Notes, Note 88, Dec. 1971.

Brigham, E.O. and R.E. Morrow, "The Fast Fourier

Transform", IEEE Spectrum, Vol. 4, pp. 63~70, Dec. 1967.

Butler, C.M., "Integral Equations for Currents Induced

on a Wire Model of a Parked Aircraft", EMP Interaction

Notes, Note 139, Jan. 1972.

Butler, C.M. and M.G. Harrison, "Numerical Solutions of
Integral Equations for Currents Induced on a Wire Model

of a Parked Aircraft", EMP Interaction Notes, Note 1490,

May 1972.

Chac, H.H. and B.D. Strait, "Radiation and Scattering
by Configurations of Bent Wires with Junctions", IEEE

Trans. A.P., Vol., AP-19, No. 5, Sept. 1971.

Crow, T.T. and T.H. Shumpert, "Electromagnetic Scattering
from Configurations of Thin Wires with Multiple Junctions",

EMP Interaction Notes, Note 99, March 1972.

Crow, T.T. and T.H. Shumpert, "Induced Electric Currents
on Some Configurations of Wires. Part II, Non-Perpendicular

Intersecting Wires", EMP Interaction Notes, Note 100,

April 1972.




8.

9.

10.

11.

12.

13.

14.

15.

Harrington, R.F., Time Harmonic Electromagnetic Fields,

McGraw-Hill, 1961.

Harrington, R.F., Field Computation by Moment Methods,

McMilldn, 1968.

Mei, K.X., "On the Integral Eguations of Thin-Wire

Antennas", IEEE Trans. A.P., Vol. AP-13, No. 3,

pp. 374-378, May 1965. (Also personal communication.)

Miller, E.K., et al., "A Numerical Method for Obtaining
the Current and Charge Distributions, and Near- and

Far-Fields of Thin Wire Structures", EMP Interaction

Notes, Note 84, July 1971.

Sancer, M.I. and A.D. Varvatsis, "Calculation of the

Induced Surface Current Density on a Perfectly Conducting

Body of Revolution'", EMP Interaction Notes, Note 101,

April 1972.

Shumpert, T.S. and T.T. Crow, "Induced Electric Currents
on Configurations of Thick Wires: Perpendicular Crossed

Wires'", EMP Interaction Notes, Note 103, May 1972.

Taylor, C.D., Shiow-meei Lin, and H.V. McAdams, "Electro-
magnetic Scattering from Arbitrary Configurations of

Wires", EMP Interaction Notes, Note 42, Nov. 1968.

Taylor, C.D. and T.T. Crow, "Induced Electric Currents on
Some Configurations of Wires, Part I. Perpendicular

Crossed Wires", EMP Interaction Notes, Note 85, Nov. 1971.

43



16.

17.

18.

19.

20.

21.

Teséhe, F.M,, "Numerical Determination of the Step
Wave Response of a Thin-Wire Scattering Element
Arbitrarily Located above a Perfectly Conducting

Ground Plane", EMP Sensor and Simulation Notes,

Note 141, Feb. 1972.

Tesche, F.M., "On the Singularity Expansion Method
as Applied to Electromagnetic Scattering from Thin

Wires', EMP Interaction Notes, Note 102, April 1972.

Tesche, F.M., "Transient Behavior of EMP Induced
Currents on a Sphere with a Trailing Wire Antenna.
Part I, Formulation of the Integral Equation", EMP

Interaction Notes, Note 137, April 1973.

Tesche, F.M., "Evaluation of the Surface Integral
Occurring in the E-Field Integral Equations for Wire

antennas", ACT Mathematics Notes, Note 29, Sept. 1973.

Van Bladel, J., Electromagnetic Fielde, McGraw Hill, 1964.

Van Bladel, J., "Some Remarks on Green's Dyadic for

Infinite Space", IRE Trans. A.P., Vol. 9, pp. 563~566,

1961.

44




