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ABSTRACT

This note is the result of one phase of an effort to
better understand the penetration of electromagnetic energy
through holes and cracks in conducting enclosures. ,
Integral equations of a form highly amenable to numerical
solution procedures are formulated for electrically small
apertures in conducting screens. The new equations are

based on a Rayleigh series analysis and potential theory,

and they characterize aperture fields valid t &T1d /and
SN )
first order in reciprocal wavelength. > Qﬂé%mn \
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I

INTRODUCTION

For EMP studies, it is desirous to charaéterize and
quantitize electromagnetic penetrétion through apertures
in conducting surfaces so that deleterious effects on
electronic systems within éircraft and missiles, among
other units, can be assessed. Even though the classic
problem of penetration of time-harmonic electromagnetic
fields through an aperture in a planar conducting screen,
as depicted in Figure 1, has been the subject cf intensive
research [1l] for many years, still there appears to be
no truly satisfactory formulation of equations both
applicable to general aperture shapes and amenable to re-
cently developed numerical solution techniques.

In this note, a new set of equations, which are re-
asonably well suited to numerical analysis, is developed
for electrically small apertures in planar screens of
vanishing thickness, infinite extent, and perfect con-
ductiV&ty. The formulation is based upon a Rayleigh series
expansion [1,2,3,4] and potential theory, and it leads to
integral equations for aperture fields valid to zeroth
and first order in reciprocal wavelength. Even though
two dimensional, the integral equations remind one of
Hallén's familiar equation of thin-wire theory and, indeed,
they lend themselves readily to an efficient numerical
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FIGURE 1. APERTURE IN CONDUCTING SCREEN
ILLUMINATED BY INCIDENT FIELD

3



solution procedure highly analogous to that commonly
applied to Hallén's equation.

The traditional equations of the aperture/screen
problem are briefly reviewed in this note and a Rayleigh
series analysis is presented. Equations pertinent to
the zeroth and first order Rayleigh series coefficients
are contrasted with corresponding equations based upon
Bethe's [1,5] small aperture theory. Finally, these
equations are converted to new forms of integral equations

satisfactory for efficient moment method analysis.




II
APERTURE EQUATIONS

Properties of Fields Introduced by Presence cf Aperture

Preliminary to the actual formulation of equations per-
taining to the aperture problem under consideration here,
it is desirable to review certain characteristics of the
electromagnetic fields scattered by the infinite, per-
fectly conducting, perforated planar screen. There are
several schemes whereby one can establish the basic pro-
perties of the fields scattered; one may investigate the
nature of the currents and charges induced on the conduct-
ing plane and directly ihfer the behavior of the fields
which these induced sources produce, but possinly a more
illuminating approach, one which is compatible with a
partitioning of the total field into two parts having the
advantage that such leads to a useful set of equations, ¢is
one which is founded upon a theorem set forth by
Schelkunoff [6] in 1951. Applied to the aperture problem
suggested in Figure 1, the theorem simply says that the
total fields E and [, due to a prescribed incident electro-
magnetic wave Ei and ﬁi upon the screen/aperture, can be
viewed as the sum of two partial fields E® + ESC and A® +
M°¢, where E°¢ and A°® are the so-called short-circuit
electric and magnetic fields which would exist, if the

aperture were not present in the screen, i.e., if the plane
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were unperforated, and where E- and H® are the fields which
would be radiated by a surface electric current js in the
aperture A. The theorem‘further specifies that the
electric surface current be js = -[°C x ﬁZ which for the
present situation becomes js = oFt x ﬁz on the aperture A.
In other words E© and H® are produced by J, impressed in
the aperture and radiating in the presence of tie per-
forated conducting plane as depicted in Figure 2. From
geometric symmetry and the fact that js is coplanar with

the conducting screen, one readily observes the following

properties®of E? and F%:
E2(x,y,2) = ES(x,Y,-2) (12)
BD(x0,y,z) = E(X,y,-2) (1b)
E)(x,y,2) = -EZ(x,y,"2) (1c)
and
B (x,y,2) = -Hy(x,y,-2) (2a)
HY (x,y,2) = -Hy(X,y,-2) (2b)
H?(X:Y9Z) = Hg(x,y,-z), (ZC)

*A fuller discussions of symmetry in electromagnetics
is found in [11].
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In addition to the above symmetry properties, one observes
that ﬁz x E® is continuous through the aperture while

ﬁz x 0% suffers a jump discontinuity through A proportional

to JS.

The above theorem due to Schelkunoff is a simple way
to establish desired properties but pursuant to explicit
calculations, one abandons the theorem and expresses 2k
and H® in terms of an electric vector potential F in the

usual way,

E4(T) = % curl F(T), z >0 (3a)

—ad = _ _&—2_ - L e =

H (r) = JkZLF F(r) + grad(div F(riﬂ, z >0 (3b)
and

E3(T) = - curl F(D), z < 0 (4a)

() = —jif sz(?) + grad(div F(?{ﬂ, z <0, (4b)

where, of course, the time variation ejmt has hteen
suppressed. In (3) and (4) the angulér frequency is de-
noted by w and k = w/nue where ¢ and p are the permittivity
and permeability, respectively, of the medium into which
the perforated screen is immersed. A Lorentz-type con-

dition has been incorporated in (3) and (4), and these
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equations ensure that E? ana H@ satisfy both Maxwell's
equations and the symmetry conditions (1) and (2), if

one specifies the electric vector potential to be

U | IS S EE
F(r) = +— M(r')———— ds', (5)
4TT l?_;' I
where
— = ~ + "~ "~
T xu yuy *ozu,
and
o= ox'u ¢ y'uy x',y'eA,
and where one may interpret M = anx + Myﬁ as a magnetic

surface current density in the aperture. Equations (3a)
and (4a), subject to (5), characterize an electric field
E? whose component parallel to the screen 1s zero over

the entire xy-plane at z = 0 but which "jumps' to the

correct value of B% at z 0" and z = 0 in the aperture A.
An alternate expression for F which shows explicitly its
relationship to the transverse component of the electric
field introduced by the presence of the aperture follows

immediately from (5):

_ o -ik|T-T |
F(T) = & H [Ea(r')xﬁz} Oe J_i* ds'. (6)
Z




Equations Governing the Electric Vector Poterntial F

The expressions for the fields E® and H°, introduced
by the presence of the aperture in the screen illuminated
by a specified incident field, together with the above-
mentioned theorem [6] provide a basis for formulating
equations governing F. In particular, if one writes the
total fields E and H as sums of short-circuit fields E-°

and A°C and aperture-produced fields E® and H® as follows,

E(r) = % curl F, z 0 - (7a)

|v

H(T) = j-%{kz'ﬁ + grad(div ?)}, z > 0 (7b)
‘ k
and
E@ = B0 - = curl F(D), 2 < 0 (8a)
s o= _ 7SC .= C w22, ==
H(r) = H (r) - = {k F(r) + grad(div P(r)%,
k .

z <0, (8b)
and enforces continuity of ﬁz * H in the aperture, one
arrives at

2 2 2 .
3 2 P _ sk 1 -
» Fy + kK7Fy BxayFy R hve Hx’ z 0 (9a)




and

2 .
I Y T AN S ) ST S (9b)
oy

which hold in the apérture A. Use is made above of the
fact that, on the illuminated side of the conducting

plane at z = 0, H C X ﬁz = oFL ﬁz where B and AL denote
the known incident fields. It is worth noting that
Equations (7) and (8), subject to the particular integral
(5) for F, are entirely compatible with Maxwell's
equations in the two half-spaces and, further, they imply

E * ﬁz = 0 at z = 0; Equations (9) imply, in addition,

that H * ﬁz and E - ﬁz be continuous through the aperture,
and they serve to relate in equation form the electric
vector potential associated with E° and H® to the pre-
scribed incident fields E' and A in the aperture A.
Although Equations (9) imply continuity of E -ﬁz

through the aperture, this condition, which is equivalent

in A to
{B—P - 2 F ] = eEl z = 0, (10)

can be substituted into (9) to achieve in A
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{vi . kZ)Fx = -elEL z =0 (11a)
and
[vg + kZ}Fy - E%EBi , z = 0 (11b)
2 _ 2% . a? . .
where Vi T axz + ;;7 . Equations (11) do not of themselves

ensure continuity of E-ﬁz through the aperture and, hence,
are not compatible with Maxwell's equations. However,
(11) and (10) together are entirely equivalent to (9) and

they, of course, guarantee Maxwell's equations as well as

appropriate boundary conditions on the screen and in the.
aperture. Notice that both Px and Fy appear explicitly in
(9a) and (9b) whereas only one component appears in each
of Equations (11) with coupling between the two components
being provided in the latter set through (10). Equations
(9) and (11) (with (10)) are equally applicable to the
aperture problem but the capacity for the uncoupled
equations (11) and their coupling to be identified and
handled apart from one another leads to a highly desirable
equation formulation. For convenience in subsequent

discussions, (11) and (10) are written below in vector

form:

(12)

2 2= _ o % i
[Vt + k ]F = eaz{uz E

>
l
=
[
o}
ju}
=

12




and

A

div  (F x 4,) = eu ‘E', on A (13)

where, of course, div, V= g—x V. + —V_.
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INCIDENT FIELD

The field incident upon the aperture A in the infinite
screen is specialized here to be a uniform, plane electro-

magnetic wave whose electric field can be represented by

s . . . . N .
gl {%lu + el + elu:] o jk(x cosa + y cosB + z cosy)
X X vy A

or

= _ Ei e-jk(u-r) (14a)

where the direction cosines above are

o = u-u

cos ;

"COSB = u*u (14b)
y

cosy = u-u,

and where u is the direction in which the incident wave

i

propagates. In (l4a), e;, ey, and e; are constants and

represent the designated components of the incident
electric field at the origin of coordinates (0,0,0).
Furthermore, since diVEi = 0, Ei must possess the property,
g-st = 0.

Equations (12) and (13) characterizing the electric

. - - .—‘i L ~ x '—i
vector potential involve [uz E ]z=0 and az{uz E ]z=0’

14




which are given below:

T § YOt TS
4 .E* = el e 0 (15a)
z z
z=0
and
. — n i -ik@en)
%Z{uz X ElJ = -jk c05y(uZ X el)e 0,
z=0
(15b)
where
(ﬁ'?)o = (ﬁ-?)z=0 = (X cosa * y COSB). (15¢)
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RAYLEIGH SERIES ANALYSIS

In this section is outlined a procedure for converting
Equations (12) and (13) to integral equations valid for
apertures whose dimensions are small relative to the
wavelength. The procedure is founded upon a power series
expansion in k [%g] of pertinent quantities and leads,
in principle, to a sequence of simple integral equations
like those occurring in potential theory. Rayleigh [2]

first proposed such a series expansion scheme for solving

scattering and diffraction problems and Stevenson [7] later

developed a systematic way to treat scattering from small
conducting bodies. Kleinman [4] corrected and greatly
simplified Stevenson's theory, and he presented an
alternate technique based on Stevenson's ideas but simpler
to apply. Eggimann [8] used a Rayleigh series approach to
obtain a differential equation descriptioh of scattering
from a small disk and small circular aperture but neither
he nor any of the other authors mentioned above provides
useful numerical data. In this note, a Rayleigh series
analysis is used to convert Equations (12) and (13) into
integral equations necessitating, in principle, that one
solve only the type equations which occur in electrostatics.

Pursuant to a Rayleigh series analysis of the aperture
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equations, one expands quantities in (5), (12), and (13)
each in a power series in k. If one writes such a power
series expansion for the magnetic current M in the in-

tegrand of (5) and thereby defines the vector coefficients

Mn’
— — — .2 by n
M= MO + Mlk + Mzk + + Mn k™ o+
or 7
M) = ] M (DK, Trea, (16)
n=0
then he may obtain from (16) and
1 -jkR _ 1% 1
‘gej =A§Z_ —rCJR)k
n=0

a useful series representation of the total integrand of

T evaluated in the aperture A (at z = 0).

o n
e =7 ™7 —:-J—,—Rpl—p (17)
n

where



In a similar manner the inhomogeneous terms of (12) and

(13) may be expanded also (see (15)):

. 7_; . s @ _aantl—  —n
-g—z—[uz X El]z . = c05y[uz x el] ) ) —(—Lr)ﬂ—{:(u-r}o:[ kn+1 (18a)
= n=
and
~ - s -4 n A
[ué ElJz:Q i e; rzl=o (—n-?)— EU'BJH i (18b)

In terms of the series above, Equation (15a) now can be

' written ',W,

® n .:yP -1 —
L ¥ T gy e

n=0

. S _ayntl
= 47 cosy[uz X elJ } . l;l%n——— [Fu-?]é]n tl (19)
n:
which can be cast into the following form

v ” MOR'lds' + k vf: ” HlR‘lds'

(3]
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. © .\ I
_ A —i - A n-1.n
= 4r cosy(u, * e) y (n-% ![Eu-r)é] K.

Within the radius of convergence of the series on the left
and right hand sides above, one may equate like powers of

k to arrive, after index manipulation, at

v ” Ny R ds' = T, (@ = 0); (20)
A

2 vl -1 (- . ~ X _i = .

v, JJ M; R " ds' = -j4n cosy(u, * &), (n=1); (21)
A

and
7 n n-1

v || MR Ldst = 4 ioxely L) i

£ - s' = 4¢ c05y(uz e =TT 0
A

_a\P -
L L)y R ast,  m=2,3...). @2



Expansion of both members of the auxiliary condition

(13) leads to

@ N D _ o ) p-
) L) giy M x4 [P lgs
n=0 [p=0 P R
P A

4ne Z (J) [(ur):[

which, upon equating coefficients of like powers of k,

enables one to obtain

div, [Jvﬁb x GZJR'lds' 4ﬂe;, (n=0); (23)
A

giv, ”[ﬁl x az]R‘lds' janel (@7 ), m=1);  (24)

A

— ~ —1
X
vy J P%n uz}R ds'

A

and

4w—l——e [@1r)1

n-2 . p+2
(-3) . v ~ Ipp*l
- XO fﬁ%ij—'dlvt Mh—Z-p x u, |Rds!
A

p:
(n=2,3,...). (25)
20




Equations (20), (21), and (22) plus the necessary
augiliary conditions (23), (24), and (25) cornstitute the
equations which one must solve for the coefficients Mﬁ of
(16) from which, of course, one can construct the Rayleigh
series solution for the magnetic current density in the
aperture. For apertures small relative to the wavelength
(16) converges to the correct value of the magnetic current
once the coefficients are known; said differently, the
power series has a finite radius of convergence depending
upon the electrical size of the aperture and within a
circle of this radius (16) does, indeed, converge to the
correct magnetic current.

The equations which one must solve for the zeroth,
first and second order coefficients, MO’ Ml’ and ﬁz, are
repeated on the next page for convenience. Notice
that the zeroth order coefficient HO can be determined
(by solving the vector Equation (26)) from knowledge only
of the z-component of the incident electric field evaluated
in the aperture. Also, the first order coeﬁficient of .
magnetic current Ml can be determined from a knowledge of
the three components of the incidence electric field. But
one sees that the second order coefficient depends not
only upon the incident electric field but also upon the

zeroth order coefficient MO; this pattern of dependence

upon knowledgé of lower order coefficients is observed
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0
<

)

My (TR (T,T")ds" =

B

,TeA,  (n=0)
div, HEMO(?') x GZ:[R‘l(?,?')ds' = 4re;
A
2 7 el o LI ~ x =l
vy Mi(r JR “(r,r")ds' = -jar cosY(uZ e)
A
,TeA, (n=1)

div, ”E«“l('f') x ﬁZIR“l(?,?')ds' < ~j4wei(ﬁ~ﬂ9
A

A A

V%z; JJ HZ(;')R-I(?,?')ds' = 47 COSY(G-Z x 'e"l) (ﬁ.-i_—)o ) J {M—O(?')R—l('f’?g)

: %v,ﬁ [MO TORE, T
J

]ds',

div, ” G < 6 R E s = wel[ @] - %dthJ J GE
A TeA,

R(r,r")ds',

(n=2).

(26a)

(26b)

(27a)

(27b)

(28a)

(28b)




in the equations governing each coefficient of order

equal to or higher than two. In principle, then, one
finds .that he must solve an equation constrained by an
auxiliary condition for each coefficient where the co-
efficient equations plus auxiliary conditions differ only
in that each possesses a different but known inhomogeneous
term. Notice that systematically one can solve a single
operator equation with different inhomogeneous terms to

obtain M, and Ml‘ Then, knowing HO’ one can determine MZ

0
by solving again the same operator equation but with a still
different inhomogeneous term. The same pattern is ex-
hibited by the equations governing the higher order

magnetic current coefficients: for all Mﬁ tne same operator
equation must be solved, the inhomogeneous term of each
being a functionof both the known incident electric field

and the previously calculated lower order magnetic

current coefficients.
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\
BETHE THEORY [5]

It is well known [1] that Bethe's theory for electro-
magnetic penetration through small apertures yields
correct zero order results but incorrect first order re-
sults. In the vernacular of Equations (12) and (13) the
essence of Bethe's theory can be reduced to four simple
steps: first, one replaces e%; ﬁz x ?i in (12} and
eﬁz°Ei in (13) by their respective values at (0,0,0) the
"center' of the aperture; second, the Helmholtz operator
of (12) is replaced by the Laplacian operator; third, one
replaces ?lof (5) by its Rayleigh series expansion; and,
fourth, in (12) and (13) the first and second order co-

efficients in k are equated. These steps lead ~o

v ” M TR (T, T s = T (29a)
A
,TeA (n=0)
div, ”[MO(?) x GZJR"I(?,F')ds' = 47rei (29b)
A
and
Vg JJ M&(?“)R-l(?;?“)ds' = -j4n cosY(aZ X Ei) (30a)
A .
JTeA (n=1)
div, ”[ﬁl(f') x aZ}R‘lc?,'r" )ds' = 0 (30D)

A
24




which, subject to comparison with (26) and (27), clearly
support the correctness of Bethe's zero order results and
the incorrectness of his first order results. Fortunately,
~far fields calculated on the basis of BRethe's first order
theory are correct even though the corresponding near

fields are in error.
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VI

NEW INTEGRAL EQUATIONS FOR

M

0 AND Ml

- At this point, attention is turned fo the formulation
of new integral equations from which one can calculate
the zeroth énd fifgt order magnetic current distributions
in the aperture. Equations (26) and (27) are not well
suited for numerical solution methods and,; therefore, it
is desirable to convert them to other integral equations
which more readily yield to approximate solution
techniques.

Preliminary to formulating well-behaved integral
equations for M, and Ml’ it is desirable to recall a few
simple principles of potential theory. Namely, if one

considers the two-dimensional, scalar equation below

v2 4 (F) = v(T) (31)

valid for T in s;p and s, of Figure 3 but not necessarily

X

on their common boundary c, he recalls that

Mﬂ=[J W?Rﬁﬂﬁmﬁﬂ+¥[%ﬁ%w@?ﬁ%ﬁgﬂ%ﬁMMﬁ)

Sin+sex ¢
- f [2—@ o (T - %m‘j ¢(;§x)}(fc,adg(;c) (32)
c

26




FIGURE 3. PLANAR REGIONS, CONTOUR,
AND COORDINATE SYSTEM
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_ . . =in
where r. designates a point on the contour c and where ro

and ?ﬁx are the limits as ?c is approached from within the

open regionssin and s respectively. Also n{?c) is the

ex’
normal to c at ?c outward from s, and g(r',r) is the
two-dimensional Green's function,
- = _ 1 —- -
g(r',T)= 5 n Ir'-7]. (33)
If ¢ is assumed continuous across c but its normal deri-

vative discontinuous, then in Sin

o(x) = ” v(r') g(r',r) ds(r') + § ex) g(?c,?)dﬂ(?c) (34)
Sin c
where
e(r.) = %ﬁf§rj'¢ffgxl - %ET§27' ¢(;in) ‘ (35)
c

At this point, it is expedient to identify the surface
integral term in (34) as the particular soluticn of (31)
and the contour integral term as the homogeneous solution,
even though in subsequent utilization of (34) a different
form of the particular solution is to be employed and ¢ 1is

to be treated as merely some function defined on the

28




contour c¢. Expression (34) is only one of several
equivalent representations for ¢ in potential theory and

it is found to be useful in the following analysis.

Zeroth Order Equation

Equations (26) govern the zeroth order magnetic
current coefficient ﬁo; they can be written more compactly

as

fo(?) =0 (36a)
and » Teh

div, (F, * 4_) = 4mer (36b)
where the vector fO represents

fo(?) = JJ MO(?')R-I(?,?')ds‘, TeA. (36¢)
A

Based on (34) the solution for the homogeneous equation

(36a) can be written directly as

£, - Zwei(ﬁz X F) o+ % Ty(To) g(T,,mde(r,) (37)
C

where the first term above is seen to be harmonic and is
added to the contour integral homogeneous solution to

lessen the complexity of enforcing the auxiliary condition

29



(36b). Applying the auxiliary condition, one sees that
50 must be a vector on the contour ¢ which satisfies the

following for all points T in the open region A:

ﬂ:ao(?c) X Gz]-gradt g(T.,T) da(r) = 0,
C

for all TeA. (38)

To the set, (36c), (37), and (38), one appends the
boundary condition that the component of the magnetic

current coefficient normal to ¢ be zero all along c,

n(r.) M, (r.) = 0, (39)

which is, of course, equivalent to requiring that the
zeroth order electric field tangential to the aperture/
screen edge be zero. Such an additional requirement is
expected, since the introduction of the arbitrary boundary
vector function $0 effectively increased the unknowns

in the problem.

First Order Integral Equation

The first order coefficient equations (27) are written

vi I, (3) = -j4r cosy(u, * el (40a) ‘

and , TeA

div (F; * 0,) = -jdme, (3 -T) (40b)

30



where, of course,

() = ” ﬁl(v?')R_l(?,?')ds'. (40c)
A

Here one writes the sum of the homogeneous and particular

solutions for (40a) in the form

, 2 I
fl(?) = -j——jﬁljf— COSY%%.?)Q} (u, *eh

1-cos™y

+

i ~ ~
2xyeZ[EosBuy c05aué}

+

ch?c) g(F.,T)AL(T,), TeA (41)
C

where again a harmonic term is appended to the homogeneous
solution to lessen the difficulties of enforcing the
auxiliary condition (40b) which when applied t0|C41) Te-

duces to the requirement,

f [El(?c) % ;z]-gradt g(?c,?)dz(?c) = 0, (42)

C —
for all reA.
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As with the zeroth order equations, one adds the boundary

condition,
n(r.) M (r.) = 0. (43)

In the special but important case in which the excitation
is normally incident upon the screen/aperture, (41)

becomes indeterminant and hence 1is replaced by

0. -ell)

-jm (?-?)(ﬁz xeh +_2xy(eX X" Eyty

Ph
[
~
H|
L
1l

+

¥ T, (7 g(T,T)de(T,), TeA (44)
C

whereas the auxiliary condition retains the same form,

%[Ef(?c) x ﬁz]-gradt g(Fe,MaL(T,) = 0, (45)
C

for all T in A. The superscript L identifies quantities

peculiar to the normal incidence case.
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Auxiliary Conditions

Each of the auxiliary conditions (38), (42), and (45)
requires that a contour integral, having an integrand in-
volving an arbitrary vector defined on the contour, be
zero over the entire open region A. In keeping with the
proffered objective of seeking a set of integral equations
wieldy for numerical solution techniques, it is demonstrated
here that satisfaction of an auxiliary condition over the
bounding contour ¢ is equivalent to enforcing it over the
entirety of A.

FolloWing Smythe [9], one expands the Green's function
(33) in circular harmonics and performs the indicated

operations to arrive at

o1 n T -6_)
nzl 1 é (§Z} w¢(rC) cosn(é-6.
* oy (ro) sinn(e-e ) pda(re) = 0, 1 <7 (46)

which is representative of any of the auxiliary conditions

if T = ¢ u

Yyt w¢ﬁ¢ in polar coordinates is appropriately

interpreted. In (46) (r,¢) and (rc,¢c) are the circular

coordinate variables for T and ?C, respectively.
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Observe that, since the left-hand side of (46) is a
Fourier series in ¢, the requirement that (46) hold on any
circle of radius r, r <r., ensures that it be true over
the entirety of any open disk whose radius is less than ..
Furthermore, by analytic continuation one recognizes that
requiring satisfaction of the auxiliary conditions over
the contour c is equivalent to requiring them to be true
for all reA. That the auxiliary conditions can be en-
forced over the contour rather than over the entire region
greatly enhances the numerical attractiveness cof the new
integral equations presented here. Lastly, it is pointed
out that on the contour c¢ the integrals in (38), (42), and
(45) are inproper (but convergent) [10] and care must be

exercised in evaluating them,

Summary
Integral equations for MO follow directly by equating

(36c) and (37), subject to the boundary condition (39)

and to the auxiliary condition (38) enforced on c.
Similarly, equations for Ml follow from (40c) and (41)
subject to (42) and (43) with the modifications established
in (44) for the special case of normal incidence. These

equations are recorded on the next page.
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” ﬁo(?')R'l(?,?)ds' = znei(ﬁz X T) + ji E(?C) g(re,7) de(r,), TeA, (47a)
A ¢ |
(n=0)
n(}‘c) -HO(?C) =0, T eC (47b)
” ﬁl(?‘)R_l(?,F')ds' = -j 2n 5 c05yl:(ﬁ-?)0:[2(ﬁz x Ei)
A 1-cos™y
L ~ N — — .‘
+ 2xye; |E1Y CoSg - U cos{{ + <¥ w(?c) g(re,1) de(ry > TeA, (Y#0) (48a)
C
(n=1)
ﬁ(?c) M () = 0, Tec (48b)

|

tin ’Fivt £ﬁ7(?c) x ﬁz g(?c,?} dk(?cj =0, all 'r"cec, (u=0 and n=1). (49)

J

I‘iI‘ c
(reA)



VII
CONCLUSIONS

Based on preliminary considerations the new integral
equations (47) - (49) presented here for the zeroth
and first order magnetic current coefficients MO and Hl
should be well suited for momernt method analysis, but
converting Equations (28), or corresponding equations
for higher order coefficients, to a form similar to that
of (47) - (49) does not appear promising. However, a
procedure paralleling that outlined in this note can be
applied directly to (12) and (13) to obtain integral
equations wgiéh are valid for the full dynamic aperture/

screen problem and which are similar in form to (47) -

(49).
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