WL-HEMP~IN=-148

Interaction Notes
Note 148
December 1973

Surface Currents Induced on Structures Attached to an
Infinite Elliptic Cylinder
Part I
Detailed Magnetic Field Integral Equation for an
Attached Structure Having an Arbitrary Shape

by

M. I. Sancer and A. D. Varvatsis
Northrop Corporate Laboratories
Pasadena, California

Abstract

The integral equation considered in this note employs the Green's dyadic
that causes the integral over the infinite elliptic cylinder to vanish. Some
theoretical aspects of this equation are dealt with; however, the major effort
is devoted to making this equation amenable to numerical solution. This
consists of detailed vector bookkeeping, deciphering the relationship between
various Mathieu function notations, and generating Mathieu function expansions
to a higher order than could be found in the literature. These expansions are
used to identifyv and remove singularities from the Green's dyadic that have

not been previously considered.

cylinders, Green's function, calculations




I. Introduction

The major effort in predicting and understanding the currents induced on
aircraft by an incident plane wave or EMP have used models of the aircraft that
have not included much of the fine structure. The results of those studies are
most meaningful for wavelengths that are long compared to the particular
structure on the aircraft that is of interest. There is a class of structures
on an aircraft that reQuires a more accurate knowledge of the current induced
on them for wavelengths that are generally of the same size as the typical
dimensions of the structure as well as for smaller wavelengths. Some structures
of interest are attached to the wings of an aircraft such as gas tanks and
missiles.

If one were to usé the usual integral equation methods which employ
only the free space Green's function, then for wavelengths comparable to the
attached structure, the aircraft would have to be so densely zoned so as to
lead to a matrix whose size prohibits the inversion by existing computers.,

This note is the first step in circumventing this problem. By considering

the wing of the alrcraft to be a perfectly conducting infinite elliptic cylinder
we can employ the appropriate dyadic Green's function to derive an integral
equation only over the attached structure. The size of the attached structure
is such that its roning leadsto amatrix of manageable size. We can justify

the infinite nzture of the cylinder as well as the omission of the rest of

the aircraft by noting that for the range of wavelengths of interest, the
induced currents on the attached structure will depend primarily on the geometry
of the aircraft near the attached structure.

Even though the Green's dyadic for the elliptic cylinder is known in
theory, many points must be clarified before it can be used as part of a
numerical procedurs. Two different types of singularities of this Green's
function are considered in detail. One is the usual singularity that must be
considered in the derivation of the integral equation and it comes from letting
the observation point off the surface approach the surface. The other type
of singularity nes not previously been identified and is present even if the
observation point is off the surface. We treat the first type of singularity

by splitting the Green's dyadic into a free space part and a scattered part.




This leads to a straightforward treatment of the singularity and circumvents
the recent controversy concerning L functions in Green's dyadic representations.
This splitting is also extremely useful for zoning considerations. The second
type of singularity concerns the identification and removal of singularities
that occur if we use a real integration path for the integral that occurs in
the definition of the Green's dyadic. The identification and removal of these
singularities required the generation of Mathieu function expansions t; a higher
order than could be found in the literature.
In order to generate these expansions we had to decipher and relate
various Mathieu function notations. There was another very lmportant reason
for being able to relate different Mathieu function notations. The representa-
tions of the Green's dyadic that we found in the literature used a different
Mathieu functicn notation than did the program for generating Mathieu functions
that was made available to us. To take full advantage of the effort spent in
relating Mathieu function notations, we present the definitionrof all quantities
in our integral equation in three commonhbut different Mathieu function notations.
Finally, we should note that the work presented here was found to be
neceséary in order to obtain numerical results. We have continued this work
and have considered a specific class of structures attached to the elliptic
cylinder. This problem is now in the stage where a computer program has been

completed and is in the process of being debugged.



II. Derivation of the Integral Equation

In this section we derive the integral equation for the surface current

density by employing the vector Green's theorem

_H_(f_)'[VXVX[g(L,f_O)-g] - kg[g(g,go)-_a_]] - [,G__(_r_,_ro)'g]-Eww_li(g) - kgﬁ(g)]

= =7 [(wH@)*[e(r,x ) 2] + Bx "x[G(r,r ) -al] (1)

as well as the following three equations

Pxox[G(z,x ) al - k[G(rr ) al = as(x - x.) (2)
D) - KH@) = 0 | | (3)
UxH(x) = ~iwe E(r) : (4)

where a is an aﬁbitréryiﬁohétaht vector. Substituting (2), (3), and (4) into

(l)} we obtain

H()as(z - ) = -7+ [-tee EG)x(e(r,r ) al - 1o (mlger2l)]  ®
We arrive at our first integral expression by integrating (5) over an appropriate
volume and using the divergence theorem. This volume is all of space excluding the
volume of the eliiptic cylinder and the volume of the attached structure. The

surfaces enclosing these volumes are SE and S, and they are depicted in figure I.

A
S_ is the surface of the elliptic cylinder with the portion that is covered by the

E
attached structure removed from this infinite elliptic cylindrical surface.
Integrating (5) and using the divergence theorem we obtain

Bee = - [ BoHEE) e + B (nlet ) 2o

nA~[—iweogﬁg)XEgﬁg,go)-gj + Eﬁg}x(vX[gﬁz,go)-_])]dS (6)




The signs in the SE and SA integrals are different from the S_ integral because

ﬁE and ﬁA are the outward normals. TFor completeness, we note all n's are n(r)'s.
So far we have not considered the metallic nature of SE and SA or required

g(g,go)-é_to satisfy any boundary conditions. Still mot requiring G(r,r')-a

to satisfy any boundary conditions but using the fact that axE(r) = 0 on both

SE and SA we rewrite (6) as

)-@)]ds (7

where T ~is the integral over S_ and will be evaluated later. We now use the
fact that a was an arbitrary constant vector and set it equal to the three

Cartesian unit vectors (sequentially) to arrive at

E(Q'[ﬂEX(VXg(LzO))] as - j E(z)'[ﬁAX<VX_g_(£,£0)):| ds (8)
E SA

Again we haven't explicitly defined I,; however, its meaning will shortly be

Be) =1, - |

‘o

given using an argument that QOesn't depend on its detailed structure. We now

use the fact that
ﬁEX<ngﬂ£}£o)> =0 ron Sy (9)

This is the requirement that makes gﬁE’Eo) complicated, Using Tai's notation L1,
the gﬂgﬁgo) that satisfies (9) is referred to using the subscript 2. Using (9)

in (8) we obtain

(e ) = I - js _}_I_(E)-[:ﬂAx<V><§__2(_r_,'1_c_o))]dS (10)

and we have lost our integral over the infinite elliptic surface. Using (10)
we can now give meaning to I . First we note that we can prove that I 1is
independent of the shape of the attached structure. Next we imagine SA to
flatten out and approach the surface of the elliptical cylinder, SE’ then the

integral over S, would vanish due to the definition of gﬁ' This in turn implies

A



that I  is the total field, incident plus scattered from the infinite elliptic

cylinder, wher S, is not present. We denote this incident plus scattered flield as ‘

A
and write (1Q) as

B(r) = B.(x) - J

i |
H(o) [ﬁAX (ngz (z, £O>)}ds (11)

Sh

Normally (11) would be the appropriate place to stop and derive oﬁ% surfaée
integral equation: however, we have the problem that §Q<£J£o) is not immediately
available for an elliptic cylinder. What is available for an elliptic cylinder
is gi(gjgo), the electric field dyadic Green's function in Tai's notation [1].

Fortunately theve is the following relation given in [1]
®
VxG, (r,r ) = [V G, (x_,x)] (12)

as well as the general dyadic identity

*
AB = ‘A N 7 (13)

i
e

where * indicates the transpose of the dyadic. TUsing these relations and inter-

changing the r and r notation, (1l) becomes .

3! =H + VX - (n 1
H(r) = H.(©) J {C gl(g,zo)] (noxg(go))}dso (14)
S
H
where we have adopted the mnotation ﬁA(Eo) = ﬁo. We can now make direct use of
the explicit form of gﬂ(g)zb). Rather than using Tai's representation for
G,(r,r ), we use the equivalent representation contained in the book written by
=] =’ - , _ i
his associates [ 2]. The reason for this is that the notation for the Mathieu
functions contained in gi(g)go) is explicitly related to ome set of accepted
notation [3]. During the course of this analysis we will have occasion to
pay particular attention to Mathieu function notation in order to convert from
our original notation to that of McLachlan [4] which proved more convenient.

Independent of the Mathieu function notation, the dyadic can be represented as

6@z ) =6 (x,r) + G (er) (15)




where both gﬂ(z}zo), the free space Green's dyadic, and QﬂS(rﬁzo)’ the scattered

part of the dyadic, are expressed in terms of vector M and ﬁ»funct{ons. Subsequent

to the publication of [[1], Tai discovered the omission of vector L functions in his
representation of g{ and cqrrected this omission in his later work [5]. It is
possible to show that the omitted L functions are always part of the representation
of gb. We have found that there are a number of good reasons for sglitting 94 as in
(15) and then using the ordinary representation of gb. One reason is that this
avoids any questions concerning the addition of L functions in the represéntation

of Gl The other benefits of using the simple_representation of G will be mentioned

as they are utlllzed in the presentation of our analy51s

Substituting (15) into (l4) and using the fact that
V><G (r,r ) = VGOXI 7 S (16)

where I 1s the gni;rdygdic, we obtain

20 = o + | (e,
; ~ \
o] [fres w1 (o)) s, (a7
A
where
G, = (47 |z - EO\)_lexp[ik[E_— EO\] (18)

We now make use of the splitting given in (15) to derive the integral equation
corresponding to r approaching and subsequently lying on the surface SA' It
is only the integral in (17) containing GO which contributes to the factor
that is removed as r approaches x from off of the surface. The removal of
that factor is a well studied problem and can be found in [[6]. Letting r

approach § (17) becomes

A’



EME@) = B (2) +J [vcox<ﬁox§(};o))]dso

SA
+ ] e T apma e, 19)
A
where, from [ 6],
£(Q) =1 - Qfbn (20)

and {-is the solid angle subtended by the surface SA at r. If we don't choose
r to approach at a discontinuity in curvature, then @ = 2r and £(Q) assumes the
value of % which is usually seen in the magnetig fieid integral equation. We
should note that (19) is not valid if we let r approach SA at the junction where
it is attathed to SE. An analysis valid for that case would be interesting;
however, due to time limitations this éuestion can be avoided by choosing a
zoning procedure that does not allow r to lie on this junction. A second point
concerning (19}, but also applicable to the ordinary magnetic field integral
equation which contains only the free space Green's function is the omission
of a principal value indication on the integral containing Go' The reason for
this omission is subtle;and was pointed out by R. Latham® several years ago
when considering this integral in the ordinary magnetic field integral equation
for points on the surface where @ = 2m. He showed that the integrand was no
longer singular when r approaches z, along the surface. 1In the application of
the integral equation we are only concerned with this case, even though it was
derived by considering r off of the surface.

Finally, we obtain the integral equation for the induced surface current

density by taking fi(r)x both sides of (19). The resulting integral equatiom is

f£QI() = _:_FT(E) + J g(_g,_r_o)-g(go)dso (21)
S
A

where we have employed the following definitions

&
personal communication.




(22a)

[
N
=
p—a

1]
o]
~~
=
~—
= X
o
P
=

p—

I (@) = n(@)xHo(x) _ (22b)
K(r,r ) = K (,r) + K (£,5.) (23a)
K (z,r)) = n()x[V6 x1] (23b)
K, (z,r)) = n()<LvxG o (r,r )] o (23¢)

The only new quantity that is associated with our integral equation is 51 and
we shall be primerily concerned with problems related to this quantity in the
remaining part of this note.

Before proceeding to the explicit representation of £1 we introduce

D(x,r ) = D (,r)) + D (r) (24)
where
K(z,r_) = n(o)*D(r,xr,) (25a)
K (z,r) = n(x)=D_ (L,x,) (25b)
and from (23) we see that
D (r,r ) = VG xL (26a)
D, (r,x ) = VGo(r) (26b)

The reason for introducing D is that in the application of (21), J(x) will be

decomposed into its components along two orthogonal surface tangential directions



having unit vectcrs s and t. Adopting the convention
sxt = 0 : (27)
and using the described decomposition
I@© =J_ (©s +J (o)t (28)-

as well as (22b), we can write (21) as

]

~teH () - sto{[ﬁ-g(g,z_o)-éoﬁs(go) + [ED(,r )£ 03, ()}

£(2)J,(x)
(29)

£(@)J, (@) )es J3_(x ) + [8:D(x,x )£ 10 (x)}

é'ET(E) + sto{ﬂé-gjzyzo
where the explicit rorr, dependence of the unit vectors has been suppressed.
The equations given in (29) are a set of two coupled scalar integral equations
and they are the ones used to form the eventual matrix equation that leads to
the solutions for JS(E) and Jt(£>' From (24), (26) aﬁd (29) we can see tbat
The study

the only quantities that require further definition are H_ and D

T 1°
and definition of these quantities will occupy the remaining portion of this

note. Both of these quantities contain Mathieu functions and we shall devote

the next section to the definition of these functions.

10




ITI. Definition of Mathieu Functions and Notation Changes

Our init3al notation will be that of ‘Stratton [ 3] because our initial

representations of H taken from [2] are given in that notation. Let

T 1
us now consider an ellipse having an interfocal distance 2c and having the

and D

coordinate system depicted in figure 2 associated with it. 1In this coordinate

system
x = ¢ cosh £ cos n (30a)
v = ¢ sinh £ sin n (30b)
and v 7
g’ = cosh & , , (31a)
+ _
n = cos n (31b)

Equations (30) and (31) already represent a departure from the notation of [ 2]
and [3] in that our £ and n” correspond to their £ and n, while our £ and n
correspond to their u and v. Even though our choice of coordinate symbols is
different, we will initially use the same symbols for the Mathieu functions.
The geometric significance of these coordinates is that they represent the
following curves. Constant values of & or £+ represent a family of ellipses
having the same foci as depicted in figure 2, while constant values of n or ﬁ
represent the corresponding set of hyperbolas orthogonal to the ellipses.

From [ 3], we can present the differential equations satisfied by the

Mathieu functicas of interest. They are

2
§__12§ + (>\2 coshzé’-; - bR =0 (32)
dg :
leS 2 2
— + (b - 2" cos™n)S =0 (33)
dn

The symbol R is nsed to denote radial Mathieu functions, while S is used to

11



denote angular Mathieu functions. A reason for this terminology is that R

depends on &, and increasing £ corresponds to increasingly larger confocal

ellipses, while S depends on n and as can be seen in (33), n corresponds to

an angle. It is the fact that n corresponds to an angle that leads to those
solutions of (32) and (33) that are of physical interest. These sclutions are
those having the same value at physical point in space whether that point is
represented by the value n or n + 2nm where n is an integer. This requirement

leads to (33) having a non~trivial periodic solution onlyfor b assuming the proper
(e) . (o)
m m

where the superscripts are chosen in accordance to whether the corresponding

eigenvalue. The sets of eigenvalues assumed by b are denoted b

eigenfunctions are even or odd functions of n. The quantity, AZ, which is
the only quantity left to be defined in (32) and (33) will just be considered
to be a real valued parameter in this section. Depending on whether the

Mathieu functions are related to H_ or 21’ the meaning of')\2 will be somewhat

T
different.

We are now in a position to present a more detailed representation of

the solution to (33). Continuing basically in the notation of [3] we write

Sem(k,n)‘ .;‘ Dﬁ()\) cos np (m=0,1,00+) (34) ‘

and

i}

So_ (1,n) ;’ PR sinan (m= 1,2, (35)

i (e)

where Sem represents the eigenfunctions corresponding to bm

o . . : . .
é ). The prime in these summations is

used to indicate that n assumes only positive even values if m is even and

and Som represents

the eigenfunctions corresponding to b

only positive cdd values if m is odd. The normalization of thesé functions

is such that
Sem(A,O) =1 (36)

and

& S0 (bm | =1 (37)




Obtaining the coefficients D: and F: requires an elaborate procedure. We
presented the explicit forms of the angular Mathieu functions given in terms
of these coefficients in order to be able to show that it is these same
coefficients that appear in the definition of the radial Mathieu functions.
A method for obtaining these coefficients will be discusged elsewhere.

We now elaborate on the definition of the radial functions. Returning
to (32) and (33), we see that the eigenvalues that are determined by the
periodicity required for the solutions to (33) also appear in (32). We denote

(e) 1)

the radial.solution associated with bm as Rem and the one associated with
béo) as Rgi). The superscript i is introduced so that it can take on 2 values,
each one corresponding to a linearly independent solution of the second order
differential equation. To stay as close as possible to the notation of 2]
and (3], the values of this subscript are 1 and 3. We have now presented

sufficient background to present the definitions of the radial Mathieu functions.

They are ~
Reél)(x,g) = //g g' im_nD:(A)Jn(A cosh &) (38)
ﬁeé3)(x,g) - //g g' "2 0E Y (1 cosh &) (39)
Roél)(x,g),= //g tanh g' in_man(X)Jn(A cosh £) o)
Roé3)(X,£) = //g tanh & ;‘ in_man(k)Hél)(x cosh £) (41)

The prime on the summation has the same meaning as mentioned with regard to the
angular Mathiev functions. This completes the definition of the Mathieu functions
that are used in [2] to represent b and ET' '

Next we present the previously defined Mathieu functions in McLachlan's
notation [4]. As mentioned earlier, we adopt his notation in order to facilitate
the use of his book which is an excellent reference. First we must again
present Mathieu's differential equations in a slightly different form from (32)

and (33). They are

13



2

AR _ (a- 2q cosh 26)R = 0 (42)
2
dg
and
dZS
— + (a - 2q cos 2n)S = 0 _ (43)
dn
Using the relations . , _
2 1 . s
cosn = E—(l + cos 2n) (44a)
and
2. _ 1 o '
cosh™g = E-(l + cosh 2£&) (44b)
we can write (32) and (33) as
a’r 2 2
5 - (b~ A7/2 = X7/2 cosh 28)R = 0 » (45)
dg
and
i’s 2 2
—5 + (b ~-~27/2 - 1"/2 cos 2n)s =0 (46)
dn

Comparing (42) and (43) to (45) and (46) we see that the eigenvalues, omitting

subscripts and superscripts, are related by
2
a=b-2)x7/2 (47)
while the parameter kz is related to the parameter q by

q =224 (48)
The independent variables £ and n have the same meaning for both sets of Mathieu
equations. We nnw see that the solutions to each set of equations can be chosen

so that they are proportional. 1In McLachlan's notation, the even S functions
y prop >

14




are denoted ce and the odd S functions are denoted se, while the R functions

(1) (1)

are denoted Ce, Se, Me , and Ne In the remaining part of this section
we will seek the proportionality factors corresponding to the following
proportionalities where McLachlan's notation appears to the left and Stratton's

to the right

cem(q,n) o Sem(k,n) (49a)
se_(q,n) = So_(1,n) (49b)
ce_(q,8) = re'" (0,0) (49¢)
Se_(q,8) = Rol ") (1,8) : (49d)
Meél)(q,i) « Re£3)(x,a) (49e)
vl (q,0) = 2o P (1.2) (49£)

First we will obtain the proportionality constants for the angular

Mathieu functions. We now write (49a) as

ce (q,n) = K (q)Se_(i,n) (50)
and using (36) we see that Km(q) = cem(q,o),so that

cem(q,n) = cem(q,o)Sem(k,n) (51)
The odd angular Mathieu function is treated by writing (49b) as

se (q,n) = K (q)8o_(1,n) (52)
where we have used the same symbol Km(q) as in (50) although it will be shown

to have a different meaning. We do this to avoid unnecessary notation problems

since Km will now be evaluated and not used again. Taking d/dn of both sides

15



of (52) and using (37) we find that Km = seé(q,o) where the prime indicates

the n derivative. Using this result in (52) we have
= y j
se_(q,n) = se (q,0)S0_(A,n) (53)

We now devote our analysis toward obtaining the proportionality constants
for the radial Mathieu functions. From [ 3] we have the following asymptotic

formulas for
3 _]y 5 - _T/ i -
Réi) Rai) . ;el(v (2n+1)7w/4) - (—i)nv zel(v w/4) (54)

while from [4] we have =

1 2% i(v-
MeSl) ~ p (2Tt v/ (55)
O PR BT N 2 % 4 (v-r/b) (56)
Me2m+l p2m+l(nv> € - —1P2m+lCE;? ¢
1y _ c2 5 i(v-3n/a) 2% i(v-n/4)
Ne2m+]. s2m+l(ﬂv) e N _182m+1(%§J e (57)
1y _ 2% i(v-r/4)
Neonre ™ SomiaGy) @ (58)
where
_ o -
v = 2q° cosh £ = X cosh & (59)

and (54) through (58) are valid for Ivl >> n,m. Letting the n that appears
in (54) take cu the values 2m, 2mt+l, and 2m+2 and then equating asymptotic

forms we obtain

(L _ /2 .3
Meon = //; PonReon (60)

16




 _ /2 (3)
Me2m+1 - it p2m+lRe2m+l (61)
1 _ /Z o (3)
Neomtl = /% Somt1ROomer (62)
(1) _ /Z ot (3)
Ne2m+2 - ™ S2m+2R02m+2 (63)
where
p! = (—l)mp = (—l)mce (o,q)ce, (n/2 q)/A(Zm) (64)
2m 2m 2m> 2m ? o
, YL 3 m+1 . Y (2m+l)
Pomr = B ppuyy = G eey y(osadeey (172,00 /q7A) (65)
1 - \m PR E L L (2m+1)
Sorpy = 1)s, o= (=)se) . (0,q)se, ,(1/2,q)/q7B) (66)
. o _qymFl IPRPEN 5 , . (2m+2)
szm+2 = ( l) Szm+2 - ( l) Sezm_i_z(qu)sezm_*_z(ﬂ/é’q)/qBZ (67>

and the primes on the angular Mathieu functions indicate d/dn. The A's that
appear in (64) and (65) are analogous to the D's that are used in the definition
(34) and the B's that appear in (66) and (67) are analogous to the F's that
appear in the definition (35). The exact meaning of the pn's and sn's is not

of immediate concern at this time, what is important is that all of the
conversion factors are in McLachlan's notation.

To obtain the remaining conversion factors we note, for real ¢, that

Rei = Re{ReéB)} (68)

Rol = refro ¥} (69)

17



1

Cen Re{Meél)} (70)

Se_ (&) Re{Neil)} | | (71)
where the notation Re{ } notes the real part of the quantity in brackets. We
include the argument £ in (71) to emphasize that the quantity Sen(E) is a
radial Mathieu function in McLachlan's notation rather than the even angular
function Sen(n) in Stratton's notation. The proportionality factors between
the bracketed quantities are necessarily the same as for the real parts. Tor

completeness we list the relationships

_ /2 (1)
Ceom ~ //; Pon 2 -2
_ /2 (1)
Ceom+1 = //; Pou+1R8on+1 (73)
_ /2 (L
Seynt1 &) = /7 SonniRoont : (74)
Se (&) = //Z s! Ro (75)
2m+2 T C2m+2 T 2mt2

Finally we present the relationship between McLachlan's notation and the
notation used by Blanch in the often used handbook published by the National
Bureau of Standards [7]. We have two reasons for refering to Blanch's notation.
One is that the NBS handbook is a good and a re;dily available source and the
second is that both E;iand 21 assume their simplest form in Blanch's notation.

The notation for angular Mathieu functions of McLachlan and Blanch is identical,

while Blanch presents the following relations for radial Mathieu functions

Ce_ = p;Mcil) (76)
se_(¢) = s;!MsI(ll) (77)

18




where the M's represent Blanch's radial Mathieu functions and the pg and sé
‘ are those given in (64) through (67). The following relations are also given
by Blanch for real g

Mcél) = Re{McéB)} ‘ (78)
and
= Re{Msrg?’)} (79)

From (70), (71) and (76) through (79) we obtain the following relations

!

Meil) = p;MciB) (80)
Ne(1> = s'Ms(3) (81)
n noon : ‘

This completes all necessary notation relationships needed for the presentation

‘ of ET and Ql.
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IV. Representation of I

T
A general linearly polarized plane wave, depicted in figure 3, has the form ‘
ikoﬁ-r
- T S . . - .
g& = Eo[cos ¢px + sin ¢py Je (82)

where we are free to choose the direction of the wave normal k in any convenient
manner. Once the direction k is chosen we can impose the requirement that Ei

lies in a plane p=2rpendicular to k as the following
fezt = 0 | (83a)

and

>

gt =0 , (83b)

We can satisfy (83) and set up a convenient right handed coordinate system

(x',v',k) by chousing

A P (84)
|lex (kxz) |
and
§r o= (85)
[kxz |

Noting (82) we see that ¢p is the angle that E, makes with the x' axis and
it is referred to as the polarization angle.

From Maxwell's equation
ngﬁ = imuoﬂi (86)

and the right hand nature of (§',§',ﬁ), it follows that the incident magnetic
field is given by

ik ﬁ*;

— e ol St o
H, = YE [-sin bx' + cos gy Je (87)

20



where Y is the intrinsic admittance of free space

Y = Ve /u (88) .
(o] (0]

In order to be able to use the results in [ 2], we choose k as

~

k = -cos ¢, sin eo%‘— gin ¢O sin 60§ - cos 602 (89)

and the (x,y,z) coordinate system is the one depicted in figure 2. The results
of reference [27] that we wish to use are now described. For an E-polarized
incident plane wave, HZ = 0, described by

(1) R . . ikok-z_ ’
E = —-gin Qo(cos ¢o cos eox + §1n ¢O cos Ooy - sin Goz)e (90)

and

. . R ikoﬁ-z_ _
7= -Y s%n760§81? ¢Qx”f cos ¢Oy)e J ” | 9L

5 (D

the scattered fields from an 1nf1n1te perfectly conductlng cylinder of arbitrary

cross-section are glven by

_Fiéi) = - ll{—o- cos eo<:Z—l X + gl— §z> + sin260V1§ (92)
and
\ Eéi)=_%<%§——a;l§) (93)
where
o _jikoz cos 60
Vl = e | Ezsc(eo=ﬁ/g, ko > ko sin 60) (94)

Similarly for an H-polarized incident plane wave, Ez = 0, described by
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1 ikoﬁ-z
E = - 3 sin 00(31n p X — cos ¢Oy)e - (95)

and

ik ker
oL

5% (96)

= sin 6 (cos ¢ cos 8 X + sin ¢_cos 8 ¥ ~ sin 6 2)e
(8] o] [e] 8] o] (s

the scattered fields from an infinite perfectly conducting cylinder of arbitrary

cross-section are given by

3V oV
(2) _ i 2.~ _ "2¢
B T xvley * e Y (97)
and
N 3V v
@ _ i RETNRAS B SR S
Esc = ko cos 60 = X + 5y v sin GOVZZ (98)
where
—ikoz cos eo
']2 = e Hz ~(90=ﬂ/2, ko > ko sin 90) (99)
sc
We now write our incident field given by (82) and (87) as the linear
combination '

where o and B will now be determined. The determination of these quantities

(1) (2)

is facilitated by noting that E has a z component while E

.E(Z) (D

does not and
has a z comporent while H does not., Using this, we take the dot
product of both sides of (100) and (101) with z and cancelling the exponential,

we obtain
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E cos ¢ _z'%' = az*E = g sinzO (102)
0 p = 0 ‘
and
-E Y sin ¢ _z°x' = BE'H(2> = -8 sin’o (103)
o p = 0
Substituting (89) into (84) and performing the algebra we can show:

2ex' = sin o R (104)

and using this result in the previous two equations we find that

E cos ¢
o = —9______j1 . (105)
sin 6
0
and
EOY sin ¢
B == sin 0 (106)
o}
Recalling that ET is given by
=0 +HE_ =nu +ail 4 ea® (107)
=T —i —scC —i c —sc
we combine the results of this section to write-
ik ker i cos ¢p BVl BVl
= (~gi o1 St . _f—_ "_ ~
ET (~sin ¢px + cos ¢py Je ko <in eo <8x X 5y )
i sin ¢b cos 60 BVZ 8V2
+ 2 23 IR . -
ko oio eo (Bx x + 5y y) sin eo sin ¢pV22 (108)

where the incident field has been normalized with respect to EOY. For completeness

we note that the substitution of (89) into (84) and (85) leads to

N ' . N . ~ . ~
= - - +
X cOs (;b cos 8 X sin (i) cos 6 Y sin 6 =z (109)

23



and

y' = -sin ¢O§ + cos ¢o§ (110)

We now see that all that remains for the complete definition of ET are
the explicit representations of BVI/BX, BVl/By, V2, avz/ax, and 8V2/8y. Using
(94) and (99) together with the explicit representations in [2], we can write

*
RV o,
m 1 (3) 1 t t
Re (>\ ,E)Se ()\ ,¢ )Se (>\ ’n)
m m O m

v, = -{ ) (-if“&gﬁ”(xw>“l
m=0

RS 00Le])
m
(111)

L —ik z cos ©

(1) o4 . *
" L (3) Y o o
Ro™7(A",E)Se (A',9 )So (K‘,n)] (87)%e

m m o m

©), 1
+ (TG :
" R (r,e])

m

(D'
Re <>\ ’g )
v, = "[ ] (-i)m[}N(e)<x’))“1 - R 0 e)5e (20 )56 )
n=o m Réi)'(x|’€.’:) m m Yo m

1y (112) .

*
N Ro O\';E.: ) '
- - ' . -ik z cos ©
+ (Nnio)()x‘)) 1 (3)' - Ré3) ()\',E)SO (>\|’¢ )SO (k',n)] (8:“—)12e o
RO (}\"gl) m m (s m
m

where

A= koc gin eo o - (113)
(e) A 2 :
N ) = J dn[Se (A',n)] (114)
m o m -
(o) 2% 2
N Gn) = JO anlso_(1',yn)] (115)

The ¢ that appears in (113) is the semi-focal distance of the system of ellipses

* ‘
depicted in figure 2 while gl is the value of £ corresponding to the surface of
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the perfectly coﬁducting elliptical cylinder. The R's and S's are Mathieu
functions given in Stratton's notation as discussed in the previous section
and the prime associated with the R' appearing in (112) represents d/dg.
Before proceeding further we will convert the representations of V1
and V2 to McLachian's notation [47] and to Blanch's notation [[7] by using the
results presented in the previous section. Multiplying the even terms in

(111) and (112} by 1 expréssed as
| b 2 2
) C/my®p, ] [(ce_(q,0)]

= T ) (116)
[(Z/ﬂ)zp%] [(cem(q,O)]

1

and the odd terms by 1l expressed as
L -2 ; 2
) C(2/m) s ] [sem(q,O)]

- " 2 5 (117)
[(Z/W)ZSA] [se%(q,O)]

1

and using (51), (53), (60) through (63), and (72) through (75) we can write

-1 Cem(q',éz) Meél)(q',i)

N _{ zo (_i)m{}Née)*) cem(q',¢o)cem(q',n)

P e (q,6)) (2]

m . (118)
1 Sem<q',€?) Neél)(q‘,£>

e q',e)) (@/m)s)

L -tk cos 0
o

sem(qv :d’o)sem(tfs T])] ] (87f>/)'e

(0)*.7
+ (Nm )

. * (n
-1 Ce (q',g ) Me (q"g)
PN(e)* (1?' 1* m > cem(q',¢o)cem(q',n)
Me ©0 (q',8)  (2/m)7p)
(119)

V2 = _[ z (-1)"

(0)* -1 Se;(q',ii) Neél)(q',i) , -ik_cos 60
+ (7)) O L sem(q',¢o)sem(q',nﬂ (8m) %e
Ne (q ,El) (2/m) s
where S
2
2 k ¢ sin 8
_ T o o
o =TT ( 7 ) (120)
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P2

(e)* _ [ 2 -
N = ) dn[cem(q RN w
fZ'IT
(0)* - v 2 —
N = 3 dn[sem(q M1 =

and the Mathieu functions are given in McLachlan's notation. The second

(121)

(122)

equality in (121) and (122) expresses results from the normalization employed

by McLachlan for his angular Mathieu functions. Rewriting (-1)™ and using

(64) through (67) as well as (121) and (122) we can write

—ikoz cos eo
V, = =2e S

and
—ikoz cos eo "
V1 = =2e Sl
where
§. = mzo “Dgz)(q s& )p2 ( )(q s8)ce, (q'59 Jeey (q',m)
(0) -1 o (D)
RPN W CRR TR EL CL ’”)]
(e) (1)
l[Dzm+1 2m+1M omt1 (4 080eeyp gy (@hho dee, (@)
(o) -1 (1) , o ' '
* Dom+1Somr1 e 2m+l(q 8)segny (a0 )88y (a m)]]
and
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(124)

(125)




SI =) [[ (e)(q 'E )pZm ém)
m=o0
\O\ ( [} *) -1 (1)
2m+° 2m+2 2m+2

(q',i)ceZm(q',¢o)ce2m(q',n)

1 1 . 1
(q ,E)se2m+2(q ’%?582m+2(q ’n)]

)

(e) [ * "'l ( 1 t 4
1[ o1 (@55 Py i Mes 1y (@l Edee, (@t Deey (@t )

<O) ( v * —l <1>
2m+l ®om+1

(q',i)se2m+l(q',¢O)se2m+l(q',n>]}

In (125) and (125) we have used the fact that

t
so(q

as well as the definitions

(e)
¢ (q",eD)
<e) ' *
C. (q',£;)

(O) 1 *
c. " (q ,El)

(q ag ) =

,m) =0
Ce' (q',E0)
el (g',8;
N, %

E3
Se (q',8)
(', , .*
Ne "7 (q ,51)”7

' *
(1) *
Mem (Q',El)

*
Sem(q‘sgl) .
*
nell (qt,e])

Returning to (108) and using (109), (110) and the relationships

W _ 2V
9x 3
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(127)

(128)

- (129)

(130)

(131)

(132)



v av & 3V 9n o (133)

as well as (i23) and (124) we can express ET as

ikok~£
H = x{}51n ¢p cos ¢ _ cos 60 - cos ¢p sin ¢O)e

-ikoz cos 80
2ie < 9E on.
* ko sin 80 cos ¢p(82 Ix * SS ax)

- sin ¢p cos 8 (S g + S5 ——))]

+ yl381n ¢p sin ¢o cos 80 + cos ¢p cos ¢O)e

~ik z cos 6
o o

2ie ag an
k_sin 6 (cos ¢ p 82 5y 835y

. 2y 5 i)
4+ sin ¢p cos GO(S4 5y + S5 ay) J

. , ikoﬁ-z' -ikoz cos @ :
+ z[}sin ¢ sin 9 e + 2e sin 6 sin ¢_S ] (134)
P o o p 1l

S =a—»=§:
m=

2m
ol

[[Céi)(q & )p2 e (D) (q',a)ceZm(q‘,¢o)ceZm(q',n)

(o) (1!

v*‘l [ 1 1
t Coin (@8 )s, oNey (@t E)sey o0t e dsey o (aTm)

(e) oL ('
1[ 201 (458 Pop i Megpy (ahhB)ee @i deey g (aln)

+ i) (qhensyh et (qt ey, (@'he )se, (@ ,n)]} (135)
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4s, w J o ) |
3 = o ) ![CZm (a',8 )PZ Me, *(q',8)ce, (q',9 Jcey (q',m)
m=0 [
(O) -1 (]‘) ' i 1 1

(e) -1 (1)
- 1[ S CRCIRI LS A IR CUUOES M CLR)

(0> (1) ' t 1 '
+C, (g Ds 2m+1N T CENSEEPECAPTIOLLS IERC! ,n)]] (136)

38 © 1
S === 7 l[Déz)(q N3 )p2 §;> (¢",8)ce, (q',0 Jce, (q',n)
m=Q .

o) (!

Domi2 (@ 9D S (0580585 0" o6 )Sez w2 @ ’”ﬂ

(e) -1 (D ' '
- l{ (@' 58Py Moy (815606851 (4 h00) ey (@Tm)

b1
(0) (1) i ' '
+ 2 +1(q ’5 s 2m+l eomp1 (@ 8)se, Ly (ahd dsey 1 (a ’”)]] (137)
3S o -
L ( ) ' ' '
SS _xai ) mzo {[ %q 3 )pZm 2m (q',g)cezm(q ’d’o)C‘EZm(q ;)
{ -1 1 ' ) v
EEIRA GO DS WHCHOLWICITR LS MPC ’”)]

(& .y -1 (1) ., ' C e
- 1[ ot (@5 Pop Moy 4y (@t Edeey (@b deey g (asn)

(0) -1 e \
+ D, +1(q &1 ) St 2m+l(q ,E)se2m+l(q ,¢o)seZm+l(q ,n)]] (138)

The primes appearing in the preceding equations indicate the appropriate

d/dE or d/dn. All that remains for the complete representation of By is the
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explicit representation of the derivatives 3£/3x, 9n/3x, 9£/3dy, and 3n/3y.

These derivatives are found from taking 9/9x and 3/3y of (30a) and (30b) and

then solving the system of linear equations. The results are

98 _ _3n_ & :

9% 3y cB ' (139)
8n__238__0% '
X ay cB (140)

where

_ sinh E cos nn (141)

b = cosh é sin n | (142)
1,
= (coshzi - coszn)2 (143)

and ¢ is the previously mentioned semi-focal distance. This completes the
explicit representation of ET in McLachlan's Mathieu function notation.
The representation of H_ in Blanch's notation is now readily determined.

—T
Equation (134) and the auxiliary definitions are still applicable with the Mathieu
functions in §; through Sg appropriately converted. Using (64) through (67), (76), (77),
(80), (8l), and the fact that the remaining notation is the same as McLachlan's

we can write these S's as
Sl = z (—l)m[[ééi>(q',ET)Mc(3>(q ,E)Ce (q"¢o)ce2m(q"n)

m=0

*
- piola’ ’51)Mséiiz(q"5)se2m+2(q"¢o)se2m+2(q"”)]

- 1[ (e) (q ',5 )MC(B) (q' E)ce2m+l(q',¢O)ce2m+l(q',n)

2m+1 2m+1
(o) - (3) ' : ' 1 |
+ Dy (@ EMs, 1, (q",8)se, 1 (q"59 dee, (g ,n)” (144) "
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5,= 1 (-l)m{[?éz)(Q',ii)Mc;i)'(q',E)ceZm(q',¢O)ce2m(q',n)

m=0

éoiz(q > )Msé3iz(q"5)sezm+2(q"¢o)sezm+2(q"ﬂ)]

[ RIS s CUNS LI CLAIR IR CUN

(0) y R, (3)] '
Com +1( ,51)M82m+1(q',€>se2m+1(q ,d:o)seZmH(q',n)]]

S, = ) (—l)m{[céz)(q’,ET)Mcgi>(q',E)ceZm(q',¢o)ceém(q',n)

3
m=0

(O) ' * (3) 1 1
SWPICENSPL LIPS ’5>562m+2(q"¢o)562m+2(q"”ﬂ

[ éeil( e )Mc2 +1(q ,Eee, .1 (a",0 deey L@

(o) (3)

+ ool (at,E]Me +1(q"518e2m+1(q"¢o)seém+1(q"nﬂ J

o]

5,= 1 <-1>m[[ I RECEE >Mc(3) (a",8)ee, (@50, )ce, (a's)

m:

o) e (30
= Dot (18PN 5010 (a1s8) 88y 5 (aTh 0 )88 pnp (aTsm)

[ éeil( e )M°§311(q"5)°ezm+1(q"¢o)°ezm+1(q"”)

+ plo) (q',&4 )Ms(3)

Domt1 SECENSECNIICAN IPELIWEACE ,ni]}
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(146)

(147)



o]
Al

S5 = 1 <—1>m{[D§§><q',aj>Mc§§)(q',a>ce2m<q',¢6>ce§m<q',n>

m=0

(o) (3)

= Dot

(3)

’ . (e) ' *
- l[b (a7, Mey 41

2m+1

(o)

T Domt1

2m+l

where

RECIN
¢ q',e])

(&), . *
D" (q",E))

Déo)(q',ii)

This completes the specification of H

]

T
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1 * ' ! ¥ t
(@', Msy b (a"hB)seypp(a7s8 058,54 ’”)]
(@'sE)eeynyy (a'stg)eegy (ahsm)

(é;,ii)Ms(3) (q',E)se2m+l(q',¢o)seém+1(q',n)]}

(1), « . *
Me "7 (a'5Eq)

Mcﬁ(ls) (Cl' agt)

(L) v ¥
Ms "7 (q',Ey)

(B 1 *
MSm (q ’gl)

(', , .*
Me (q ,El)

', L *
Mcm (q ’gl)

Msél)'(q',ii)
MS(3)'
m

%
(q‘,gl)

in all notations of interest.

(148)

(149)

(150)

(151)

(152)




V. First Representation of D,

Recalling the definition of D, given in (26b) as

QIQE}EO) = ngis(£;£o> (153)

we see that we require a representation of GlS' We obtain this representation

from [2] where it is given as

Csry) < | g ] {<ane’u»‘l[cnﬁe)<x,a’f>nerff’<h,zm<3><—,h,zo>
Ch ko—h m=0

#2090, e @ oncnr)]

r
-0

+ 0@ M el 0ughe P (pmelV hr)

() e (3) 3,

+ D" (A, 8 )No "7 (h,r)No ~* (~h,x ) (154)
where N;e) and Néo) have been defined in (114) and (115) and the contour of
integration is depicted in figure 4.

P (155)

(1) %
Rem (X,il)

i

(e) *
¢ ® (h,E)) (156)

(3) #
Rem (ngl)

(1 *
Ro "7 (A,E,)
o L (157)

(o) *
C 7 (hs8,) = ——ge——
m 17 (3) x
Ro (Asil)

(' *
Re (gD

Re(3>'(k
m

(e) *
D" (A,E,) (158)

L ;

’gl) )

Ro(l)'
m

’RO(S)'
m

"k
0,

(o) *
D%’ (,8))

- (159)
(kﬁgl) '

33



ihz

cB

Ma£3)(h’£) =& [ﬁRaS)(A,E)Sa'mO\,n) - GRO‘IS)'(*’E)S%O"”)] (0 = e,0) (160)

., ihz ' ,
Mo (h,r) = iﬁg———-[ﬁka£3) (,8)Sa_(h,n) + GRa£3)(A,£>Sam<A,n>]

kocB
22 ih (3)
+5—e Z3Ro > (0,E) S (A, m) (0 = e,0) (161)
m m
c'k
(o]
= 8" ak + b) (162)
~ "l A A
v = B8 " (~bx + ay) (163)

and a, b, and B are defined in (141), (142), and (143)., The primes that appear
in (158) through (161) indicate the appropriate derivative d/df or d/dn and

the R's and S's are Mathieu functions given in Stratton's notation [3]. The
coordinate system corresponding to the x, y, and z is, as before, depicted in

figure 2.

Using the relationships

TxM = k0§ (164)
and

’ VXN = kM (165)

together with (i53), (154)_and (155) we can write D1 as

, 2 w
D, (E,r) = - %;";—J £ {chff) 0 elPre? t,ome (n,r )

Ch A m=0 '

+ Dée)Meé3>(h,5)§eé3)(—h,goi] (166)

m - m

+ (NHEO) (A))_l[C(O)NOTEB) (h,;_)gon(lg')(—h,zo) + D(O)E°r§3)(hs£)§_on(13) <—h’£o)]}
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The preceding equation is essentially the complete representation of 2& in
Stratton's notation. The remaining portion of this section will be devoted

to: (1) presenting 2& in Cartesian components; (2) converting to McLachlan's
notation; (3) converting to Blanch's motation; (4) changing the dummy integration
variable, h, to a more convenient integration variable.

Simply expanding (166) we obtain the Cartesian representation of Qﬂ

whichbis
D.(ryr ) =D %Xx+D %y+D yx+D 9y
=1 —-—o) XXOXX xyoXy | yxoyX yyoyy
+—DZX zx + Dzy zy - DXZ Xz + Dyz vz (167)
o o o o
where
-1
DXXO = (ZﬂBBO) (Kl(aao) + Kz(abo) - K3(bao? - Ké(bbo)) (168)
_ -1
nyo = (ZWBBO) (Kl<abo) - K2(aao) - K3(bbo) + Fa(bao)) (169)
-1
DyXO = (ZnBBO) (Kl(bao) + KZ(bPo) + K3(aao) + KA(abo)) (170)
- -1 '
Dyyo = (ZﬂBBO) (K1<bb8 - Kz(bao) + 33(abo) - Ka(aao))r (171)
DZXO = -iB/(ZﬂcBBO)(KSaO + K6bo) (172)
Dzyo = -16/(2meso)(1<5bo - K6ao) (173)
szo = —iBo/(ZWCBBO)(K7a + K8b) (174)
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D =-i60/(2ﬂc880)(K7b ~ Ksa) | (175)

¥z,

ih(z~z )

_ + -2 0 .
Kl = jCh(z(l)(c) - Z(l)(D))hA e 'dh ' | (176)
| _2 ih(z—zo)
K, = JCh(z(z)(c) + Iiqy (@A e * dh (177)
) _2 ih(z—zo)
Ky = JCh(z(3)(c) +Z(2)(D))hA e dh (178)
K, = ct @) -z (D))hl—zeih(z—zo)dh (179)
N PR (1)
¢ + ih(z—zo)
K = Jch(z(4)(6))e dh 7 (180)
4 ih(z—zo)
K, = ('_.(C)e dh (181)
6 o ()
h
r ih(z-—z ) »
K, = (z,, . (D))e ° dn (182)
7 Ch 4
. ih(z-z )
K, = (5, (D))e © dn (183)
8 Jo ()
h

In the preceding equations a, b, and B are the quantities given in (141),

(142), and (143) while

sinh Eo cos ng

a = a{go) = 2 (184)
O
cosh £ sin n
b =b(r) = o 2 (185)

o] —0
. S0
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1
)

BO = BQEO) = (coshzgo,— coszno) | 7 | (186)

The explicit representations of the remaining terms are

Ly =

Py @ -

3

<4)(I“)

sy M) =

)(F) =

) {Fée?(x,gi)(Née)(k))ulS (A,n)Re(3>'(x,g)Se%(x,no)Re£3)(x,ao)

m=o0

réo)(x,g?)(N;O)(x))—lSom(k,n)ROQB)'(R,i)Sog(K,ﬂo)RO;g)(ksio)} (187)

) {Tée)ki;ai>(NQE)(x))"lsem(x,n)Re£3)'(x,g)Sem(x,no)Reé3) ()

m=0

0D a0 se_0,mre P (L E)s0_(n )Ro(’ <x,£o)} (188)

(3)

-1 1
Q ,g)SemQ ,nO)Rem

(3)

T aeh @l® o Iser 1y nyre (st )

r (6D a0 50l 0,mre P 6,080 Gun R P 0 )} (189)

(3)

I 0ol o0 sel omrel 6,050 0,n re ™ 00e )

m=o

-1

w0 D el oy so;<x,n>Ro£3)<%’€>S°m(*’”o>R°é3)(*’Eo)} (190

{ MO 50l 0 lse o,nyre®

e}

(528 _Oan Re P 0 )

I e~18

m

-1

#1200 @l 0070, 0umre {7 6 8ys0 Gunre P 0E ) s

% o
where T equals C(k,gl) or D(k,gl). The + superscript attached to the I's

appearing in (176), (179), (180), and (181) indicate an interchange of the r

and r
)

dependence. For example
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5y ® = ] {Dée)(A,Ef)(Née)(x))'lSemCA,no)RQQS)'(K’Eo)se;(k’”)Reé3)(k’g)

m=0
N Déo)(k,gi)(Néo)(A))'lsom(x,no)Roé3)'(X,QO)So;(X,n)Ro£3)(k,i)} (192)

In order to present Qﬂ in McLachlan's and Blanch's notation it is only
necessary to convert the Mathieu functions appearing in (187) through (191) to
the appropriate notation. In either of these notations, the natural integration
variable is q rather than h. According to (48) and (155), the relationship

between these variables is
q =l - n¥)/ (193)

Making this change of variables and using (51), (53), (60) through (63), (72)
through (75), (121), (122) and writing the exponential in terms of sine and

cosine as well as using the symmetry properties of these trigonometric functions,

we can write

i - e : *
K, = if Jc dqq L sin(2(q, - @) "(z - zo)/c)[Z(l)(C,q) - Z(l)(D,q)] (194)
q
3 - l . ]/2 ‘
K, = if jc dqq s:Ln(Z(qu - q)(z - ZO)/C)[Z(Z)(C,Q) + 2(3)(DsQ)] (195)
q ,
i -1 L
K, =-;§ J G dqq = sin(2(q, - @) (z - zo)/c)[z<3><c,q) + 2(2)<D,q)] (196)
q
K, = §7 I daa”t sin(2(q, - 0% - 2 )/ €@ - T @] (9D
q
k5= 2| daf(a, - ©7F cos(a( )i yieys!
5 % C a{(q, = O cos(2(q =~ a)7(z - 2)/e)T 4y (C,0)
q
bt 6 3t
- W) (q, - 9 2(4)(C,qu)} + ;-qu3(4)(0,qu) (198)
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ks = 2 | dalte, = 077 cosca( )2 ( y/e)et ey (6y)
I P ST A O R
q
S T 4 Y .
- U@ ey = D Cap |+ 2 ekl (Ca) (199)

1
e

) 1 ,
%=3Jc@“%‘q’ cos(2(g, = )7z = 2)/e)2 ) (Dyq)

q

1
-3

V@) gy - Oy Oug) |+ 2 4%y, 0.a) (200)

2 L L '
Kg =< Jc dq{(qu -q) * cos(2(q, - q)°(z -ZO>/C)Z(5><D’Q)
q .
-5 Loy —
where
kgc2
9, = 7% - — (202)

and Cq is depicted in figure 5. The additonal terms in (198) through (201)
result from the removal of the artifically induced singularity at q, which
resulted from the change of integration variables. The U(q) that appears in
these equations is the Heaviside step function. The I(I')'s are exactly the
same quantities defined in (187) through (189); however, they are expressed in
McLachlan's notation as

0

1 7 * =2 ' !
2y @@ =1 T @D G @) Py (o el (@, 8deey ain e (@5

=0

(e) * -2 DR , | 1

(203)
+ Fégil(q,iz)(82m+1(q))_28e2m+l(q,n)Ne§iil(q,g)seém+l(q,nO)Neéill(q,go)

£ e e @ Psen (@omnetD @ eyser L (aun el (g, )
om+2 92517 Yoot omt2 2V R0 1 omt2 2/ Ne om0 V5,
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(o]

1 D',
gy () = %-mgo{ <e)<q,a ) (0, (@) P, (,mme L) (0,0)ce, (auntest) (ar,)
(e) (H? (1)
+ T, 1 (48 )(p2 +1<q)) 2m+1(q,n)Me2m+l(q,a)ce2m+l(q,no)Me2m+1(q,£o)
(204)
() (1) (1)’
+ T, (a8, )(qz +l(q)) se2 41 (@omINe, Ly asE)se, (g, dNey o) (a,E )
£ (0) ', L'
R T L e SRR RO GO MO N IR L s RN
1 < * -2 1 , 1
g (T0) = 5-mzo{r§;’<q,al><p2m<q>> cey (et (@,8)ee) (a,n es (@5,
b T i (ED (g () e, p @mey ) (@8)ees (@, Megel; (3E,)
(205)
() (1) (1)
+ T, 11 (a8 )(s2 +1(q)) &5 pp (donINey +1(q, Isey g (ammINey iy (d,8,)
* E o (958 By @) se2 +2<q,n>Ne§ 12<q,a>se2 (et @5}
1 * -2 1
gy T = 3 mZO{Féz)(q,El)(pZm(Q)) ces (qmttel) (@,8)ce, (a,n e (@6 )
b T4 (@ED (g () ooy, SRICHONS W CRI LIS CIN egy Ly (0:5,)
(206)
©) g - (1) (1)
+ T2m+l(q,€l)(szm+1(q)) e) yp(@mNey (@8 sey 4y (duny )Ne2 11 (8D
PR CICRICHICIDICY SIRCEOEC WHCRIRNPCR ey, iz(q’go)}
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Z(S)(qu) = E‘ é

<«

1

m=0

(e)

T 2m+1

(a8, )(p2 +1(q))

N
4+ rlod

~(0)

ES
o +z(q,El)(s

+ T 2m+2

where I' = C corresponds to

(9, = ol @)

(o) *
lm (Q9€l)

and where I' = D corresponds to

() q,eh) = 0 gD

1) (q,e])

Using the fact that McLachlan's and Blanch's

preceding equations as

) * -2
omi1 (@8 (8y (@) Tse

(@) %se

(o) *
Cm (q,al)

it

Déo)(q,£i>

(e) * -2
{732 (@.6]) (@) e
®om+l

o1 (9o MINe

2

functions is the came as well as (76), (77), (80),

m+2

Ce (ng )/Me

(1!
(q’n)Me2m+l

(1)

(1)’
2m+1

1

(q,n)Ne2m+2(q,€)

S€omt2

*
ce_(a,6)/MelP (q,E})

e (d,&; %) /ve

(194) through (211) complete the representation of D,

(!

(I)(q,

(q,

£q)

)

. % ' %
sel (q,£7)/me' ) (q,E])

(q,no)Ne

! 1
Zm(q,n)MeE;) (q,é)cezm(q,no)Meém)(q,&o)

(Q:g)cez +1(q,ﬂ )Mez +l(q’g )

(207)

(1)
(@ 8)8€ 9,41 (@050 Ne g1y (4,80

(1)
2m+2(q’go)}

(208)

(209)

(210)

(211)

Retaining the same meaning for T, we see that (167) through (175) together with

in McLachlan's notation.

notation for angular Mathieu

and (81) we can write the



| =

(I'yq) =

) " 3 , ‘ . 3 .
21y mzo{réz)(q,il)ceZm(q,n)Mcgm) (q,E)ceZm(q,no)Mcgm)(q,go)

éeil(q,ﬁ )ce2 +1(q,n)Mc§ ll(q,i)cez +1(q,n )Mcé3il<q’€o)

-(0) (3)! \ L (3)
Lo +1(q,€ )se, . (q,MMs, +1(q,€)882m+1(q,nO)M52m+l(q,go)

3!

"o (q’gt)sezm+2<q’”)Mszm+2(q’5)Se§m+2(q’”O)Mséiiz(q’go)} (212)

o 2m+2

4

z {Téi)(q’g?)cezm(q,n)Mcéi) (q,g)cezm(q,no)Mcéi)'(q,go)

m=0

P

2(2)(T,Q) =

(3!

(e % 3!
(qsil)ce2m+l(q,n)Mc2m+1(q,€)ce2m+1(q,nO)Mc2m+1(q,go),

Yom+1

gii}(q,,l)sez +1(q,n)Ms§mlI(q,£)se2 41 @y )Msg il(q,r )

(3! (3)'

SRR >se2 1 (@M, ) (a,E)sey 0 (a, MMs +2(q,go)} (213)

2m+2

+

fr

E { (e)(q £q)ce; (q,n)Mc )(q,E)ce' (g5 ng )Mc( )(q,E )

m=0

E gy (Tha) =

N

rie) (3) (3)

+ Ty vp (08 )ce2 41 (@it +1(q,£)ce2 g (asn, Me 1 (a,8,)

*
o (q’gl)se§m+1(q’“)Mséiil(q’g)se§m+1(q’”o)MS§iil(q’go)

* Tontl

+ plo) (q,i?)seém+2(q,n)Ms(3) (q,8)sey .o (asn, )Msg iz(q,go)} (214)

2m+2 2m+2
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{ (e>(q,£ Jce, (q,n)Mc( )(q, Jee, (qsng )Mc( )(q,i )

o .

e~ 8

- -1
iy (Tad) =5

m

(3)

\e> (q,E )ce2 +1(q,n)Mcg ll(q,i)cez +1(q,n Meg +1(q,€o)

ol

(o) (3) (3)

*
H
SR CRAD LIS CROL SR CHALCS NI CRLUDLEPMERC LY

(3)

*
P <q’g1)Seém+z<q’”)Mszm+2<q’5>562m+2(q’”o)Mséilz(q’go)} (215)

T 2m+2

78 0 tFyee. (3 C an e
T {5 @epeepamiey) @8 e n ey @5

NI

Z(S)(F’q) =

+ F;iil(q g)ce, 1104, n)MC§ +l(q,E)ce2 RECAN )Mc§3il(q,io)

(O) (q, n)Ms; i;(q,E)seZ +1(q n )Msé il(q,ﬁo)

* 2 +1

(q,€ )se2 +1

r () (3)!

(3)
T o (458 >Sez Lo (@smMs, i (aE)se, o (a,n IS, IACE) (216)

where I' = C corresponds to

00 (q,eh) = ¢l (q.e]) = me{ @, me P ae) (217)
(0 (q,eh) = ¢ q,e]) = us{P @,z (a,E]) (218)
and where T' = D corresponds to
1 q,eH) = 2 @D = e @ (e (219)
WY L 1
1 @) =0 e = uslV (.6 /Mt (q,E)) (220)

43



Equations (167) through (175), (194) through (202), and (212) through (220)
complete the definition of D, in Blanch's notation.

We complete this section by noting that the integrals appearing in (194)
through (197) have an apparent non-integrable singularity at g = 0. This

singularity will be the subject of the next section.
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VI. Small q Behavior of Terms Necessary for Qﬂ Singularity Removal

In this section we will examine the small g behavior of the sums and
combination of sums that appear in (194) through (201). We have presented the
explicit representation of these sums in both McLachlan's and Blanch's notation;
however, in this section we will only consider McLachlan's notation. We choose
this notation because we found many useful small ¢ expansions in McLachlan's
book. Even though we obtain the small q expansions of the sums using McLachlan's
notation, the ultimate value of these sums 1s independent of the notation and
consequently the small q behavior of these éums which will be explicitly
represented is directly applicable when the constituent terms of the sums are
expressed in Blanch's notation. 7

In addition to the explicit small g behavior of certain functions, all
other relationships concerning Mathieu functions and presented in this section
can be found in McLachlan's book, unless otherwise noted. Until stated othgr—
wise we will present results valid for small positive gq. The small q behavior

for angular Mathieu functions is given by

-
ceo(q,n) =2 1 - q/2 cos 2n + O(qz)] (221)
cem(q,n) = cos mn + 0(q) m= 1 (222)
sem(q,n) = sin mn + 0(q) m=1 (223)

The behavior of the derivatives of the preceding quantities can be found by
differentiating the previous relationships and using the fact that a multiplicative
function of naccompanies the order symbol. For completeness the behavior of

their derivatives is

sin 2n[1 + 0(q)] (224)

1
—3

ce;(q,n) = q2

ce&(q,n) = -m sin mn + 0(q) (225)
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se;(q,n) = m cos mn + 0(q) (226)

' indicates d/dn.

where
The small g behavior of certain radial Mathieu functions is determined by

using the relations

Cen(q’g) = Cen(q,ii) (227)

Sen(q,i) —isen(q,ii) (228)

Using (227) and (228) together with (221) through (226), we have

Ce_(0,8) = 2771 - /2 cosh 2 + 0(q*)] (229)
Cem(q,g) = cosh mg + 0(q) (230)
Sem(q,g) = sinh mg + 0(q) , (231)

1
-

Ceé(q,g) = -q2 * sinh 28[1 + 0(q)] (232)
Ce&(q,i) = m sinh mar+ 0(q) (233)
Se%(q,i) =m cosh mE + 0(q) (234)

where ' indicates d/dZ.
The remaining functions whose small q behavior is required before the
small q behavior of the sums appearing in (194) through (201) are Me< )(q,g),

(1)‘ (1) (!
® (q,8), Ne (q,a), and Ne (q,8). We were not able to find the small
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q behavior of these functions expressed to a high enough order for our purposes.
‘ We will now present a derivation of the necessary small q behavior. Still using
McLachlan's book and notation we start with the Bessel function product series

representation of these radial Mathieu functions. These product series representa-

tions are

P, (q)
AT ()
(9
e (D _ Pontl _
Me gy (4:8) = REIDPS Moner (458) (236)
1
e S (@
Ne, 11(d,8) "'gfialfyz;; Noo 11 (20:8) (237)
1
: i (q)
(1) Son+2
Ne, ) (q, E)' m*(‘*)* Ny 10(ds8) (238)
. where =
(@8 = 1D 22 (@)a_(q,0) (239)
fygpy @8 = 1D aeitt (@3, (a,0) (240)
Nppe @) = T DB ()7 _(q,0) (241)
NI D Bézﬁf)(qmr(q,;) (242)
with
A (0,0) = 3 GwEtY (v,) (243)
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- (1) (1)
Br(q,i) = .Jr'(vl)Hr+1<v2) + I ETTG) (244)
- (1) (1)
Fr(q,’é) = Jr(vl)Hr+l(v2) ~ Jr+1(vl)Hr (Vz) (245)
. _ (1) (1)
G (q,8) = Jr(vl)Hr+2<V2) - Jr+2(V1)Hr v,) (246)

L -

v, = q ‘e & (247)
1

v, = qzeg v (248)

The quantities Pom® Pomel® Somel? and S o2 have been defined in (64) through
(67), while the Agpg's and BEP%'S were also discussed with regard to these
equations. These Aggg's and ng;'s are discussed throughout McLachlan's

book and the pertinent aspects of the small q behavior of these quantities
will be utilized as needed without further reference to McLachlan. We now
proceed by presenting the small q behavior of Ar’Br’Fr’ and Gr using a standard
reference on Bessel functions [7]. The small q behavior of these quantities

is readily determined to be

Ao(q,a)=1+—2—i—(—y'71n——a+%1nq+%g+o(q 1n q) (249)
A1(q,8) = - 271 -4 10 q + 0(@)] (250)
8,00 = - =T 1 0@] =2 (251)
Bo(q,g)- - %}-q*%e-g[l - %—eg cosh £ 1n q (252)
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B(0,0) = - 2 TR P b 0()] rad (253)

F (q,8) ~ - %% q—%e-g[l - %—eg sinh & 1n q] (254)
F (q,8) = - %%'q-%e"(2r+l)g[l + 0(q)] r=1 - 7 (255)

4i(r+1) q—le—(2r+2)£[l + 0()]

G (q,8) = - —= r=0 (256)
where y is Euler's constant given by
v o= 5772157+ (257)
Using (249) through (256) together with the relations
() (q) ~ (@) = 0(q") (258)
(m+2r) m+2r)
Em§< ) ~ gmg<q) = 1+ 0(g") m= 1 <25§>

we see that the sums appearing in (239) through (242) reduce, for sufficiently
small q, to considering at most the three terms corresponding to r equal to
n~-1,n, and n + 1. With the exception of the calculation of Mz(q,g), (239)
through (242), and (249) through (259) are sufficient to derive the following

results

M (q,8) =271+ 2EOEIR D I g 5 2 g 4 0(q 1n @) ¢ (260)
My (0,8) = - = DT 4 0@] n=d (261)
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Ml(q,g) ~ - %%~q_%e-g[l - %-eg cosh £ 1In q ’ N (262)

| L

M, L (@8 = - 2P P 0@ na (263)

N, (q,8) ~ - %} q—%e-g[l - %-eg sinh £ 1n qJ (264)

Nop1 (08 ™ My (058 nx1 (265)
41 (n+1 -1 -(2n+2

Ny p(@,8) = = A @D L o()] nzo (266)

In order to obtain Me, corresponding to n = 1 in (261), it was necessary to use

the relation

(2) g
AO (q) Z - - (267)

so that the q 1n q terms in (249) and (250) cancel. For the derivation of the
remaining quantities in (260) through (266), the omitted éoefficient in (258)
for r = 1 would be of consequence only if we wished to present the explicit
form of the 0(q) term.

In order to complete the»specification of the small positive q behavior
of the radial Mathieu functions defined in (235) through (238) we must specify

the small q behavior of the coefficients. First we present

20 = 271+ 0(aD] (268)
(2n) ___q" 2
A = [1+ 0(g9)] (269)
2507 (on) !
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n
R ROt 9 oD (270)
L 227 (2n) !

n
B§2n+2) ~._%§§Eﬁﬁl——- 1+ 0(™)] (271)
277 (2n+1) !

Combining the preceding equationms with the definitions (64) through (67) and
(221) through (226) we have

1
—

Py 2 (272)
P (-;>n22“"1(2n>:q'n ' | BCIE)
by~ (-DP2%n 4 1t g” D (274)
Syl ™ -1)"220(an + 1)1 ¢~ OFD) (275)
Sy ip ™ -1y L2t o) 4 gyr gm0t (276)

2n

and the next terms are at least 0(q). Combining (235) through (238), (260) through

(266), and (268) through (276) we have our desired results which are expressed as

Y . .

Meél)(q,g) =271 +-3£3Lé91431 +-% in q + %} £+ 0(qg 1n )] - @77
. _ 2 o

e,V ,0) = - = P e D T 0] na (278)

Me§l)(q,g)'* - %%-e_gq_l[l - %-eg cosh £ 1n q| ' s (279)
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Mell) (0,8) = - —Ees @ 2n + 1! yFom (2m)E (2“+1)[1 FO@I nx 1 (280
Nefl)(q,e) ~ - —27—} e-gq—l[l— 32- % sinh £ 1n q] (2815
e, 41 (@8 ~ Me, o (q,8) nx1 (282)
ey 1p(0,8) = = ks (2P + D) PHECI L 0@ n 0 (28

We also need the small q behavior of the & derivative of the preceding Mathieu
functions. This can be found by differentiating the preceding relationships

and using the fact that a multiplicative function of £ accompanies the order

symbol., The results are

1
¢

Meél) (0,8) =22 + 0(q 1n @) | (284)
welll'(qp) = 2 @l amn e ¢ o@]  nal © (285)
Mel(l)'(q,i/ ~ gﬂi e g7 + 3 e® sinh £ 1n q] (286)
ve(D (8 = & 0P0n + T PFETL Lo] a1 87)
Nefl)'(q,zﬁ ~ B E 1+ S cosh g Ing)l o (288)
vesD) (q,8) ~ well) (q,0) a1 (289)
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1 +2)8 - -
e 12< o = 2L 4 gy 2 BRESERDL L 0] ax 0 (290
In (221) through (226), (229) through (234), and (272) through (290) we have
presented the small ¢ behavior of all quantities necessary to study the singu-
larities that appear in (194) through (201) for positive q.

We now rewrite the sums appearing in (194) as

_ v (W (1) (1) (1)
22(1)(C,q) = mzo (R a2m+l(C) + 8,11 (C) B ,(©) (291)
where
D0y = 082 (0,65 (b, (@) ey (@mell) (@ 80cey (ainmes ) @,E)  (292)
1 1) ,
é 11<c) = éiil(q 2 )(P2m+1(q>) 2m+1(q’”)Meémil(q’g)Cezm+1(q’”o)Mez AR
(293)
1 Ly
gmil<c) = éoil(q’g JCHRICOMIN 2m+1(q’n)Ne§mil<q E)sey 41 (050, )Nez +1(q &)
(294)
1 1
5 (© = Coody (5] (5 (@) zsezm+2(q’”)Neééiz(q’g>Se§m+2(q’”o)Neéiiz(q’go)
(295)
and
o0 = T oD oDl - Do s 0

m=0

where, as before t indicates an interchange of r and r , so that

«DF @) = 8 (0,69 (o, (@) ey (amess) (a5 ey (@ mvey) (0,6)  (297)

(1! (D

1 .
()t (e) (gq,n )Me2 +l(q,£ )Ce2 +1(q,n)Mez +l)(<:|.a€)

“n () 2m+1(q’g )(Pz +1(q)) ©om+1
(298)
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1 t
it ) = Dol (GED (g () sy (o Mgy (@8 Jsedy, (asmilleg (4,6
(299)
;liz(D) = g;iz(q £ )(s2 +2(q))—ZseZm+2(q,no)Ne§iiz(q £ )se2 +2(q,n)Ne§ iz(q £)
(300)

with the C's and D's defined in (208) through (211). Using the small positive

g results presented in this section we can express the a's and B8's as

D) = o(q) (301)

£
. -(E+g_~£,)
e ~ ~ Z cosh £] cos nosinne 0T [IHAQ_(£)-40_ (5 )0 (EDT  (302)

~om(E4E =)

“é;)(C) = - Zi;?m) cosh 2m£§ cos 2mn sin Zmnoe +0(qg) m=1 (303)
(2m+1) (248 ~£))
5 - m -
ééil(C) - - Eliégillrcosh(2m+l)it cos(2m+l)n sin(2mtl)n e " o)

mz1 (304)

*
= (€+£0—€ l)

817 () ~ 2 sinn £} sin n cos n e [1450, ()40, (€ )P0 (EDT (305)

- (2mt1) (45 -€))

Béiil(c) = giﬁ%?ill sinh(2m+1)§i sin(2m+1)n cos(2m+l)n0e , +0(q)
m= 1 (306)
A *
L -(2m+2) (E+E -£,)
Bé;iz(C) = Eii%giﬁl,sinh(zm+2)gi sin(2mb2)n cos(2m+2)n e o)
m= 0 (307)
(l)+(D) = 0(q” 1In q) (308)
(1)+ -(E+E -, )
(0) ~ % sinn £ sin 1 cos nge Vli-m, ()40, ()0 EDT (309)
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*
-2m(€+€o—€l)

aéi)T(D) = Ziégml sinh 2m€? sin 2mn cos Zmnoe +0(q) m=1 (310)
i iy (2D (E+E =)
a;;i{(D) = Eiﬁ%?illsinh(2m+l)£? sin(Zm+l)n cos (Zmtl)n e o1 +O(q?
m>1 (311)
(E+E £
o . - - *
2Ty ~ - 2 cosn €] cos nstnne  © L1 ()40 ()0 (EDT (312)
(2m+1) (£+E_~€)
. o -~ (2m -
Béii{(D) = - 23&%2i12>cosh(2m+l)ii cos (2m+1)n sin(2m+l)noe ol +0(q)
m= 1 (313)
%
. . -(2m+2) (E+E -E.)
Bééi;(l) = - Zlﬁ%gizl cosh(2m+2)£§ cos (2m+2)n sin(2m+2)noe o -1 +0(q)
m=0 (314)
where
QC(E) = qeE cosh £ 1In g (315)
and
0 (&) = qe” sinh £ In g (316)
Combining the small q behavior of the two sums, we have
+ * . 1
772[2(1)(C,q) - Z(l)(D,q)] = a;q In q + 0(q) (317)
where
| (e =)
* 7 - 54" *
a; = %%—e ol [sinh g? sin n cos nO(QC(E) - Qs(go) + Qs(gl))
% ' ' %
- cosh gl cos n sin no(Qs<€) - QC(EO) + QC(El))] (318)

It is significant to note that the O(qo) behavior of one sum exactly cancelled
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the 0(¢) term of the other sum. This is important because of the q“1 factor
multiplying the difference between the sums which appear in the integral
contained in (194). Performing the same analysis on the sums contained in

(196) and (197) we also find a cancellation of the O(qo) terms and find

LI 5y () + Ty @] = a3 In q +0(@) (319)
where
(E4E_-£])
a: = %}'el o1 [sinh gf cos n cos no(Qs(E) + QS(EO) - QS(ET))
+ cosh £} sin 1 sin n_(Q (8 + Q_(6)) = Q (€])] (320)
and
T _ Uk
2[2(1)(C,q) - Z(l)(D,q):l = a,q 1n q + 0(q) (321)
where
(g4 _-£0)
aZ = - %}- o1 [sinh &? cos n sin nO(QS(E) - QC(EO) - QS(ET))

- cosh gi sin n cos nO(QC(E) - QS(EO) ~ Qc(ii))] : (322)

The small positive q behavior of the combination of sums appearing in (195)
requires further discussion before it is presented. In the determination of
(317) through (322) the O(qo) term was eliminated in a term by term subtraction
for summing indices two or larger. The terms corresponding to an index equal

to zero were 0(q) or smaller while the actual behavior exhibited in (318),
(320), and (322) correspond to the index one. The combination of sums appearing
in (195) behaves differently in that one term with zero summing index is not
negligible; however, all of the other terms behave as those in the other
combination of sums just described. We now present the small positive ¢

behavior of the combination of sums in (195). It is
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N * } 2
22 ) (C,q) + 25 0,)] = ayq In q ai ) ) + 0(q) (323)
where
(€4 =€)
az = - %% e o "l [sinh €T sin n sin no(Qc(g) + Qc(go) + Qs(gj))
+ cosh £ cos n cos n_(Q_(E) + Q_(€)) +Q (E)] (326)
! (o) = ¢f¥ @) (@) Pee_(@mimeM (q,8)ee_(a,n e (@5 (325)
The small q behavior of asz) is found to be
e ~ —_ : (326)

It should be mentioned that the absence of the q_1 factor in (198) through (201)
can be shown to be sufficient for the g = 0 behavior of the sums included within
the integrals to be of no concern.

Equations (317) through (326) complete the description of the small
positive q behavior of the sum combinations of interest. To obtain the small

negative g behavior of these sums we use the following relations

ce, (n,-q) = (—l)nce2n(w/2 - n,q) (327)
ce2n+1(n,-q) = (—l)l:lsezm_1 (n/2 - n,q) (328)
se, 1 (Ny=q) = (-D)7%e, . (1/2 - nyq) (329)
sey o(n,=a) = (-D)7se, L (n/2 = n,q) (330)
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Cen(i,-q) = cen(ii,—q) (331)

Se_(£,-q) = -ise (if,-q) | (332)
Mell) (2,-0) = (-Def) (€ + 1n/2,q) | 333
élil(i, -q) = i(-l)n+l élll(a + im/2,9) | (334)
nell) (£,-0) = i(- D™l (6 + 11/2,0) (335)
éiiz(a,—q> - 1)y gliz(g + /2,0 (336)

We can use the analysis presented in this section to give the small positive g
behavior of the right hand side of each of the preceding equations. We thus
obtain the small negative g behavior of all of the Matﬁieu functions that
appear in the sums of interest. The small negative g behavior of the necessary
derivatives can be found by differentiating the appropriate expressions with,
as in the positive q case, special attention to the zero order term. Following
this procedure we still have the quantities (p (-q))~ and (s (-~ q)) to be
defined before the sums can be evaluated. The following relatlons are readily

derived

(b, (-1)% = (o, (@) (337)

(0, g a7 = = (5, (@) (338)
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() CaN’ = = by (@) (339

2 2
(ogiga? = (s, @ (340)
Using (327) through (340) together with the procedure that hgs‘been described

we can show that the only modification needed in (317) through (326) for small

negative q 1is the replacement of 1n g by 1n|q!.
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VII. Description of 21 With Singularities Removed

Using the results of the previous section we can add and subtract the

same term in the expressions contained in (194) through (197) to obtain

, 1 _ L
K =~i§ J dq{q L sin(2(qu - q)z(? - ZO)/C)[Z(I)(C,Q) - Eil)(D,q)]

- Sin(Zqﬁ(z —.zo)/c)at ln[ql}

+ —2—2—2 a] sin(2¢’(z - zo)/c){qu(ln q, - 1) +aq (In q - 1)} (341)
. qu l 1
K2 = .:;‘_2_ J—q dq{q— sin(Z(qu - q)/z(z - ZO)/C)[Z (2) (qu) + 2(3) (D,Q)]
L
; L ® 21
-4 sin(Zqé(z - zo)/c)[a2 inlq| + FE—IETET {U(q + b) - Ulg - a)}]}
+ ;ii sin(ZqE(z - zo)/c[%Z{qu(ln 9, ~ 1) + qL(ln g - 1)}-
+—21-Ti—{ln|ln a| - in|in bl}} 0 <a,b=<l (342)
Y 1 L
K, = 32- J_q dq{q" sin(2(q - )7(z = 2)/0)[L (5, (C,a) + Ty (P0)]
L
- 4 sin(2 q%(z -z )/c)a* ln|q|}
: u o 3
Lo y ) l . ]
+ EZE-a3 81n(2qu(z - zo)/c){qu(ln q, - )y + qL(ln q - 1)} (343)
o -1 '3 t
K4 = —C—z— J:_q dq{q Sin<2(qu - q) (Z - zo>l€>EZ(l)(C’Q) = Z(I)(D’q)]
L

-k sin(ZqE(z - zo)/c)az lnlq[}

LRI }
+ 2c2 a, 31n(2qu(z - zo)/c){qu(ln 4 - 1) + qL(ln a, - 1) (344)
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%
where 2, through a, are defined in (318), (320), (322), and (324). Aside from
the straightforward algebra and integration of the subtracted singularity the

following more subtle considerations are related to the previous equations.

1. Now that the singularity at q = O has been studied we can choose the integration
path along the real axis in the gq plane in (194) through (201) with the exception
of (195). The 0((q lan’)_l) behavior associated with the sum combination
appearing in K2 and given explicitly in (323), (325), and (326) requires further
discussion. Because of this behavior the integral describing Kz given in (195)
would diverge if the integration path were along the real axis rather than the
contour Cq. The representation of K2 given in (177) in terms of a contour
integral in the h plane would also diverge if the integration path were along

the real axis rather than Ch' Working in the more familiar h plane, we can
define a single branch cut at both iko, each of which is sufficient to make

both log and square root functions analytic. The radius of the semicircles can
then approach zero without Ch crossing either cut. This results in K2 being
defined as a principal value integral in both (177) and (195). The half residue
contribution which comes from the semicircles approaching zero is zero in this
case because (lnfql)—1 approaches zero as q approaches zero. In order to obtain
the analytic representation of the integral of the subtracted term we had to

make use of the principal value definition. That is we subtracted, outside of

the obvious constant, the integral now defined and evaluated

a
; —dq__. Inlin a] - 1n|iln b| 0 <a,b<l (345)
p 9 1nfq]
The constants a and b are left arbitrary at this stage of the analysis. We
introduce these constants to avoid introducing an artifical singularity
-1

(Infq|) = at q = L.

Now that the singularity has been removed from K2, the integrals in (198)
through (201) and (341) through (344) have integration paths along the real g

axis and there is no need to take the principal value of any of the integrals.
2. The lower limit of integration in (198) through (201) should be changed to

—%;rather than -« to be consistent with (341) through (344). Because the lower

limit appearing in these equations is ~q rather than -, every integral
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corresponding to an integration between - and -q has been completely discarded.
This was done due to the fact that the angular Mathieu functions contained in
these integrals do not have large negative q asymptotic representations that allow
analytic evaluations for these parts of the integrals. Even though we do

" not have a convenient representation of all Méthieu functions, we can still
demonstrate the decay of all sums for large negative q so that depending on the

criterion chosen, we can find a value of qp, which makes the discarded integral

negligible.

3. The sums contained in the preceding equations as well as those contained
in K5 through K8 contain an infinite number of terms. These sums must be

terminated according to some prescribed smallness criterion.

The final representation of Dl applicable for either McLachlan's or Blanch's
notation is found in (167) through (175), (198) through (201) with the integration
path modified as described in this section, and (194) through (197) replaced by
(341) through (344). 1In McLachlan's notation the appropriate sums are defined
in (203) through (211), while in Blanch's notation they are defined in (212)
thrdugh (220).
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Figure 1.

Arbitrary Surface Attached to an Infinite Elliptic Surface.
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Figure 2. Relevant Cartesian and Elliptic Coordinate Systems.
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Figure 3. Incident Plane Wave Description.
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Figure 4. Integration Contour Ch'
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Figure 4.

Integration Contour Cq.
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