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Abstract

The solution of the three-dimensional scattering of plane electro-
magnetic waves obliguely incident on an infinitely long perfectly con-
ducting cylinder can be deduced from two-dimensional scattering solutions
when the cylinder is in free space or over a perfectly conducting ground.
This is not true when the ground is finitely conducting. The problem
of the reflection of cylindrical waves at the boundary of a finitely
conducting ground is itself a nontrivial problem. In order to develop
solutions for these problems we consider first the simpler two-dimensional
problems of electric and magnetic line sources over a finitely conducting
ground. We calculate the Green's functions and obtain the reflected
waves 1in the form of a reflection operator acting on the image source
solution. For large values of the product of wave number znd distance
from the image source the reflection operators become the well-known
Fresnel reflection coefficients. A succinct treatment is given of the
problems when the line sources are at infinity and the radiation impinges
on a perfectly conducting cylinder lying parallel to the finitely con-
ducting ground. The three-dimensional problems are then considered and
the boundary conditions at the surface of the ground are satisfied by
introducing transverse waves of both types at the interface, even though
the incident waves are either transverse electric or transverse magnetic.
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I INTRODUCTION

In a previous article [1] we have treated the interaction of electro-

magnetic waves and pUISes with an infinite, conducting cylinder over a

perfectly conducting ground. While we assumed that the cylinder was
also perfectly conducting in much of that work, we pointed out that the
assumption of perfect conductivity was not really physically sound for
thin wires at low frequencies. When only the dominant cylindrical wave
with cylindrical symmetry (m = 0) was kept in the expansion of the
scattered field, we were able to treat the problem when the conductivity
of the wire was finite in a simple manner, and we showed that it lead

to the proper physical behavior in the static limit.

Here we should like to turn our attention to the ground and treat
the case of a more realistic medium with a finite conductivity. This
.problem is much more complicated than the idealized case of a perfectly
conducting ground. One of the complicating features of the problem is
the fact that the proper resolution of the waves with respect to the
cylinder is into transverse electric and transverse magnetic waves, while
with respect to the reflection at the ground the waves should be resolved
into components with the electric vector in the plane of incidence and
into components with the electric vector normal to the plane of incidence.
Only in the two-dimensional case when the wave is propagating perpendic-
ularly to the axis of the cylinder (but not in general normally to the
ground) do the two resolutions coincide. Because they are simpler than
the three-dimensional problems, we shall investigate to begin with the
two-dimensional ones. Considering first electric and then magnetic line
sources, we obtain the relevant Green's function that satisfies the

proper boundary condition at the surface of the ground. The Green's



function is in the form of the free-space Green's function plus the image
source solution that is acted on by a reflection operator. When the
product of the wave number and the distance from the source is very large,
that 1s, when the waves are plane, the reflected waves can be obtained

by the saddle point method of integration and the reflection operator
becomes simply the appropriate Fresnel reflection coefficient. For small
values of kR we obtain, in the case of an electric line source, the re-
flection operator in the form of a differential operator, while in the
case of a magnetic line source we get an integro-differential operator.
Applying the Green's functions to the problems where the line source goes
to infinity and there is a cylinder with a surface current over the
finitely conducting ground, we can express the electromagnetic field in
forms that are similar to those in Reference [1] where the ground is
perfectly conducting. Upon satisfying the boundary conditions on the
surface of the cylinder, which is assumed perfectly conducting for con-
venience, we obtain two coupled sets of equations for the unknown co-

efficients, as in Reference [1].

In problems involving the scattering by an infinitely long cylinder
in free space, we can get the solution of the three~dimensional problem
from the solution of a two-dimensional problem. The relevant equations
that express this relation are set down in the Appendix so that we may
refer to them infthe disucssions that follow. When the cylinder is in
the presence of a finitely conducting ground, however, this relationship
no longer holds because the boundary conditions at the surface of the
ground are not all satisfied in the three-dimensional case; even though
they are in the two-dimensional solution. We will show, nevertheless,
that we can express the electromagnetic fields in a form that combines
the forms of the two independent cases in the Appendix by expressing
the reflected and transmitted fields at the interface in terms of both

transverse electric and transverse magnetic waves, although the fields




from the source are one or the other. The resulting expressions are of
course more complicated than in the two-dimensional problems. The expliéit
calculation of the reflection operators in the three-dimensional case 1is
left for a succeeding note in which we shall calculate the current induced
on the cylinder and the potential between the cylinder and the ground for

some electromagnetic pulses of interest.
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ITI TWO-DIMENSIONAL PROBLEMS

1. Electric Line Source

Let the plane y = O separate the homogeneous medium y < 0, which
is an imperfectly conducting ground (or a lossy dielectric) from the free-
space medium y > 0 in which there is a line source of electric current
parallel to the z - axis at the point x = Xgs ¥ ='y0, as shown in
Figure 1. We shall assume the periodic time variation e_iwt.

The electromagnetic field is independent of z and may be expressed

in terms of E . The field components are, in fact, E , H , H , with
z z y

X
DE
bWy H o= — ' (1)
i =
Fo Tx T Ay ’
OFE
iwy H = -— (2)
Ho My 3% )
E satisfies the equations
Z
R ) 5 ) 8 ( ) (3)
+ + = - - - >
27 2" ], * 7 % Voo Yyl y=0 .,
ox Oy
2 2
3 3 2
— ¢+ k |E =0, y<o , (4)
2 2 2 Z
3> dy
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FIGURE 1. THE COORDINATE SYSTEMS AND COORDINATES USED IN THE TEXT

Three different cartesian coordinate systems are used in this
work. The (x, y) system most frequently used has its origin a dis-
tance h above the ground plane. Another (x, y) system less fre-
guently used has its origin at the ground plane, directly below the
former one. Finally, the system (x', y') has the ocrigin O'. In
all cases, the z-axis is directed out of the page.

Both electric .and magnetic current line sources are the gener-
ators of the incident electromagnetic field. These sources are at
(x , v ), and the image line sources are determined by reflection
from the ground plane as shown,




with

2 2
k =m e
1 M

oo ¢ (5)

2 2 ' g
k =W ¢ € = +- 1 6
) sy 2 ?O Gr J.m€O> s (8)

where €r and ¢ are respectively the dielectric constant and conductivity
of the medium in y < 0. In Eq. (3) we have chosen the strength of the
line source such that we are in fact calculating the Green's function.

Fourier analyzing in the x- direction, we write
ig(x=-x)
q(x %,

Ez(x,y) = u(g,y) e dg . (7)

-0

Substituting this expression in Egs. (3) and (4) we get

2
du 2 1
5 + nlu = - o &(y - yo), vy >0 (8)
dy
d2u 2
5 + not = 0, . y< 0 |, (9)
dy
where
2 2
s 10
"y ! s (10)

w_ =k -gq . (1D

For v > 0, u is the one-dimensional Green's function, aside from the
) D

factor 1/2m, and for y < 0, u must represent outgoing waves. Thus



, _ A .
i 1nl‘y yo[ iA 1K1(y+y0)

_ >0 1
U= e alrm s y (12)
1 1
i B -in _y
1 2
u = e ) y<0 , (13
411%2

where Al and B1 are to be determined from the boundary conditions that
E_and iwy H = 3E /3y must be continuous at y = 0. Thus u and Ou/dy
z X z

must be continuous at y = 0. We therefore have

AL AR
e + A e = —3B s (14)
1 " 1
2
"170 A 1% B (15)
e - e =
1 1 ’
from which we find
5 .
o MY
B1 = N e 5 (16)
"y "y,
" - "
1 2
A1 =i . (17)
17 e
T
hus A 5
: ¢ |y YO[
u{q,y) e
2 2
4 k= -

2 2 2 2 2 2
i - - - i k - 18
1< /k1 q /k2 q ) i/ L (y+y0) , (18)
+ e

2 2 2 2 2 2
47 - VQ - + \/L - )
\ﬁl d ( 1~ ¢ g ~ 4
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and

e

We are here only interested in the field for y = 0. We put the

y<o0 . (19)

ulg,y) = —f R

2 2
expression in Eq. (18) in the integral Eq. (7) and note that exp(i kl - q )
2 2
becomes expl-./g - kl) when q > kl. Furthermore when g >'Rek2 > kl’

the factor containing the radicals becomes very small. Thus the main

contribution to the integral comes from the range q < Rek2 where we can

2 5
develop k2 - g as
— 9 4
/9 2 '
K - g =k f1 -+ — 33— ., : (20)
Vo2 2 ER
P) 2
Thus (
2 2 2 2 > 2 > 22
k° - - kT - k7 - - x5 -
¢/1 q \/ 2 7% \// 1~ V/ 2 ~ 1
kz 2, |2 2 2 2 . i
1~ ¢ 9 ~ 4 17 %
2 2 2 o 92 [2 2
K2~ g + kT - q° -2 [k - Ko -
K - a [ - M/ , "
K2 -2
1~ %2
2(k2 q2> 2 [k 9 4
- - q f ,
1
= loTy Ty Ky ” %E— B g—§ -
Kk -k K- Ik l 9 8k
2 9 9
2 o 2 9 2
k) kK - q 2(k1 - q )
=-lApt s 2 K Tn 2
k -k T ok
] 2 ky = By
3
s 2\%? 5
k- Ry ‘
+ ol — . 1
o) % .
A R



We substitute this result in the expression for E given by Egs. (7) and
z
(18). Let us make a transformation to a coordinate system centered at

x =0, y = h:

X - X 5 y- y+h ,

X = X , ¥y. .- y.+h . (22)

We thereby obtain

2 2
© iq(x-xo)+i\/k1—q [y—yoi

B (x,y) =— | & d
2 YT 2 2 d
k -q

— 1

e 2 @2_q2

i 1

+ Z: - 1 +{1 + 5 X
kK -k 2
Zoo 21

3/2 2 2
2 2 2 2 i - +1 Kk - +y +2h
Z(k —q ) <k —q ) q(x XO) i 1@ (y Yo )
1 +~——% —————— + = dq
T2 2 ' 2 2 T 2 ’
K-k k [k--k Kk2ag”
2 1 2V 2 1 1

y,y.>~h .(23)

0
We now note that this may be written as
o ig( )+i K2 2|
_ ==X, 178 1=yl
E (x,7) = — c a
z 0V T v/2 2 4
k -q
—0 1
ig( Y+i k2 2( +y _+2h)
=] X-X -
. q 0 1 q ¥y YO
1 e :
+ —0
4= RE 2 2 a
k -q
—0 1
Vs ¥y 2 - b, (24)
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where the operator O which we shall call the reflection operator, is

RE’
sk
given by
k2
i 2 o
R e Y S
o
2 k -k
2 1
2 3
2 0 i e
+2 2 , 2+ 2 5 3+... . (25)
k_ - k. d(2h k_ (k7 - k) 3(2h)
2 1 ‘( ) 2( 2 l) (
ORE reduces to - 1 when the conductivity of the lower medium becomes
infinite.

The integrals in Eg. (24) are recognized to be the integral represen-

tations of the two-dimensional Green's function of the scalar Helmholtz

equation:
. . 2 2
‘ o ig{x-x )+i /k_-qg |y—y|
. (1) . 0 1 0
1 1 e
=~ H K. R.) = — d 6
s M) T m 2 2 a o, (20
—0 l_q
where
2 2
"R = \/ - + - . 27
) (x XO) (y yo) (27)
. - >
We shall accordingly now write GE(x,y;xO,yO) = GE(p,po) in place of
EZ. From Eq. (24) we have
*

An operator like Opp with terms up to the second derivative, but with
a simplified form of the coefficient of the first derivative term has
‘ been given previously by Kelly and Schultz [3] without any derivation.
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- = i (1) i (l)
= — - 0 -
GE(P,DO) 4 (klRl) * 7 g o (k R ) Vi Vo > h, (28
where
2 2
R2 = V&x - XO) + (y + Vo * 2h)

v&x' - XO)2 + [y - (- YO)12 . (29)

The primed as well as the unprimed coordinates are depicted on Figure 1.

The above formulation is essentially a low frequency one. When
the frequency becomes very high, or, tc be more exact, when kle is
large, a simpler result is valid. We write Eq. (7) with the use of

Eq. (18) in the form

~> =
G_(p,0

E ) =

H(l)
0 0

(klRl)

N

2 X 2
\/1 _q - 1kl(x—xo)q+1k1 1-g (y+y0+2h)
Vig®

dg (30)

where we have let q - qu. For large values of kle this integral can
be evaluated quite accurately by the saddle point method. The saddle

point of interest is at q = (x - xo)/R2. We find that

(l)(k R ) (31)

=

o
I
[

()

‘_.
rblt-‘

kR 15y, y,>~-h
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where R 1is the reflection coefficient

L
k o) kz k2 in”
- - i
R =1 9% % o T % S Ky
L : " TS > S s (32)
k- i 4
k1 cos )O + V//2 kl sin RO
in which YO is the angle defined by
in "~ % (33)
s = —
%0 R_

Let ﬁs apply the Green's function to the problem with an electric
line source, that we let be at infinity, from which radiation impinges
on a perfectly conducting cylinder of radius a over a finitely conduct-

ing ground. We get

ikr cos O, ikr cos @
E () = E e 4R OE e *
Z 0 1+ 0
T
0 - - -

+ ik [— G J do 34

i : E(o,oos) z(DOS) o ’ (34)
S

where J  1is the density of the current induced on the surface of the

cylinder. We express the surface current in the form
I @) E [ i ] (35)
) = o + i
z' 08 Fen C€0F M0y T By, SIN 0O,
n
* , 1
®i, 8., and Ej are as defined in Reference [1] with Y = 5T
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\ \ §
and utilize the well-known expansions of the Green's functions:

i (1) i Z (1)
P HO (klRl) =7 7 (2 - 6Om)Hm (klp>)Jm(klp<)cos m(p ~ @o) s (386)
m
i (1) _EZ w, ‘
p HO (kle) =7 (2 - <Som)Hm (ke )Jm(kpl)cos mo + mo) . (37)
m

We obtain

2 €

i

k 0 1

L g E [a H( )(kp)J (ka)cos m @

o em m m
m

+ a H(l)

om (ko)Jm(ka)sin m q}

+ 0 E {a H(l)(ko’)J (ka)éos m o
RE em m m

m

H(1)

a (ko ')J (ka)sin m m] (38)
Om m

where the primed coordinates are centered on the image cylinder.

If we utilize the fact that

A 1 .
=e E ="— curl curl & E , (39)
z k2 zZ  Z

16




and set

o .
-2 =27 (ka) a = c cos my (40)
2k e m

we can see that we will obtain the expansions of the incident, reflected,

and scattered waves in the same form as in Reference 1 except for the

effect of the operator ORE' In fact, when the ground becomes perfectly

conducting, so that R = ORE = - 1, we get the identical expansions in
1 .

vector wave functions that we used in Reference 1, when Vv = T/2, in

the case of transverse magnetic waves. There 1s, of course, no advantage
in expanding the field in vector wave functions in this’tWOadimensional
case., We mentioned it only to establish the equivalence cf the above
expression for the electric field with the one in Reference 1. The
solution of the present problem is obtained by using the scalar addition
theorem for cylindrical waves that was given in Reference 1 to obtain

the cylindrical functions in the primed coordinates in terms of the un-
primed ones.  Setting EZ = 0 on the cylinder, we then obtain two coupled

sets of equations for the coefficients c_, . We shall not write them

€
o
down here.

2. Magnetic Line Source

Let us consider now the case of a (fictitious) line source of mag-

0’ y = yo in the unprimed

coordinate system of Figure 1. The electromagnetic field is again in-

netic current parallel to the z~axis at x = x

dependent of z and can be expressed in terms of H . The field components
Z

are H , E , and E  with
A b'e y

17



1meEX=—§, (41)
SH
i weE =2 (42)
o y aX
where
2
kl
€=€0:w2-,, 7 y>—h, (43)
Mo
2
ig k2
€ = ¢ € —_———1 = - -
O( r T e ) 2 7 y<-h. (44)
0 W
0
HZ satisfies the equations
R 5 )5 ¢ )
+ = - - -
2 CRY B S M T y>-~-n, (45
dx dy
22 P 2\ .
—_ + — + = - .
> 5 5 . 0, vy < h (486)
Ox 3
Setting
(o]
iq(x-xo)
HZ = vig,y)e dg 47)
[y
we get
a%v 2 1
Tyt V=S 8y - yo), y>-h, (48)

18



— + %2 v =20, y<-h , (49)
dy
where "y and n, are defined in Egs. (10) and (11).
The solutions of Egs. (48) and (49) must be of the form
i - i A i +y _+2h
by |y=y, LA, Iy ey 2n)
V=7 . s, vy »~-nh (50)
™y "y
iB -1 +h
#y (v = - (51)
v = e vy < -h
4m u

Now H and E must be
Z X

continuous at y = - h

where Egs.

hand sides, respectively, of Eq.

to the equations

continuous at the interface. Therefore v must be

and

1 3 3

S -5 52
kl y=-=h k2 y=-

(50) and (51) are to be used in evaluating the left and right

(52). These boundary conditions lead

(y_+h) in  (y _+h) "
0 1770 1
+ A e =— B s (53)
2 % 2
2
(y _+h) in_ (y  +h) k2
n
0 1
0 _a e ¢ =—B (54)
2 2 2
k
2
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Whence

kz k2
9 M1 T F1 %y
A = , (55)
2 k2 + k2 "
o "1 172
2 k2 ”n in_ (y_+h)
2 2 1 yO
32 = 5 e . (56)
kK x. + k. #u
1 1 2

Thus

2 2
t/k-a |y-y

2 /2 2 2 /2 2 2 2
k -4 -k -q i /KT -q" (y+y _+2h)
i 2V, 1. 1V 2 1 0
+ e s y2~h,(57)
4 2 2 kz v@z 2 .\ kz Véz 2
174 By 1527

and
2 2 2 2
i ko= +h) - [k - +
, 1k -a 6% ) -i k_~q (y+h)
e

k
2

(4,y) = —
VLY, = o T o 2. 2 2 Jz 2z 7
k k -ag + k k -q
9 V1 1\ 2

This problem differs considerably from the preceding one of the

< -h . (58)

electric line source because here the reflection coefficient has a pole

at g = q where the'denominator kz k2 - q2 + k2 k2 - qz vanishes. (¢
js) 2 1 1 2 D
is given by '
ki k2
qi = —5—‘2“2‘ . (59)
k. + k
1 2




From Eqs. (5) and (6) we obtain

i
2 0 2
W € € + 1) + — 0o + 1w o]
, ool le, + 1) e, Ty
q° = _ 7 . (60)
P ' 2
2 g
(¢ + 1) =+ Qgg~>
r
0
Approximate values of qp are:
2
2 2 klO o]
q = k1 + i 2 , z;—'<< 1, (61)
P (e + 1) we
2 2 2 we g
= i -_ — . 62
qp kl + i klw palV - >> 1 (62)

Let us return to the expression for the magnetic field in the upper
free-space medium as given by Egs. (47) and (57). Since we are again
> =
actually calculating the Green's function, we now write Gq(p,po) for HZ.

Using Eq. (26) we write the expression for GH in the form

i (1) i v .
) = , HO (klRl) + 3 RII (xo) HO (_kle)_

dg , (63)

2 2

. e Vet A2

) oo ig(x xo) i/ 1 (y+y0+2h)
[S]
+ - F

4 () ¢2 B |

k -q

-0 1
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where

k2 cos X k k2 k2 in
S -— —-—
2 0 o T Ky SR X,
R” (XO) = > 5 (64)
kz‘cos XO + k1 v& - k. sin XO
and
kz 2 2 kz kz 2
2 vﬁl 4 1Y% 1
F(g) =
kz\/ﬁz _ qz . kz v&z _ qz
2Vl 1 V2
2 {2 2 2 /2 2
k ~q_ -k -q
2V 1 0 1y 2 0 (65)
kz- 42 2 . kz kz 2 ?
2V:1 T 9 1V 2 9
in 'which |

= i . 6
a4, k1 sin ¥ (66)

R, Rz, and %, ave defined in Egs. (27), (29), and (33), respectively.

When kle is large, we can evaluate the integral in Eq. (63) by
the saddle point method. But F(gq) vanishes at the saddle point qo and

thereforeAGH is given quite accurately by the first two terms of Eq. (63)

; k R 1.
when 15y =

With samller values of klR we regroup the terms in Eq. (63) and

2
2
write

2 ®  ig(x~x_)+1i k2 2( +v _+2h)
K 4 0 TRRARS S
e T S
2m 3(2h) 2 2
v £(q) \Jk. ~ q
—0 1

22
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with

f(q)

il
e
N N
w
|2l L)
1
o)

V]
+
=
=N
NN
I
Ko

[\

=f'(g)(g - q ) + .
4 4
(kl + k2>
:—'——1—{'—k‘———(q—qp)+... ’ (68)
12

where we have expanded f(g) about the zero qp. The intergral in Eq. (67)

2 2
. kS © iq(x—xo)+i /%léq (y+yo+2h)

1 3
2 = dg (69)

h 4 4\ 3(2h) 3 2
nd - L
2 GH.+ kz) . kl q (q qp)

1

becomes

and the integral in Eq. (69) can be put into the form

. . 2 2
o ig(x-x )+i /k_~-q (y+y_+2h) @ .
. 0 1 0 -1(q—qp)s
i da 5 > - e - ds . (70)
1~ ¢ 0
Interchanging the order of integration, we get
» w i X=X =8 +i - +y_+2h)
iq s q( ) / q (y Yo
i ds e dg
0 ~® V

= in e © (1)(k R) ds (71)

4
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where ) . ,,

2 2
R = \/Qx - X, - sy + (y + yo + 2h) . (72)
Putting this baék into Eq. (67) we have

(1) i (L)
H (klRl) + =0 __H (x Rz) (73)

G_(
4 RH O 1

-
o
H' »

i
o) T4 70

where the reflection operator ORH is given by

s 5 K k3 ©
1 12 S d e S (74)
= - s e
RH 4 49
K K (2h)
1 2 0
in which S is the shift operator:
S f(x,y) = f(x - s,y) . (75)

When the conductivity of the conducting medium becomes infinite,
the correct form of the Green's function is best recovered from Eq. (87).
1 1
It is seen that the integral term there becomes E-i Hé )(k,Rz) as

k nd th fore O - 1.
9 - © a ere -

If we now consider the problem of a magnetic line source at infinity

from which radiation impinges on a perfectly conducting cylinder, we have

' ikr cos ®, ikr cog @
H(G) =H_ e 4R H e r
z 0 I 0
- =
3G(p,0 )
1 @) ——B 4 (76)
o 08 apo 0 . ,
S

24




If we expand the surface currenthQp as in Eq. (34) and emplcy the ex-
pansions of Egs. (36) and (37), we get for the above integral a result
that is similar to Eq. (38) but with the Hankel functions weplaced by
their derivatives and ORE replaced by ORH' By means of the relation of
Eq. (39) for E = %Z Hz, we can put the formal solution for the field in
the same form as the one in Reference 1, when VY ='§ T, in the case of
transverse electric waves, except for the effect of ORH' They b;come

identical when O =1,
RH
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III THREE~DIMENSIONAL PROBLEMS

In the presence of a finitely conducting ground, the solutions of
the two-dimensional- problems of scattering by an infinitely long per-
fectly conducting cylinder cannot be generalized to the solutions of the
three-dimensional scattering problems as simply as when the cylinder is
in free space. The main reason is that the transverse waves do not
retain the characteristic of being polarized either parallel or perpen-
dicular to the plane of incidence as they are in the two-dimensional
problems. The effect of this may be seen by ldoking at the expressions
for the field given in the Appendix for the case of transverse magnetic

waves, for example, by Egqs. (A-5), (A-6), and (A-7). Now if u satisfies

the proper boundary conditions at the surface of the finitely conducting
ground, then so will the three-dimensional fields Ez and HX. But EX will
not. It follows, therefore, that in order to satisfy the boundary condi-
tions we must introduce transverse electric waves in addition to transverse
magnetic waves at the boundary and satisfy the boundary conditions of the
continuity of EZ, HX, HZ, and EX at the interface. Similarly when the
incident waves are transverse electric we must also introduce transverse

magnetic waves at the surface of the ground.

Taking our cue from the fact that the formalism in the Appendix
completely solves the three-dimensional scattering of a plane wave in
free space, we shall express the field by equations that are similar to
those in the Appendik but normalized differently. We let all quantities,
including the sources, vary as exp[ikz cos Y]. Ve thereby reduce the
problems to two-dimensional ones but we must determine the field functions

so that the three-dimensional field satisfies the boundary conditions at

the surface of the ground.
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As in the previous section on two-dimensional problems, we shall
concentrate on the effects at the surface of the ground and simply con-
sider line source solutions. The explicit effects of a perfectly conduct-
ing cylinder are easily taken into account by current distributions on

the cylinder as in our previous two-dimensional treatments.

1. Electric Line Source

Let us write to start with

¢l + Ql s, ¥y >0
‘l‘l = - - (77)
t
wl , y< o ,
r
¢2 , y >0
¥, = (78)
¢; y< 0 ’

where s denotes a wave from a source, r a reflected wave, and t a trans-
mitted wave. We shall work in a coordinate system in which the origin
is on the surface of the ground. The electric and magnetic fields are

now expressed in the form

. ll iwyp
F=———79%xvVXxX8& § + ——Vxa& V
2 2 z 1 . z 2
k sin ¥ k sin v
1 2
= ——— |ik v + & k
2 2 EL cos ¥ Vb, + & wl:‘
k sin ¥
iw HO ‘w A
—_— V¥ X e
+ 5 2 2 ” ) (79)
k sin v
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- R 1
H = VXVxe ¥ 4 vV X 8
2 . z 2 . .2 z 1
k sin Y iw u051n Y
. ~ 2
= %k cos YV ¥ + 8 k'Y }
2 . 2 z 2
k sin v
1 ~
+ —— T ¢ X & B (80)
. . 1 Z
iwyp sinvy
where
k >0
1’ y )
k = (81)

k2 , ¥y< 0,

and where we have used the faet that wl and ¢2 are of the form

ik
wl = ul(E; k sin v) etR7 o8 Y 5 (82)
¥ ‘

- . ikz cos-
b= vl(p; k sin Y) e Y . (83)
The field components tangential to the ground are:explicitly

E =V 5 (84)

5¢ i MO oy

_ i cos Y 1

(85)

=
b
|
w
Q/]

2
sinZy ¥ k%sin?y
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H =1 , (86)

5 (87)
. X . . . y

sin’VY iw Ly sin Y

The functions ¥_ and wz satisfy the scalar Helmholtz equation. For

a unit electric line source we have

~2 2
) o
(\ p + 2,+ k_ sin Y) u = - §(x - xo) §(y - yo) , vy >0 , (88)
3 dy
32 82 2 2 N T C
—— 4——— + k sin Y} u. =0 , y< 0 77T (89)
2 2 2 1
Ox dy
~2 2
o o~ 2., 2
(——— + —— + k_sin y) v, =0, y >0 , (90)
- 2 1 1
X ay
2 2
A 2 2
+ — + k_sin Y) v. =0, y< 0 . (o1)
2 2 2 1
3% dy
We let : T
{os]
ig (x-x )
0
ul(x,y;k sin V) = ul(q,y) e dq s (92)
. : -
[e=]
iq(x-x.)
. 0
vl(x,y;k sin v) = vl(q,y) e dg (93)
-0

29



and obtain

d u
2 1 .
+ = - - 0
5 N o 5 (y yo) , ¥y >0 (94)
dy
2
du
2 t
g = 0, y<0 (95
dy
1
2
d v °
PO S 0, y>0 3 (96)
dy
2
d v 5
5t oV = 0, y<0 , (97)
dy
where
2 2 2 2
¥, =k sin¥ - g s (98)
1 1
2 2 2, 2
u2 = kzsin Y - g (99)
The solutions of these equations are
. _ A . ‘v
1u1fy yol . i A 1nl(y yo) » 1003
u = e e
17 4n 4r Y ’
1 1
.\ B »
= ; ! 1“2y 0 (101)
M T © > Vs ’
2
i C1 in_y
= - < 0 10
Y17 am x > ¥ = ? (102)
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i D -in _y

1 4
A
2

(103)

Applying the boundary conditions of the continuity of the tangential

components of the electric and magnetic fields at y = 0, we get the sys-

tem of equations

1°0 170
e 1 e
A1 - — B1 = = o,
"
"y 2 "1
1
iy
. 170 . .
i g cos ¥ e A iqg cos VY
k " 1 k n 1
1 1 2 2
i uo 1wy . ) mlyo
. Cl N - 0 Dl __1ig co; Y e
K k 11
1 2
1 1
T R T
"y mz
in_y .
1 1°0 1 i o
LWy, S R 1 E — ¢
i i
Yo b0 11
3.
_ *1%0
igcos ¥ e
Tk 1 1w ?
22 Tt
from which we obtain
2 2 2 2
- U kn + kn - o} k ~ Kk
A_(%l )( 1 12> qch(2 1)
1 . 2 2 2 2
+ “y -
(%1 + n2)<k "y kl%z) + ¢ cos (k2 kl)

(104)

(105)

(1086)

(107)

(108)



in_y
2 2 170
ZM(km + k )e

o \%2 12

- L (109)
2 2 2 2 2 7
k +k + Y -
G, + uz) < ot 1712) q cos (1«:2 kl)

BY,
k k -
2 1 2(k2 kl) n, d cos Y e
c = - (110)
y . +un ) kzu. + kzn + 2c052Y (k k )2
Ho 3V TR B T F ) T A 2" "1

| &
\v]

D, = C . (111)

o
=

—
ot

1
When Y - 5 so that the problem becomes two dimensional, the

coefficients reduce to the values obtained previously:

n - %
A 1 2
1 — N R (112)
1 2
1%
2u _ e
: 2
Bl —_— "_'—_:f—_—_ 5 (113)
T
1
1 " 1
2
2. Magnetic Line Source .
We let
s r
¢2 + ¢2 , y>0
v o= ) 115
o . (115)
wz , y<0
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= 116
L . ( )
V.o, vy<0
with
ikzco
V =y (3;k sin ¥) e zcosY s (117)
2 2 -
- ikzcosY
Y. = u (;k sin V) (118)
1 2
The equations for v2 and u2 are the same as those for u1 and Vl’ respec~
tively, in Egs. (88) to (91). We thus have
in - iA i +
i 1177l o, Y
v, = + e T,y >0 (119)
2 4m % 4 y
1 1
i B2 -in y
< 120
Vo = © , y< 0 5 (120)
2
C .
= - B >0 (121)
1-.12“4?1.7% ’y, ) 2
iD —-in vy
u_ = e <0 . (122)
2 4 %2 > ¥

Applying the boundary

conditions at y = 0, we get the eguations

1 17
U

2 1

(123)



i g cos ¥ e iqgq cos Y 5 -

C + ——— D = - ——2———ec¢ , (124)

1
C =—0D 5 (125)
n

i 1°0
_lgesy o O , (126)

The solutions of these equations are

———
=N

2 2 2 2
k -k + - k-
7 %2)(%1 %2) q cos Y( 0 kl)
Ay =73 R 5
k + k + + k-
( 7 nz)(nl "‘2) q cos Y( o s{l)

(127)

L\

an
2 170
2 kun . +u) e
2271 2
B = ' . (128)
2 k2 + k2 M. + ) =+ 2co 2Y(k k )2
A n U S -
TR Tyl T 2 T %1
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170
kK /k ) (k- w
2.( 2/ 1)( 5 kl) Lo 4 cos s Wy e
c = S— , (129
20 (k% 4 k% ) v u ) + qleosHN Kk - k)2
ot g™y Ty T A 9 T %1
n
2
D =—C . (130)
2 %l 2 .

These coefficients reduce correctly to the previously obtained two-

dimensional ones when Y - 1/2:

.
2
Koy~ kf”“z
A 131)
2 k + k2 ’ (
1 12
2 1“1y0
2k %2 e
B 132
2 kz . kz ’ (132)
21 12
"1
C =—0D —_ 0 (133)
2 u, 2
2
3. The Green's Functions

Explicit evaluation of the Green'

treated of electric and magnetic line
when klRZ is large, as before, by the
point is now at qO = klsinVsinXO. We
for a future note in which we hope to

tion operators when kle
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is not large.

s functions in both cases just
sources is readily carried out
saddle point method. The saddle
shall save &riting down the results

obtain exbressions for the reflec-



Appendix

THREE-DIMENSIONAL SCATTERING SOLUTIONS
DEDUCED FROM TWO-DIMENSIONAL ONES

If we have an infinitely long perfectly condﬁcting cylinder in free
space, the solution of the scattering of a plane electromagnetic wave,
which is incident obliquely on the cylinder, can be deduced from a two-
dimensional problein when the plane wave is incident normally on the
cylinder.* Although this relationship does not hdold when the cylinder
is situated above a finitely conducting ground, we shall refer in the
text to the equations that express the three-dimensional electromagnetic
field in terms of scalar functions which are obtained from two-dimensional
solutions. For this reason we deem it advantageous to set down the rele-

vant equations in this appendix.

We let
. ikr cos ©
inc i
¥ =g
ik(x sin ¥ cos @ + y sin ¥ sin @ + z cos Y)
= e L
. ikz cos ¥
= uo(x,y;k sin ¥) e | (A-1)
1
where

ik(x cos ¥ + y gin «
uo(x,y;k) = e * y ) (A-2)

E3
cf. Jones [27.

36




i

is the incident wave in the two-dimensional scattering problems, and
Y, @ are the spherical coordinate angles of the propagation vector. We

-

easily find that

ikr cos @,
i

a” N 1 inc
(& sin @ - & cos @) e = = ~ Y X @ . (A=3)
X v : ik sin Y z
‘ ke ‘ ; s
Transverse magnetic waves. Let
w + 508t (A-4)
1 ¢} 1 )

be the solution to the two-dimensional scattering problem when uo(x,y;k)
is incident on the cylinder and tﬁe poundary condition is that ul = 0 on

the surface of the cylinder. Set

inc scat
+

1 1

o ikz cos
ul(x,y;k sin Y) e ” Y . (A-5)

Then the total electromagnetic field in the three-dimensional problem in

which the waves are transverse magnetic is given by

- HO
H=————9y X &
ik sin ¥ Y1 %2
E
- 0 v oy & . (A-6)
iwp,osiny 1Xez;

* . - : )
Transverse here is always with respect to the axis of the cylinder,

which is assumed to lie along the z-axis.
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and

B
- 0
E = T XV x &y
. z 1
k' sin vy
EO 2
= -5—————-'[}k cos Y vwl + @ k ¢1}
k- sin Y z
— & E_u , (A-7)
0
Y > 172 z 1

where EO is the amplitude of the incident electric field. It is easily
verified that the field of Eqs. (A-6) and (A-7) satisfies the boundary
conditions of the vanishing of the tangential components of the electric
field and of the normal component of the magnetic field on the surface

of the cylinder.

Transverse electric waves. Now let uz(x,y;k) be the solution to

the two-dimensional scattering problem when uo(x,y;k) is incident on
the cylinder and the boundary condition is 5u2/an = 0 on the surface of
the cylinder. With

ikz cos Y

¢2 = uz(x,y;k sin Y) e s (A-8)

the total electromagnetic field in the three-dimensional problem in

which the waves are transverse electric is given by

=—— Ty X & (4-9)
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and

= 0 0 “
H=- |— VXV ¥ e W2
M0 k7 sin ¥ z
EO 2
= - _ Ek cos Y Vi_ + & k¢ J
i 2 . 2 Z 2
0k sinv
~-H & u , (A-10)
where HO = /eo/uo EO is the amplitude of the incident magnetic field.

It is again easily verified that the boundary conditions are satisfied .

on the surface of the cylinder.
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