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ABSTRACT

The scattering of plane electromagnetic waves by an infinitely
long conducting cylinder over perfectly conducting ground is treated
first, for two independent cases of polarization. With the use of
addition theorems for cylindrical waves, two coupled systems of equa-
tions are obtained for the expansion coefficients of the scattered
waves, for each case of polarization. Rigorous expressions are
derived for the total axial current and for the potential of the
cylinder with respect to the ground. Reduction is then made to the
case of a thin wire. Approximate expressions are obtained for the
leading expansion coefficients. Integral expressions are derived for
the time dependent axial current which is induced when delta function
and step function pulses are incident on the wire. They are put into
a form from which asymptotic values for large times are obtained. The
calculation of numerical results is then considered. Procedures for
calculating the scattering coefficients and for calculating the current
in the case of a step function pulse are discussed. A figure depicting
the results of a sample calculation is presented. In g number of
appendices we write down the Fouriler transforms of the pulses of
interest, derive the addition theorems for scalar and vector cylindrical
waves, sketch the derivation of rough estimates for the natural resonan-—
ces of the system, and treat the case when the conductivity of the

cylinder is finite.
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I INTRODUCTION

The objective of this work is to investigate the interaction of
a plane electromagnetic pulse with an infinitely long, solid, conducting
cylinder when it is located above and parallel to a perfectly conducting
ground. In a succeeding note we will consider a finitely conducting

ground.

The pulses that are of interest include the delta, step, and
~ -2
n .

exponential functions of t - By means of the Fourier transform
each pulse in the time domain can be expanded in a continuous spectrum
of plane waves. This is done for the pulses mentioned above in Appendix
A, Our procedure will be to solve the problem of scattering of a plane
electromagnetic wave by the cylinder in the presence 6f the perfectly
conducting groﬁnd. Then we shall multiply the solution by the appro-

priate £(w) and take the inverse transform to get the required time-

dependent solution,

Expressions will be derived for the coefficients in the expansion
of the scattered electromagnetic field and from these we shall obtain
expressions for the total axial current. The potential between the wire
and the ground is also of interest and we shall present expressions for

the potential for two independent cases of polarization.

We.shall initially present a rigorous treatment of thé scattering
of plane electromagnetic waves by a perfectly conducting cylinder over
a perfectly conducting ground. The solution so obtained is valid for
all sizes of the cylinder at arbitrary distances from the ground. This
solution is therefore easily generalized to the cases of two, three,
or more wires over the ground by using the same techniques. The solution
will then bhe reduced to the case of thin wires at quite high heights

above the ground.



In the case of a perfectly conducting ground, the problem may be
looked at in two equivalent ways, namely, as an infinite cylinder in L -
the presence of a perfectly conducting ground on which a plane wave from
a source at an infinite distance impinges, or as a problem of two "
cylinders in the presence of two sources, the original source and its
mirror image in the plane of the air-ground interface. The latter method
is useful in formulating the solution of the problem, eSpecially when we
consider the effects of the waves scattered by one cylinder acting on the
other cyliﬁder. In order to apply therboundary conditions at t?e surface
of one cylinder, it is necessary to express the waves scattered by the
other cylinder in terms of wave functions appropriate to the first
cylinder. This is achieved by means of the translational addition
theorems for cylindrical waves. Since the addition theorems that are

available in the literature [1,2] are not in a form that is suitable

for our purpose, we derive the required theorems in Appendix B,

When the cylinder is perfectly conducting, two independent cases
of polarization can be distinguished, namely, waves with the electric
field perpendicular to the axis of the cylinder, or transverse electric
waves, and waves with the magnetic field perpendicular to the axis, or
transverse maghetic waves. However, when the conductivity of the cylinder
is finite, a superposition of the transverse electric and magnetic
waves is necessary to satisfy the boundary conditions at the cylindrical
surface, except in the case of axially symmetric waves. Now it is a fact
that for moderate and higher frequencies, a good conductor acts just
like a perfect conductor with the idealized surface current replaced
by an equivalent surface current that is actually distributed through a
small thickness (the skin depth) at the surface. When the frequency
becomes low enough so that the skin depth of a good conductor becomes an
appreciable fraction of the radius of the cylinder, it is obviously not ’

physically correct to use the idealization of a perfect conductor. 1In
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fact, the use of the perfectly conducting assumption in our reduction
to thin wires is found to lead to the uﬁphysical result of a finite
axial current in the wire in the limit of zero frequency. Fortunately,
however, in this case the axially symmetric waves are the most important
ones and we can accordingly easily consider a finitely conducting wire
and thereby obtain the physically correct result for the low frequency

part of the spectrum.

The scattering problem under consideration here is one of the
simplest examplés of multiple scattering. The problems of multiple
scattering, on the other hand, is to some extent a linear version of the
many body problem., Even in the simple problem of interaction involved
here, there are features that are common to all many body problems.

We shall, for example, in the case of a thin wire, ip.pffect sum over an
infinite subseries of the complete perturbation series. The fact that
we must integrate over an infinite range of frequency, however, makes

the present problem a far from simple one.

Although we shall not make use of their work, we should mention that
the scattering of a plane electromagnetic wave by two spheres has been
treated in a fine piece of work by Bruning and Lo [3] with the use of
the translational addition theorem for spherical waves. 'The spherical
addition theorem is much more complicated than the cylindrical one and
leads to an extensive program of numerical computation for spheres of

even moderate size.



II EXPANSIONS OF THE INCIDENT AND REFLECTED WAVES IN

VECTOR WAVE FUNCTIONS

The wave forms of the incident pulses are expressed as Fourier
expansions of plane waves in Appendix A, We shall investigate, therefore,
the scattering of plane electromagnetic waves that are incident on an
infinitely long, conducting cylinder in the presence of a perfectly
conducting ground. The incident plane waves will be specified by
their propagation vector K with spherical components k, v, o and
their polarization. The position vector'? has components r, 8, ©. A
time dependence e-iwt will be assumed and suppressed until we consider

incident pulses.

We shall expand the waves in terms of cylindrical vector wave

functions. To obtain the expansions of the incident waves we proceed

- -
as follows. Let @i be the angle between r and k. Then

cos @i =-'cos § cos y + sin 6 sin v cos (p - @)
and
55 : ' .
kK *'r = kKrcos® = kzcosvy + kx sinvy cos o + ky sin v sin o
i
= kz cos v + ko sin vy cos (p - @)
= kz+kx+ky . (1)
z X y
Furthermore
RN ikr cos @,
ik'r A . . . ~ ~ i
Ve xe = ik sinwvy (sinwo & =~ cosw e ) e (2)
z X y e e

Consider an incident plane wave with the electric vector perpendi-

cular to the axis of the cylinder (which is in the =z-direction):




ikr cos @
i

- inc ' ~
E = E (sing & =-coso 8) e . (3)
0 X y

According to Eq. (2) this may be written as

. E ikr cos ®,
=inec 0 i ~
E = T Ve X e . (4)
i k sin v z
Now from Eg. (1)
ikr cos ©, i sin cos ) ikz cos
el i- e kp v (© el Z v
and [1,2,8]
oo
I oS e z (2 -6) 1" J (k) cos mo
om m
" m=0
Therefore
@
ikr cos ©® il ikz cos
e : i = E @ - 6om) i Jm (ko sin y) cos m(p=w) e v,
=0 (3)
Let us define the vector wave functions
->(i) =~ i) - N
M (r,y) = VX ¢( (r,y) e
= €m Z
o o
(1) - ~
= Yy (r,v) X @, (6)
e Z
o
->(1) = 1 =(1i) -~ ‘
N (r,vy) = —VX M( ) (r,v) , 7
en k en
o o)
where
i i ikz cos
w(l) (;:Y) _ Z(1) (k o sin v) c?s no e Z Y , (8)
en m sin
o)

(i)

in which the Zm are the cylindrical functions:



Z(1) Z(2)

— J =
m mo m Nm ?
(9)
3 1 4 2 - "
Z()=H(), Z()=H() . 3
m m m
In component form,'the cylindrical vector wave functions are R
{1 m 1) in ~
w2y - §¢ Bk osiny) P no b
en p m cos o
o
d _(i) cos ~ ikz cos v
-—1Z k i m 10
d m (ko siny) sin @ e@ © (x0)
(i) -~ d (1) cos . N
N r = i cosy —2 k sin m e
o W 3 Vo By eosiny) oomo @
o
imecosy _{i) sin ~
F ——z k sin meo e
0 m (ko ¥) cos ® ©
2 (i) cos ~ ikz cos v '
+ k sin z k i m e 11
Y m (k p sin v) sin @ ez . (11)
These vector wave functions satisfy the vector Helmholtz equation
2. -
(VX VXx-k)A = 0
that must be satisfied by the electric and magnetic field vectors. The
. =>(1) =2@G) . . Lo
sets of functions Mgm ’ N8m satisfy orthogonality relations , but we
will not write them down as we shall not need them.
From Egs. (4), (5), (6), and (8) we get the vector wave function
expansion of the incident field:
o« « -
—»inc EO m (i) -
—
E = E (2 -6 )i Lcos mo M (r,v)
i k sin v om em
m:o - -4

(12)

. =(1) - sine .
+ sin m ¢ Mom (r,y)] ) (E 1 ez>

e
c.f. Tai [9] - 10




The expansion of the incident magnetic field is then

—inc 1 €0 —inc
., XV M
,03 =

€ E .

0 -2
= - 9 - E (2 -6 ) i [cosmaNk)(—x?,y)
3" k sin vy o ‘
m=0
+ gin m & ﬁ( ) (r,y)] . (13)
- ©om

For the other independent case of polarization with the magnetic

vector perpendicular to the cylindrical axis, we havé

. € , ikr cos ©
=inc . 0 R ~ ~ 1
H z |~ E (sinov & -cos@ € ) e
b 0 X y
O - ’
N E0 “ikr cos ®i .
= j————V X e - e
g ik sinvy Co z
0
o
e E_ : "
0 (4] m = (1 -5
= | —————— E 2 -8 )i [cosmcyM()(r,y)
ik sin vy om en
0
m=0
= (1 .
+ sin mo M ) (?,y)} ) (14)
om
and
. . v
—=inc i 0 -inec
v - E = '1; _— VXH
o0
&« h EO : i
= — [— kK cosq © -k sino & + (k coso + k sin ) 8 ]
k z X z v p:< v z
‘ ikr cos O,
i
¢ e
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o Z@ 2(1) o
= — 2 -6 )" [cos mo N (r,v)
k sin vy om em
m=0
+ sin m‘alﬁ(l)(?,y)] . (ﬁlnc 1e) . ’ (15)
om z

Let us now turn to the waves reflected from the perfectly conducting
ground. At the same time we note that in setting up this problem, one
can invoke the method of images and consider the incident wave and its
mirror image impinging on both the cylinder and ifts image, the images
being taken, of course, with respect to the surface of the ground. In
this picture we have, in place of the reflected wave, the incident wave
from the image source. The latter will be identical with the reflected

wave in the region above the ground.

The coordinate systems in the original problem and in the one resulting

from the use of images are shown in Figures 1 and 2. The y-axis has
been chosen to he perpendicular to the air-ground interface. In the
coordinate system centered on the image cylinder the "y'=coordinate
will be primed. Angles and the position vector in this coordinate
system will also bé primed. The x- and z~coordinates are the same in

hoth systems.

For the case of transverse electric waves, when the electric field
is perpendicular to the axis of the cylinder, the electric field of

the reflected wave is

ikr cos@®

=ref
B - E (-sino & -cosa &) e * (16)
o X v

where

; ~i2kh sin vy sin @ (17)
EO e

12




Y)
. ol must be a

negative angle

- (a)

(b)

/ f\i,x
%
-

o«

e FIGURE 1 (a2) PLANE WAVE INCIDENT ON A CONDUCTING CYLINDER
OVER A PERFECTLY CONDUCTING GROUND,

. (b) PLANE WAVES FROM ORIGINAL SOURCE AND IMAGE
SOURCE INCIDENT ON ORIGINAL CYLINDER AND IMAGE
CYLINDER,
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FIGURE 2 GEOMETRY FOR SCATTERING BY AN INFINITELY
LONG CYLINDER OVER A CONDUCTING GROUND,
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M

and

krcos® = kx-ky+kaz
r X y z

kp sin vy cos (p + @) + kz cos vy 3 (18)

The vector wave function expansion of the reflected field is obtained

in the same way as was that of the incident field above. It is

E’ s
1
Eref = 7**”27~=~— E 2~8 ) im [cos m o ﬁ( ) (;,y)
ik sin vy om em
m=0
. =2(1) -~
- sinnm o MOm (r,y)] , (19)
P EI [e<] -
ﬁrEf:=,_ Y -__111—= (2 -8 ) i" lcos m & ﬁ(l) (?,y)
uo k sin vy om em
m=0
. 2(1) = 2 A
- gin m & Nom (r,y)} , (B ] ez) . (20)

In the picture of Figure 1b, we have

. 4 2
. ikr’ cos @
3 inc i

1l

E(-sinog & ~cosao e ) e
o X v

[ee)
o m =(1) -
= T E (2-6_ ) i [cos mo M (r’,v)
ik sinvy Onm em
m=0 7
=(1) -
- sinmo M (r', y)} . (21)
om
Here we have
kr' cos® = kx-ky +kaz
i x v z

il

kx ~-ky+kz=-2kh
x y z v
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1

k p sin v cos(p+¥) + kz cos vy - 2kh sin v sin « , '

1t

k r cos ®r - 2 k h sinvy sin ¢ . (22)

Therefore

—=,1inc »ref .
B = E s y=0 . (23)

For transverse magnetic waves, with the magnetic field perpendicular
to the axis of the cylinder, we have

ikr cos ©
T

e
—»ref o _, . “ N
H = — E  (sino é +coscoe ) e
wo O X v
0
€ ‘ ® .
0 0 I 1
T (28 ) i l:—cosmaﬁ()(?,'\{)
o ik sinvy Om em
m=0
(1) -~
+ sin m ¢ M( ) (r,y)} , (24)
om
EI
Eref - 0

— [k cosaw @ -k sinog & - (k cosw +k_ sina) & 1
k Z X Z y x y z

ikr cos ®
T

¢ e
E’ °
= _‘_Tg~— E (2 -8 ) im - CcOS m ¢ ﬁ(l) (?,y)
k sin vy om emn
m=0

. (1) - - .

+ sin m ¢ Nom (r,y)] , @\ ez) ; (25)
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III THE SCATTERED WAVES

The plane waves of the previous sectioqrimpinge on the cylinder
giving rise to scattered waves. 1In the picture of Figure 1b, both of
the incident waves are scattered by each cylinder and the scattered
waves from one cylinder interact also with the ofher cylinder. In the
actual case of a perfectly reflecting ground, there is besides the
scattered wave moving outward from the cylinder, another cylindrical
wave due to the effect of the ground that has the form of a wave scattered

by the image cylinder.

We shall expand both types of scattered waves in cylindrical vector
wave functions of the third kind which, for our choice of time, e_iwt,
yield outgoing waves. The coefficients in the expansions of both types
of scattered waves are determined simultaneously by imposing the boundary
condition of the vanishing of the tangential components of the total
electric field on the surface of the cylindermand on.the surface of the
g round, or equivalently, on‘the surfaces of both cylinders., This
procedure involves the use of the translational addition theorem for

the cylindrical vector wave functions that is derived in Appendix B,

It leads to a system of equations for the expansion coefficients.

1. Transverse Electric Waves

When the waves are polarized with the electric field perpendicular

to the axis of the cylinder, we write for the scattered waves

3 -

(=]
E
sscat 0 m =(
B S . z 2-5 ) 1" {p o 1
i k sin vy 285 g em COS MM (@)
m=0

(3)

. -
+ b sinmao M
om om

(?,y)§ , (26)
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and

E [2=]
~,scat 0 m =>(3 -
E’ = — E (2-86 ) i ( b’ cos m o M( ) (?:y) )
ik sinv om em em
=0
=>(3 -
- b’ sinmo M( ) (rfy)} . 27
om om

The first expression is for the wave moving outward from the
cylinder above the ground and the second one is for the wave centered
on the image cylinder as is made evident by its dependence on the primed

coordinates.

On examining the x-components of the scattered electric fields of
Egs. (26) and (27), we find that if we set the primed coefficients

equal to the unprimed ones, that is,

b = b , (28)
% o O

then the boundary condition of vanighing tangential electric field on

the surface of the perfectly conducting ground is automatically
satisfied. The expansion coefficients bem are now completely determined
o

by the boundary condition on the cylinder:

in c <;scat -,
E / I)]

c ref scat ~
(a,p,z) + %$ (a,p,2) + E(p (a,p,2z) + [§$ « E (r

p=a
(29)

Substituting Egqs. (12), (19), (26), and (27) in Eq. (29), we get

oo
m (1
2 - 6 i M H -
E0 2 ( Om) i {%os m o e (a,p,2z3v) . .
m=0

1)
4+ sin m ¢ Mom@ (a,m,z;y%} +

18




where we have used the addition theorem of Eq.
last term.

values m and -m,

and

+

(e}

’ [ 1 .
E, Z 2 - 60m) i [cosma Memtp (a,0,z;y)

E

b

0

m=0

[e2]

- sinnm M(l)
(o}

(a,@aZ;Y)]

.m (3) .
25: 2 - 6om) i [bem cos m o Memp (a,p,23y)

m=0

+ b
om

(2 -6 )im[b/
onm em

Vs . ‘ n
[ sinma 2 (-1) Anco,mlj,u)

n’ “”\j

Let us consider this term further.

sin m & M(S)
o

(a,0,23v)]

Y n
cos m & E An(e,mlj,u)(—l) .
n,l.b,,j

M(l) (a Z3Y)
i,n-%-}.L,CP ’Qp’ H
[@B) i
My ne e (2,25
(30)

(B~16) in writing the

Since | takes on the

there will be terms of the form

[=~]

m' =0 n=0

[s<]
2 : :E: n
d ? (-1) A M /
m n n+m



where we have changed m to mﬂ and dm, represents the product of factors

depending only on m’. In the summations over Mn+m' we letm =n + m’,

Then
o] (=] [>+3 [e+] ,
n m—m
_S_, d , E -1 4 M , = E (-1) A ,d M, (31)
= m n n+mn m-m moom
m =0 n=0 m=0 m'=0

. i . N
In the summations over Mn m,,we let m =n - m" and after some manipulation

we obtain
o ’.co
z’ d,§:<—1>nA M,
m n n-m
m'=0 n=0
o w "
m-+m
= (-1) A /d/M
E 2 : -+ m m

m=0 m =0

[=+] [+9] ’
-m
+ 2 : (1-§ ) 2 : " ™A, a4, n (32)
om m -m m -m

=0

m +1
where M is either (~1) M or (--1)m M depending upon whether M
e ¢ " "
stands for M (a,p,z) or M (a,0,2), respectively. When these
ey onp
results are utilized in Eq. (30), and explicit expressions are inserted
(1,3
MSm

summations that we shall not write down here. Setting the coefficients

for , there results a very long expression with fifteen different
of cos m ¢ and of sin m ¢ in that- expression equal to zero, we get
two coupled systems of equations that determine the coefficients bem

and b . With
om

A = ksiny (33)

and a prime over a Bessel or Hankel function denoting differentiation
with respect to the argument of the function, these equations may be

written in the form:

20




TC

7

J
~-i 2 A h sin o m Oa)
= = (1l +e ) NN
H '(ha)
m
. ’ m
1 (L + 5 m) Jm (\a) m—m'
-5 o D E : @ -8 )i Am n’ (e,m'le,m') cosm’ o b n’
o om ~ e
cos m H '(}\a) mIZO
[o0]
m—m’
+ (2-6 )i A, (e,m'|e,-n’) cos m’ b,
" om m--m emn
m =
[es]
m m—m’
+ (1) @ -8 ) 2 -8 ,) 1 A, (e,m"e,—m') cosm’ @b ,
om " om m’ -m em
m'=m
m
m"ml ; ’ 7
- 2-8 ,) i A ,(o,m}e,m)sinm ab ,
- om m—m om
m' =0
[oe]
m-m
- -8 ,) i A . (O,ml[e,—m’) sinm’ o b ;
p onm m-+m om
m’ =0
. [00)
m ) .m"ml ! 7y 7 . ’
-(-1) (1-8%) (2-86 ,)i A, (om'le,m’) sinn" ab ,
om e om m’ -m onm .

(34)



44

7

J A 3
~i 2\ h sin @ w A2
bom = - Q-e ) (L
H "'(a)
m
I a) [~ ,
1 1 m .In-m 7 ’ . ’
o+ Y Jrp— D’ 2 -~ éom,) i nem’ (o,m |o,m ) sinm’ @ b ,
5 Qa) {m' =0 om
m
(o]
!
Z m-m
+ @ -5 ,)1i A p (o,m'|o,—m') sinm’ o b ,
; om m-+m o
=0
(o]
m-+1 _III‘mI 7 7 7
+ (1) 1-5 ) @2 ~-8 ,)1i A, (o,m [o,-m ) sinnm’ o b ,
om r; om m’ ~-m om
m =m
m
Vs
m—m
- E : 2-8 i A, (e,m’fo,m’) cosm’ b
= om m-m em
m" =0
w .
Vs . '
m-m
- Z 2-6 )i A, (e,m’[o,-m") cos m’ & b p
r; on m+m en
m =0
[es]
m+1 .m_m/ 7 ’ !
- (~1) @a-46 2-8 D1 A, (e,m ]o,—m Jcosm" b , . (35)
om o om m’-m em

3 A
¢ ¥ . ‘v ¢



2. Transverse Magnetic Waves

When the waves are polarized with the magnetic field perpendi-
cular to the axis of the cylinder, corresponding to the expansions of the
incident and reflected fields in Egs. (14), (15), (24) and (25), the

expansions of the scattered fields must have the forms:

x>
E
t 0 3
PoeEt et E (2-% )im [c cos mo ﬁ( ) (?,y)
k sin v om em . em
-Mm=0
3
te  sinma ﬁém) (?,y)] ) (36)
(=]
E m 23
-,scat 0 2 : (2-8 )i [~¢’ cosma XN (r',v)
E = T om em emn
k sin v
m=0
) =(3 7 |
+ c; sin m o Ném) (?',y)] R (37)
Il

o
g
-=scat 1 3
o 2 g E (2-6 ) i" [c cosmu ﬁ( ) (?,y)
ik sinvy t 0 om em em
0 n=0

3

N
om (r,)] (38)

. -
+ ¢ sinmg M
om

=]
€
t 1 3
ﬁ,sca = — 9 E E 2-8 ) im [-¢/ cosma ﬁ( ) (;',y)
i k sin vy uo 0 om emn em
m=0

b @l . (39)

’ . =(3
+ C sin mo M
om om
Again, on examining the tangential components of the electric
field, it is found that if we set the primed expansion coefficients

equal to the unprimed ones,

cl = ¢ , (40)



then the boundary condition of vanishing tangential electric field on
the surface of the perfectly conducting ground is completely satisfied.
Setting now the z-component of the total electric field equal to zero
on the surface of the cylinder, we thereby determine the coelficients
Cgm and satisfy the boundary condition on both tangential components of

the electric field. Thus we have

iﬁc ref scat ~ —,scat —»
E (a,0,2) + E (a,p,z) + E (a,p,z) + [& - E’ (r’,Y)] . =0
zZ z z Z p=a
(41)
from which we get
o0}
m &) . (1)
EO E (2—60m) i {cos mua Nemz (a3,0,2z;y) + sin m o NomZ'(a’w’Z;y)j
m=0
- (1) (1)
m
E/ 2_ . - - . . N R
o z ( 6om) i [-cos m & Nemz (a,0,z;y) + sinm o otz (a,0,2;v)]
m=0
o0
m (3) (3)
E 2-8 ) i - - 0,2
Eq ( Om) i [cem cosn1a'NemZ(a,@,z,y)-+c0m 51n1ncyNomz(a,@,z,y)]
m=0

o
m n &)
2— . - - 5 .
E, E ( 6om) i c_, cosma E (-1) An(e,mlJ,u) Nj,n+u,z(a’w’z’y)
m=0

n,p,J
n (1)
-+ i -1 3 j N y 235
¢, Sinmo E (-1) An(O m{J,M) an+M,Z(a’® z;vy)
n,u,J
= 0 (42)

where we have utilized the addition theorem that results from taking
the curl of Eq. (B-16) in the last term. Changing the summation
variables and interchanging the order of summation just as we did in

the case of transverse electric waves and then inserting the explicit
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(1), (3)

expressions for the functions Nemz (a,p,2z;v), we again get a coupled
0

system of equations for the expansion coefficients:

~-i 2 A h sin o, Jm(Ka)

Cem =~(1l - e _?I;_—~—_

H (X a)
m

(1+8 ) J (a) g m
om m

7
R (il it ; 7
(2-8 )i A ,(e,m’|e,m’) cosm” ac_,
o m=m e

i
+-—-
2 m

cos m Hil)(ka) ; ,

@

/ .

+ (2-8 m=-m
2 : om’) i A ,(em'|e,-m’) cosm’wec
m-Hm em

m’=0

. m . ¢ H ’
+ (=1) (1=60m} 2/ i A (e,m’|e,-m’) cos m’ « €

, ,
. M= ! ’ R

-2 E i A , (o,m’|e,m’) sinm’ @ ¢,

m=m om

m’=1

o«

, .
,fn—m ’ / . ’

-2 E i A, (o,m !e,-m ) sinm’ o ¢

m+m om

m =1

X ’

m m=m
- (-1) (1-% ) 2 E i A, (om'le,-m’) sinm’ o c_, ,
om m -m om

I's
m =m=1

(m 2 0), (43)
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1
sinmg __(1)

1 m-m . .
-3 2 E i A ,(o,m'[o,m’) sinm’ovc

nm=m om
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M= / ’ .
+ 2 i A ,(o,m !o,-m ) sinm” & ¢
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om
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I

m+1 =i )
+ (-1) (L -6 )2 E i A, (o,m'|o,~m") sinm’@ec ,
om m’ ~m om

’
m =m

m

4
,~=m ’
E (2-8 i . A ,(e,m’jo,m")cosm’ac ,
on f-m en

m’=0

[ee]
/

_m-m
2-8 )i A ,(e,m’|o,-m")cosm’wec ,
: om m+m em
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- (-1) (L -6 )2 E i A, (e,m'lo,—m') cosm’ac ,
om m’-m em
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IV AXTAL CURRENT

A quantity that is of interest in some applications is the total
axial current induced on the cylinder, It is given by the expression
2
I = a J H@(a,w,z) do (45)
0 .

where H@ is the op-component of the total magnetic field.

In the case of transverse electric waves, there is no net axial

current. This can be seen by noting from Egs. (13), (20), and the

curl of Egs. (26) and (27), that H is expressed by a number of

) , . (1)?(3) .
summations over the functions NemP (a,,z;v). For the total axial
(o]

current we thus have summations of the form [see Eq. (11)]

© 2r
Z G.om | Slrslmcpdcp = 0,

m=0 0 ce

since each term vanishes, Physically this result is due to the fact

that there is no z-component of the electric field.

For transverse maghetic waves, on the other hand, we have a

z~component of the electric field and consequently a total axial current.

It is given hy Eq. (45) with

inc ref scat ~ =rscat »
Hco (a,0,z) + Hcp (a,0,2) + Hcp a,m,2) + [ecp'H' FEN]

i B
_\/ﬂo___qz(z_é y
T ik siny om

m=0

il

Q@(a,@,z)

(1 ‘ . 1 )
. [cosnuyMémp(a,w,z,y) + s1nnuyMom$(a,@,z,y)] +
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,/e /u E’ ©
YO 0 0 Z :(2_5 )
om

m (1)
* Tk sin » i [-cosmu Mem;p (a,90,2z;v)

m=0

. &D)
+ sinmo Momcp (a,p,2;v) ]

e/l
V 0 O m 3
ik sin y E (2- 6 i [cosmu € Memcp (a,0,2;v)

. (3)
+ sinmae Momtp (a,0,2;v) ]

o/““o Ey m’ n
. ! I .
ik sin v Z(Z S ’ ' COSI X Con/ Z (-1) An(e,m [ 35
N,y J

1 . n .
MF ) (a,p,2z;v) +sinm’oc E -1)" A _Co,m’|3,p) -
J, 0t ,0 onm R n
n,u,J

‘ MFI) (a,0,23v) ] (46)

J 0+, 0

where we have used again the addition theorem of Eq. (B-16). When Eq.

(46) ig inserted in Eg. (45) the only terms that survive the integration

1, (3)

over ¢ are the non-vanishing ¢-independent terms that contain M el

Substituting in the resulting relation the explicit expressions for

elp

result

1 3 ’
M( >, (3) from Eq. (10) and for translation coefficients from Egq. (B-19)
with An given by Eq. (B-11), we obtain for the total axial current the
o I(w) ~i2khsinysing
—_—— = | -i(1l - e ) J_(kasinvy)
e 2ma R 1
0 0
1 1 (1 . -
—iHi )(kasiny) ce0+i§H(§ )(Zkhsiny) Jl(kasz.n'y) ceO
1 7 2 (D ST
+i= E (2-6 ) (—1) H , (2khsinvy)
2, om

m'=0,2,4,.,. .

« J (kasin cosm’ ¢
1 v) em'
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o0
’
m’ (1) ) )
-2 (-1) H ,” (2khsinvy) J10<a51ny)
m
m’'=1,3,5...
ik zcos
sinm’ o c ,} e Yo 47)
om

where a prime over a summatim signifies that the summations are over

only even or odd values.
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V POTENTIAL OF CYLINDER

The potential of the cylinder with respect to the ground is given .- -
by

-h h
T
E (-2) dy = E (-2 do (48)
—a v 2 a 0 2

<3
1l

in which we have ignored the other coordinates in the argument and

indicated only that the electric field is to be integrated along the
1

line @ = = — 7 . In terms of the primed coordinate system that is

2
centered on the image cylinder, the potential of the cylinder 1is

b m 5 )
vV = f Ey,(g)dy’ =/ Ep,(g) do’ (49)

2h~a 2h~a
where it is noted that in this sytem the field is integrated along the
1
lin == . ‘l’
e o 5 i
1. Transverse Electric Waves

We shall write the p-component of the electric field in two
parts. From Egs. (1), (3), (10), (19), and (26) we have for the first

part

i t
E1nc (_E) . Eref (_E) + Esca (_E)
o 2 p 2 p 2

L . . K
_ EO cos o e ikp siny sino+ikzcosy

ikp siny sino+ikzcosy

+ E’ cos
o o e S
2 E i
+ —_0 E i [b cosmuo M(3) (o N T
ik sin v en emp 1T Y
m=1
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(3) rr )]

b sinm M -, Z;
+ om o omp ©, g ? Y

eikzcosy ~iAp sinw

= E COos ¢ €

0

-i2)A hsiny 1iAp sinco
+ COS ¢ € e

[o=]
1

! H:z )(xp)
+ 2 cosmg b m
EE: em Ap
m=1
[ss]

i
m=

s (50> i
where it is to be remembered that A = k sin v and that a prime over a

summation sign signifies that the summation extends only over even or

odd values of m, We shall write the second part in texms of the primed

coordinates:
2 E ®
;secat 0 m (3) ¢ T
E n = —— . b M — .
o’ 2 iksinvy ZE:.I : em “°% M emp'(p PR
m=1
. (3 ;T
bom sin m o Monp'(p ,Z,Z,Y)]
[e=]
1
) ’ H( ?(kp/)
ikzcosy m

= 9 E e - b cosmaom 7

0 em Ao

m=1
[oo]
(1
- o 0o’
+ i é b sinmaom-——F7 | . (51)
om Ap

Inserting Eq. (50) in Eq. (48) and Eq. (51) in Eq. (49) and
adding the resulting expressions, we find that the potential of the
cylinder with respect to the ground in the case of transverse electric

waves is
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ikzcosy Jcotyw -iA asineg -i2A hsing iA asing
e —— [e < e ]

0 ix
[oo}
(1)
! hoy Qp)
E m
+ 2 cosmo b m ————— dp
em Ap
m=1 a
[o0}
h (1)
! Hm Qo)
-2 1 sinmo b m —— dp
om Ap
m=2 a
© ¢
h (1)
B (o)
-2 cos mo b m —— dp’
en oh- AR
m=1 a
=]
h (1
’ 1 607
. . m ’
+ 2 1 sinmao b m-—-——-dp .
om Ap
m=2 2h~-a 7
(52)
This expression may be written as
2h~-a
|k s .
v - EO ot Z cosvy cos o o iA p sinu do
a
© 2h~-a (1
/ Hm )(Ap)
+ 2 E cosm & b M m————— dp
em Ap
m=1 a
© 2h~a (1)
! 500
-2 i E sinmao b m ———— dp . (53)
om Ap
m=2 a

That is, the potential of the cylinder is given by the integral of the
electric field of the incident and scattered fields from the cylinder

to the image cylinder.
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The integrals of the Hankel functions in the above expressions

can be carried out with the aid of the recursion formulas

(1)

H " (2) ‘

u/;1-£L————-dz = - H(l)(z) + H(l)(z) dz , : (54)
z m m-1
(1) da (1) (1)
Hm_l(z) = = 2 i Hm_z(z) + Hm_s(z) . (55)
After repeated use of Eq. (55) one ends up with either Hél) or the
(1

1 ‘ )
integral of HO , in the case of even or odd m, respectively.

2. Transverse Magnetic Waves

From Egs. (1), (11), (15), (25), and (36), we now have

inc T ref m scat 1
E (-=) +E "(-=) +E (-=)
P 2 n 2 P 2
_ EO ell<zcosy cos v sin a e—lkp sing

. -1i2X hsing iA p sinw
+ cos vy sin o e e

o 1
’ d H( )(Kp)
‘ m
+ i cos v E (2 6Om) cos m o cem dQp)
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‘ d Hﬁ )(Ap)
+ 2 cos sin mg ¢ ——— , (56a)
Y E : om dQp)
m=1
and
' o (1)
. , dH "o’
E,scat(z - E ell<zcosy cos -1 E (2-8 ) cosmae c e
p/ 9 = 0 Y om em d(}\p')
m=0
‘ 4 Hél)(hp')
-2 1 L I~
E : S M A€o dGp”)
m=1
(56b)
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The potential of the cylinder with respect to the ground in

the case of transverse magnetic waves is then

ik zcos
e v

E .
v = - 0 cos i[e—i}\ asincy_ -1 2X hsing i}\asinoz:|
- k sin v Y ¢ © . .
jos) P ’
1
+ i E (2-8 )Ycosmog C [H( )(Ka) - H(l)(A(zh—a))]
om em "~ m m
m=0.
® /
1 1
+ 2 E sin mo ¢ [H( )(Aa) - H ( )(K(Zh-a))] . (57)
om ~ m m
m=1

However, by a simple argument, it can be shown that the potential V
must vanish for transverse magnetic waves provided that both the cylinder
and the ground plane are perfect conductors.

By taking components of Maxwell's equations for the total field

(incident plus scattered), we find

OE OE
OH o

e}
— = iwe E = iWwuegH
e o o

o ; bz 0p ©

Since all field components are proportional to exp(ikz cos Y), we have

w e OB
H = — ; ik cos YE - iwp H - —=
© k cosy p 0 o @ o ’
while elimination of H between the latter results yields
i cos Y OEz
B = . (58a)

o .2 dp

k sin v

Finally, use of Eq. (58a) in Eq. (48) for the potential V yields

. bopE ;
, o [icos v)/‘ Tz, - -1-_9952_\’_) B () - E (a)] = 0, (58D)

2
k sin v s op k sin v

since E is identically zero on both the cylinder (p = a) and on the con-
Z

ducting ground plane (p = h).
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VI DPULSE SOLUTIONS FOR THIN WIRES

In the previous sections we have derived exact expressions for the
various quantities of interest here when a given plane wave of frequency
ny is incident on a cylinder in the presence of a perfectly conducting
ground. To obtain the results for incident pulses we must multiply the
above expressions by the appropriate spectral function f(w) and by
e_iwt and then integrate over all frequencies. Before we can proceed,
however, we must have the values of the expansion coefficients. This
entails solving the two sets of simultaneous equations in Egs. (34) and
(35) or in Eqgs. (43) and (44) depending upon the polarization. The form
of these equations immediately suggests an interative procedure which
has, in fact, a direct physical interpretation, namely, that each
further iteration takes into account an additional order of multiple
scattering, This procedure is easily carried out by means.of a computer

and will be discussed further in a later section on numerical

considerations.

The pulse solutions that we shall undertake to calculate heré will
be for a thin wire located at a large distance above the ground, so that
h/a >> 1. In this case we can obtain analytical approximations for the
leading expansion coefficients and thén obtain approximate expansions
for the quantities of interest such as the total axial current induced
by an incident pulse. The first approximation that we shall examine
will be the first-order iterations for the leading coefficients required
in the expression for the current. It will be found that the coefficient
c 0 is the dominant one and we shall then turn to the approximation
in which all the other coefficients are neglected and ceO is determined

as the solution of the remaining equation.
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1, First-order iteration

Let is iterate once in the expression of Eq. (43) for ceo to

take into account the first-order effect of the ground, We find that
~i23h sin o, o) 7,08
Ceo = ~(1-e ) o t o By (2w
H " (\a) H ")
o o
-i2\h sin o, J,(28) sin @ 4 () B (2am)
+ 2i(l+e y 1 ) o 1,

1 1 .

Hi ’ e Hc(> > e (59)

where in Eq. (43) we have substituted the leading term in Eq. (44) for

c namely,
o1’ y

(60) ‘

~12)\h sin o, I, 08

Hil%xa)

cOl = =(1+e

When the expressions of Eqs, (59) and (60) are substituted'in Eq.

(47) for the current, and use is made of the Wronskian relation

24
J (z) H(l)(z) - H(l)(z) J_(z) = ~ 2= s (61)
o 1 o 1 nZ
the expression for the current becomes
gg O 9 . (l_gith sin a)
2raE
8 mEEy | e HS%K&)
~i2a\h sin @, » J (ha) Hcl)(zkh)
2 (1-e ) o o _ '
* TAa ’ 2
1
H( ) (\a) .
e}
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-i2)h si J H 2xh
i 4(1 + e 120h sin O!) sin o (Ka) ( AR) eikz cos Y

) 1
ma (l%x ) H( Ba)

(62)

~iwt
To obtain the total time dependent axial current, I(w)e must
be multiplied by the appropriate spectral function and integrated over

., We shall take the delta function pulse as an example,

Delta function pulse. We have

2ﬁaE

/o IEZ])Z \/ﬁo} 0 I(w) Sty (63)

We introduce the following dimensionless variables that we shall

employ from now on

¢t - z cos ¥

u = - , (64)
a sin v
2h 2h

v = - — sin ¢ = — 'sin a[, (65)
a a

n =)xa =k asinvy, (66)

Putting the expression for I(w) from Eq. (62) in Eq. (63), we obtain

© -inu inv

wa siny I(t) B J/' e (l-e ) d
c ZﬁaEO J " H(l)(%)
o
@ ~-inu ikv
+’f 2 A-e D 5 GorP @l an
(L2 o o a
—0 )
(o]
@ -inu inv 1) h
24 sin o f e (re ) 3,00 H @D (67)
- v 1 oo 1 6o
le) 1
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An analysis of the last integral in Eq. (67), which comes from col’

indicates that it will be small compared with the other two, which

come from c o’ and it will therefore not be considered further. Let us
e

examine the first integral in Eq. (67), which we shall call &1- We write

- _ - 68
Jl Jll(u) &ll(u v) (68)
with
. 11 © e—i%u
&ll(u) = mO J/‘ 25 dn . (69)
—
€ o (rie)H_ (1)
1
We remark that H( )(%) is free of zeros on the principal branch
o

- < arg # < x, and there is a branch cut from 0 to —» along the negative

real axis. For u < -1 we can close the contour of $ll(u) by an infinite
semi-circle in the upper half n-plane and thereby obtain
Jll(u) = 0, u< -1 (70)
This gimply states that the total axial current induced by the
incident pulse is zero until the wave front of the pulse meets the surface
of the cylinder at the given value of z. Similarly, of course,
S (u-v) =0, .u < 2E ,sin a[ -1, (71)
11 a
which is to say that &ll(ufv) vanishes until the reflected wave front
reaches the surface of the cylinder at the given value of =z.
For u > -1, the contour of Jll(u) must be closed in the lower half

plane, A convenient way to proceed here is to note that the part of
the integral in Eq, (69) which extends over the negative values of

is the complex conjugate of the part over the positive values of .
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Utilizing this and completing the contour of the integral over positive
# by the quarter of the circle at infinity in the fourth quadrant, and

then along the negative imaginary axis of u, we obtain

2 -
g (u) = x J[
2 2 2
1 0 MK + 0 1M ]

I (M
o

dn (72)

where IO and K are the modified Bessel functions of order zero. The
o

integral in Eq, (72) has been calculated previously by several authors
10, 11J. It is the result obtained for the current induced on' a

cylinder in free space [11]. We shall not consider it further here.

The second integral Eq. (67) can also be examined in the same way.
It vanishes when u < [Z(h—a)/a] -1, and can be evaluated in various sub-
sequent intervals of u. We shall not bother to write the results, down,
however. Instead we shall go on to a more comprehensive expression for
the current which contains the present integrals as the first terms in an

infinite expansion.

2. p-independent approximation

It was observed in the preceding section that the first approxi-

mation to co leads to results that could be neglected when compared with

1
those due to c¢_.. All higher order coefficients can be expected to lead

e0
to results that are even more negligible in the present case. Carrying
this argument to the extreme, we neglect all coefficients other than that
of the ¢-independent term, Cop We now solve Eg. (43) with m=0, when all
the coefficients except Cgp 2re set equal to zero, and get
-i2)\h sin ¢
_ (1-e ) I (a)

£V o - gD
(o] o

(73)

ceO
(2\h) Jo(ka)
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Substituting this expression in Eq. (47) and setting all other

coefficients equal to zero there, we obtain

d -i2)h sin ¢, ikz cos v
70 I(w _ 2 (l-e Ye . (74)

22k '
€0 “™% mha ( ) ey - Hil)(th) I (ra)

Consider the denominator of Eqs. (73) and (74), If we expand

-1
<1)
1 . L . (2% Yy J (n)
(l)c )y - (1)( D 6o Hil)(%) Hil)(%)

by the binomial expansion, we get an infinite series each term of which

is what one would obtain if we had iterated Eq. (43) for ceo with all

other coefficients set equal to zero. Eq. (73) is therefore the sum

of the iterated series for ¢ o when all other coefficients are neglected.

Furthermore, since Eq. (73) was obtained by solving Eq. (43) directly,
and not summing the iterated series, it follows that the sum is valid

for n=0, when the series does not converge.

Let us comnsider Eq., (74) further. Since )=k sin Y, we see that

the limit of the right-hand side as @ - 0 is finite, namely,

2h sin ¢
- n
ﬁg I(w) —_— a

2xal -0 h
€9 T ¢ log 2-

But as stated in the Introduction, this is an unphysical result. It is
a consequence of our assuming that the cylinder is perfectly conducting,
even at low frequencies where actually the field penetrates any real
conductor. At low frequencies it is not physically sound to use the

idealization of a perfect conductor., In Appendix D we derive an

expression for I(w) when the conductivity of the wire is finite., It goes
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correctly to zero when the frequency does. In the present section we
shall continue to use Eq. (74) for convenience, but we emphasize that

Eg. (D21) would lead to more physically correct results,

We shall now multiply Eq. (74) by the spectral functions for the
delta function pulse and for the step function pulse inseirt the time
dependence factor e-iwt, and then integrate over the frequency to obtain
the respective expressions for the total time-dependent axial current,

defined by

I(t) = J/~ £f(w) I(w)e-iwt dw . (75)

Delta function pulse. In terms of the variables of Egs. (84)-(66) we

have

1Ct) J;i -1%u(1 ei%v)
= du. (76)
2aE /. . [Hc()l)( - <1>(2 5 s (M)]

The integrand vanishes on the semicircle of infinite radius in the
upper half plane when u < -1, so again we obtain the expected result that
there is no current at given z until the wave front of the pulse meets
the cylinder there, When u > —llwe must close the contour in the lower
half plane., We write

@

, / —utu(l ei%v) o
d ” J H(1) (1)

n ) <2m ) 3]

foe]

. /‘ e-—imu(l_ei%v) an
" H(l) (l)

RN (2% ) I 0]

+ complex conjugate. 77)
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For u > -1, closing the contour around the infinite cirecle in the fourth

*
quadrant and then along the negative imaginary axis, we obtain

[e2]

_ . e (1-e ) a1 7
&d = 2ﬂ12R4 + U/r D Z% (78)

h .
0. ﬂ[HO (-im) - HO (~12;ﬂ) JO(—ln)]

+ complex conjugate,
where 2R4 denotes the sum of the residues of the integrand at its poles

1 1 h
in the fourth quadrant. These poles are the zeros of Hé %M)_Hi %2%;OJ (ny.
o

Rough estimates of these zeros are sketched in Appendix C.
Now

H(l)
o

24
(-iz) = - =K (2) + 2I (=) (79)
T O o}
Using this in the integral in Eq. (78) and combining it with its complex
conjugate we obtain the foliowing expression for the total axial current
in the case of a delta function pulse:
U
na sinvy [70 I(%)
c e 2nakE

= 2ﬁi2R4 + complex conjugate

(e

0

5 ox an  (80)

7 —ul, vl .. h,
2 ~/‘ e (e -1)Io(n)[10(2an)-1]

0 ) " h 2 2 2 h 2
n[[xo(m—xoczamxom)] w1 (DT (2B -1

The same integral as in Eq. (78) is obtained if, instead of following
the present procedure, we start from Eq. (76) and continue the contour
around the entire semicircle at infinity in the lower half plane. This
leads to an integration around both sides of the branch cut from 0 fo
-» along the negative real axis. If the integration variable is
transformed to one running from O to «, a further integration around

a contour in the first quadrant is required to bring the result to the
form of Eq. (78).
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When u - «, the residue terms vanish as they are all damped, and it is
easily found that the integral in Eq. (80) goes to zero asymptotically

as

h 3
3_{2 (2*8-:) sin .
o -—_——_E—E—_' TS (u - @), (81)
(log 2;) u

Step function pulse. The spectral function by which we must

multiply Bq. (74) is, from Appendix A,

21i _fib + JT(S(lLU) - __l_ a sin ¥ {_1;% " J‘EG(M)} . (82)

27 c

The total time dependent axial current is now given by

e—l%u(l_ei%v) an 55
1 1), h ’
%[H( %%)—H( %2%~)J ()]
O (o] a o
The & function term gives immediately
2 2£lsino{[
n{-1)v o a o L 7 (84)
~2i g . o0 2 .l ' _
7 g a log a

The principal value term is

-inu inv
e - d
9 =D (1-e ) " . _ (85)
s . 2. (1) (1)_ h
o -ix [H (w)-H “(2u=)J ()]
o o a’” o

When u < -1, we can close the contour of the integral in Eq. (85) by the
semicircle of infinite radius in the upper half plane and we £find that

h
2 2= |sin of

a

’ —“—”——?;——— oo (86)
log 2— :
a

0
s 2
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Combining this with Eq. (84) we get the expected result that I(t)

vanishes for u < =1.

When u > -1, we write

[#+]

lim e I 4 Ty an
8 = - - (87)

s e~0 z —-imz[H(l)(%)—H(l)(ZKE)J ()]
, o o a o

+ complex conjugate,
and close the contour of the integral in the fourth quadrant by the
portion of the circle at infinity, the negative imaginary axis, and
then around a quarter of the small circle of radius ¢ at fhe origin.
If the complex conjugate of this integral is carried out explicitly,
the contour is in the first quadrant, and the two integrals together
traverse a semicircle at the origin. Using the relation of Eq. (79)

again we obtain

&s = 2ﬂiZR4 + complex conjugate

2 2

h
+ i ]sin a] =
2

h
log 2—
a

=, -ul) vh )
Lin e (e -1)[Ko(n)—KO<2an)Io(ﬂ)] dn
o -(88)

2 h 2 2_ 2 h 2
K -K (2—-MI +nt I I (2-M)-1
e M{IK (M-K @IMI (M +x I (MLI_27MH-1173
where ZR4 denotes again the sum of the residues at the poles of the
integrand in the fourth quadrant,

When u — w©, the integral in Eq, (88) vanishes, as does the sum of
the residue terms., Combining the result of Eq. (84) and the identical
one that remains in Eq. (88) we find that

h
2— ]sin al
a

u_:?w — . . (89)
2—.
log a
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VII NUMERICAL CONSIDERATIONS

In this section we describe a program of numerical computations
that has been formulated in support of the foregoing theoretical analysis.
In the initial considerations it is assumed that an infinitely long con-
ducting wire is located above and parallel to a perfectly conducting
ground. In anticipation of-extending this work to the more realistic
situation that would involve multi-wires of finite length as well as an
imperfectly conducting ground, we have formulated the numerical program

in a more general way than might be necessary for the initial cases to

be considered.

The first task of the numerical program is to determine the

scattering coefficients that satisfy the appropriate boundary conditions

on the wire surface and on the ground in response to a plane wave impinging

upon the system., In our general formulation we retain the option of
including as many of the scattering coefficients as are required for any
given geometrical configuration. Whereas only the first-order scattering
coefficient would provide a good approximation for the initial case of a
single wire located well above ground, it is not clear that a single term
would suffice for cases involving more than one wire in near proximity to
each other, or to ground. In any event the computations are not unduly

extended by keeping more than one term in the analysis.

Determination of the scattering coefficients provides the necessary
input for determining the induced current and the potential difference
between wire and ground in response to a plane wave, This leads to the
next phase of calculations--determination of the system response to
specific pulse shapes. To this end the plane wave response must be
appropriately weighted by the spectral density function of the incoming

pulse and integrated over the frequency domain.
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The fast Fourier transform (FFT) algorithm is well known to be an
efficient tool for numerical integration. This algorithm was employed in
obtaining the numerical results reported in this paper. Initial results -
have been obtained for the specific case of a step-function pulse. It
turns out that this pulse shape is difficult to treat because of a singu-
larity in the relevant equation in the viecinity of zero frequency.
Whereas the singularity is integrable, it is troublesome to handle with
the FFT routine. forcircumvent this difficulty, an approximate analytic

result was obtained for the region of the singularity.

In the following we formulate the pertinent equations for determining
the scattering coefficients in a form that is appropriate for numerical
computation, Two cases are considered: I, the incident E field is per-
pendicular to the wire axis; 11, the incident 5 field is perpendicular to

the wire axis, Only in the first case is a current induced in the wire,

1. Transverse Mégnefic Waves

We introduce some new notation that is convenient for the numerical

work. Let n = ka sin vy, and let

X = C H(l)(n) cos myy (90)
m em m )

v = ¢ H(l)(m) sin mey (91)
m om m

be variants of the scattering coefficients which must satisfy appropriately
modified forms of Eqgs. (43) and (44). We shall obtain solutions to these

equations by the following iteration scheme:

(pe1) ot S (p)
X B = % a X P + % b v p + £ - (92) - r
m mn n mn n m
n=0 n=1
(ps1) o ® N (®) St
+
y b = % ¢ x P v d y P + g (93)
m mn n mn n m

n=0 n=1 ‘
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and where

where

mn

’

where we take the initial guesses to be
X(O) = £ (94)
m m
(0)
Y = g (95)
f = = "[1 - exp (inv)] J (®) cos mu (96)
m m
g = - [1 + exp (inv) ] Jm(%) sin mo (97)
v = = 2(h/a) sin ¢ (98)
0 s if n+m is odd N
1
1 Hé+;(2nh/a)
— & - - :
4(1 * dO,m)(2 6O,n) Jm(M) {(2 6O,n+m) (1)
H (n)
n
WD e (o)
+ (1 + 6m 0 60 m)(2 - ém n) , Zh) }.
H ? H H (M)
n
if n+m is even /
. . N
0 , if n+m is even
1
HFnim‘(2%h/a)
- i(l + 6o,m) Jm(u,) ;e(l -~ éo,m) D (100)
H n) r
n
H(l)(ZMh/a)
s — if nem is odd
H(l)(%)
n ' J
e = +1 , if n>mn
e = -1 if n<m
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c =0 s if n+m is even
mn
(L)
= (/) (2 -8y )30 {- S
: n
H(l)(ZMh/a)
n+m(1) } if n+m is odd J
H ()
‘n
C N
d =0 if n+m is odd
mn
iV enzay wY (2unsa)
— J ) { ]n—m] _pm }
m ST NEIN ~
n n

~N

if n+m is even

J

We note that the upper limit N of the summations in Eqgs.

(101)

(102)

(92) and

(93) is determined by the geometry of the problem and the degree of

accuracy required,

x0 term. In this limit the iteration procedure reduces to
x(m) = f[1+a_ + a2 ——
0 o 00 00
-1
= foE]. - aOO] Py
or
(L
- - in Jd (n) H M
RO (1 - exp (inv) ] J (x) H ™" ()
0 - 1 1
(D ( )(2%h/a)]

[HO n) - JO(%) HO

For a first-order approximation we retain only the

(103)

For smaller values of the ratio of wire height to wire radius, h/a,

more terms must be retained in the iterative equations for the scattering
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coefficients, To this end the numerical program incorporates a subroutine

for accurately determining the Bessel and Hankel functions of any order

or argument,

In terms of the scattering coefficients xm and ym, the general

expression of Eq, (47) for the induced current in dimensionless form is

- - ikz cos
e v

I(w) = I(n)

with
5 o0
Iy = -1 { (1 -~ exp (inv)] Jl(%) + o %
H n)
0
% (N-1) Hé;)(2%h/a)
_Jl(u) o (2 - 6O,m) O %am (104)
m=0 H ()
2m
3 (N+1) H;;zl(Znh/a)
+ 21 Jl(%) %1 H(l) o y2m—1 }
n= 2m-1
where I denotes a dimensionless current defined by
. h
0 2ra E
0

2. Transverse Electric Waves

For this case we use variants of the scattering coefficients defined
by

_ 1)/
Xx = b H( )
m em m

(1) cos my (106)
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I
= _ o g®
m om m

(®) sim me (107)

where the prime denotes differentiation with respect to the argument of
the Hankel functions. The iterative equations to be solved in this case

are

N-1 N
- +1 - - - - -
;D s 7 P Ly 57 4 (108)
m mn n mn n m
n= n=1
N-1 N
- +1) - - - - -
y(p = % c x(p) + 2 d y +g (109)
m nmn n mn n m
n=0 n=1
with initial guesses
x(0) = f
m m
~(o _ -
y{0) g
and where
fm = =~ [1 + exp (inv)] Jé(n) cos my (110)
g = -[1-exp (inv)] J'(») sin my . (111)
m m
We will avoid writing out in detail the coefficients a ) b c
mn mn, mn,
and d for this case by noting that they can be obtained from the
. mn
corresponding coefficients a , b , ¢ , and d of Case I by a simple
. mn mn  mn mn

replacement of terms, Fcr example, to obtain ;mn from amn’ replace the

texrm
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J () J ()
m m

5 by -
(1 1
1 6o 2P 6o
n n
In like manner, we obtain b from b , ete,
mn mn

Step Function Pulse

The current time response to the step-function pulse is obtained
from the integral

+ L , -

I = ) Tt e ay (112)

where the bar over the current terms indicate a normalized current as
defined by Eq. (105). The spectral density is (Sée Appendix A)
" 1 P
flw = ——-(-—— + vté(m))
27\ ~iw
where P indicates the principal value., In the vicinity of zero-frequency

we will make use of the closed form expression for the current of Eq. (74):

ikz cos
[1 - exp (-i2kh sin vy sin o) ] 2 e Y

(1)
0

I(w) =

nka sin v [Hél)(ka sin v) - H "' (2kh sin v) JO(ka sin )] 7.

(113)

In terms of variables, introduced in Egqs. (64) to (66),

ct - 2z cos Y
u = -
a sin vy !

h h
v = =2 —s8sin o = 2 —"sin a' R
a a
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n = ka sin v,

we can write Eq. (112) in the form -

inv -inu
i( | 10/2 a( on ) ;Z(l - e Y e an
u = - N R LA
' 2#3 a sin vy H(l)(u) _ H(l)(Zuh/a) 100 (a sin vy/c)
0 0 0
B b inv ~inu
i (1 - e ) e du
+——§P

2. (1) (1)
w o -twow [H U009 - HT(2rb/a) 300 ]

N _ﬁn N _[m Gy Ty o U (114)
L Ko 2n % .

For the principal value integral we will assume A is sufficiently small

so that .

(An) 2h/a << 1

Taking small value arguments for the Bessel and Hankel functions, we

obtain
1 1 21 2h
H( )(m) - H( )(Znh/a) J (H) —— - - log(—) . (115)
0 0 0 i a
The delta function integral gives
- v/2
I(0 = — 116
(0) log(2h/a) ( )

For sufficiently small values of An, the principal value integral gives

I (uw) =

v
P.V, " AR . (117)

n 2 .
v/ g ? sin nu d sin Anu [’ -
u

2h
log (— 0
og( a)

Combhining Egs. (114), (116), and (117), we get
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A .
- v/2 2 sin nu v sin Anu }
I(w) = ——5— { 1+ [ g o dr -5 -—a——f}

log(—)
s pls i - —-inu dm

+ f + f (ﬁ) I(n) e 0 = . (118)
Ar o '

The last integral in Eg. (118) was evaluated numerically by means of the

FFT algorithm to obtain the results presented here.

The previously obtained asymptotic value of the current when u - «

can also be obtained from Eg. (118) as follows:

AH
- v/ . sin nu
i - —t lim _—r -
1im IP.V. (u) 1 (_2..13) u - ® f " o
o8 a 0
2
= —XZ—EE—f . (119)
1og(-;)

The rapid oscillations in the last integral of Eq. (118) will wipe out
any contribution from that term in the limit as u - «, Hence, we obtain

from the first terms of Eg. (118)

lim I(u) = ~—y—/§r—l—{1+1}
log(—;)
h
v 2;1sin al _
N T (1205
log(—;) 10g(—;)

in agreement with Eq. (89).

Results

In Figure 3 we show the time history of the induced current as

obtained for an initial test case with the following parameters:

Incoming pulse : Step~function in time

53



Polariza%ion : H 4 to wire axis
Height-to-radius ratio: h/a = 100

Equatorial angle : o = —-45°

We recall that the spherical coordinate angles «, vy define the direction o
of the incoming pulse. A negative value for ¢ indicates a wave coming

from above, The azimuthal angle v is eliminated from the parameter study

by incorporating it into the normalized time variable u = (ct-zcosy)/asiny.

The reduced time u = 0 indicates the time of arrival of the pulse at the

position of the center of the wire for any value of z along the direction

of the wire, in the absence of the wire.

In Figure 3 we have demarcated certain events in the time history
of the current that can readily be identified by geometrical considera-

tions.- -These events are identified as follows for any point z along the

wire,
(i) -1 =u< ul Initial current rise due to the direct incident
wave and its associated scattered wave.
(ii) u = u1 = 2(h/a) lsinal -1 Arrival of the ground reflected
incident wave at the wire surface,
(iii) u = u2 = 2(h/a) - 3 The scattered wave associated with
the direct incident wave returns to the wire surface after a
ground reflection.
(iv) u = u, = (2n/a)[ lsin ol + 1] - 3 The scattered wave
associated with the ground reflected incident wave returns to ., -
the wire after a ground reflection.
In addition to the above events we can identify subsequent minor .
perturbations in the current response that can be identified with

multiple scattering events.

54




139

30 l | T

asymptotic value
B aud e ————————— e e A=, ——— m— :--:-—————--

20 =
hs/a = 100
o) X =-45°
Normalized
Current

10

0 | | 1
0 200 400 600 800

uz= (ct—1z cos?‘)/(u sinY)

FIGURE 3 NORMALIZED AXIAL CURRENT RESPONSE TO AN INCIDENT STEP FUNCTION PULSE.



It must be noted, however, that the late time history as shown in
the solid curve of Figure 3 has increasing error that can be identified .
with the aliasing phenomenon. The dashed curve shows improved late time
results but with some loss of detail in the fine structure of the current
response, This latter result was obtained be decreasing the frequency
interval in the FFT integration without increasing the total number of

points (2048) in the integration. The asymptotic value
-1
I(x) = vilog(2h/a)]
is indicated at the right of Figure 3. -—

Additional calculations will be made of the current for various
angles o and various height to radius ratios. These will be presented
in a report supplemental to this one along with similar calculations

of the potential between the wire and the ground., 1In calculating the

potential, only the transverse electric case need be considered.
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APPENDIX A

Fourier Transforms of Pulses

We 1let
[ee]
~ -iw
F(t) = f F(we dw .
-0
Then
[=>]
~ 1 iwt
F(w) = — ~/~ F(t)e ©°° dt .
27
-0
~ -—
L « T
For pulses that are functions of t - o , we set
~ -
~ ikn ¢ v
F(w) = f(we
1. Delta Function Pulse .
n.r
F(t) = 68(t - )
~ 1 ikh . r
F(w) = 7— e
21
2. Exponential Pulse
f . v 6.7
F(t) = exp[~a(t - . )] H(t - )

where H(t) is the Heaviside unit step function

H(t) 1,t >0
. ]0o,t <0
~ ikh . T
F(w) = 1 e
2 (~Lwwa)

3. Step Function Pulse

i
=
ES
1
[oFS
ols
=l
SN

F(t)
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1im 1
T e~0  2x(-iute)

Now

1lim 1
e = 0 wtie

1
= P~ - imd(w) .
w

where P is the principal value operator which indicates that a Cauchy

principal value is to be taken in subsequent integrations. Thus,
-~ -
F(w) = 7~ i + wd(w), e .

This well-known result in mathematical physics, sometimes called the

Plemelj formula, is derived in many books on quantum mechanics (cf.

ref. [4], p. 469, ref. [5], p. 718). It is also derived in some books .
on applied mathematics (cf. ref. [6], p. 21, ref. [7], p. 190).
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APPENDIX B

The Addition Theorems for Cylindrical Waves

We shall derive expansions or addition thecrems for the circularly
cylindrical wave functions with reference to one origin in terms of those
with reference to another origin that is translated, but not rotated,
with respect to the first one in the x, y—planef The z-coordinate is the
same in both coordinate systems so that the scalar wave functions can be

written as

(i) = (i) -_ ikz cos
NECIER! (0)e Y
e e
m m
, ‘0 o
(i - (i -, ikz cos
v ) &y = we ) (p’)e 8 Y
m m
o] (o S
. where ; and pl are the position vectors in the x, y-planes, respectively,

as shown in Figure B-1.

Addition theorems for scalar cylindrical waves have been given by
Weyrich [1] and Stratton [2], but they are not in a form that is useful
for the present purposes, Rather than rearrange their forms, we shall

derive the required theorems from the beginning,

We take as our point of departure the Sommerfeld integral repre-

sentation [8]

: > s
H(1) Op) = 1 J(.el Aop cos @+ im (@-3) de
m 7
C
1
- _%; d/‘el Ap cos (@ - @) + im (¥ - @) 4o (B1)
- S i C

where C is a path appropriately shifted from the usual Sommerfeld one

' in the complex o-plane. From Egq. (Bl) we have
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» X

FIGURE B~-1 TRANSIATED COORDINATE SYSTEMS USED IN
THE DERIVATION OF ADDITION THEOREMS.
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. . _ i
H(1) O\p)elmcp _ 1 f el)xp cos(a~p) + imy @ . (82)
m m
i C
Letting m — -m, and noting that
1 (1
1PV - " P w, (B3)
-m m
we get
H(l)(xo) e-lm@ _ 'l;' ./~ el Ap cos{a~=p)-imv dor (B4)
" i C *

Now, the plane wave expansion of Eq. (5 ) can be written in the following

form

12'. g = n in(a-0)
! = J (k i B5
e ;g;m i n( p sin y)e . (B5)

Thus, for the coordinate systems of Fig. Bl we have from Egs. (B4) and

(B5)
4 g —)/
1 -1 1 .kv —i
H( )(kp’ sin y)e B .)f e P " d
m m
ni C
1 ik . (p +p) - i
_ /el '(po+p) imor
m
i C

- — [=~]
1 ‘/f ik * p n i(n-m)o - ing
o S kp si
o e o} i Jn( p sin y)e do .

. C —
1 n=-w (B6)

Because of the infinite limits of the contour C, the interchange of the
order of summation and integration in Eq. (B6) is not automatically
permissible. When p < 0y however, it can be shown that it is possible

to exchange them. Then we get upon noting Eq. (B4)

. 7
imep

H(l)(ko’ sin y)e— =

m
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foo]

(
> J (ko sin y) H

"

m-~1n

N=-—

o

1)

(kp0

sin y)e

il(n-mg_-no]

1 -1 -
=y (—l)nH( )(kp sin y) J_ (kp sin yle il (mam)p n@o] (B7)
— n (o] n+m N
letm - -m, n = -n in Eq. (B7). We obtain
(L immr
Lo
Hm (kp" sin y)e
- (1) i{ (n+m) ]
_ _.\n . . n+m)p-ngp
= > (- H (kpO sin v) Jn+m(kp sin v)e o7 (B8)
N=—
Adding Egs, (B7) and (B8) and then putting the result into

summations over only positive values of n, we find that

(1) ’ . cos
H k i
m (ko sinvy) sin

me,

n_ (1

)

=% = (2—6on)(—1) Hn (kpo sin )

n=0

J (ko sinv) |cos no S (nm)e * sin Sin em)
.{n+mp51ny oS onsin me._Sl n(pocos anp

+(—1)mJn_ékp sinwy) [i

cos
cos n
CPO

sin

(n-m)p + sin n o, 222 (n—m)%ﬂ}:

(p<po). (B9)

When p'<po, we find in the same way that

1
H Y (e siny) %% mo
m sin
z (1)
=% T (2-60n)Hn (kpo

n=0

7 cos ’
« od k i
{ n+é o sinvy) [cos no Sin(n+m)cp

sin '\{) .
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Y]

. P + cos ' ) sin _ ’
+ (-1) Jn (kp" sin ) [_ cos ng sin(n m)p '+ sin g COS(n m)@:]}

’ (pl<po). (B10)

The expansions for the cases when p>*p or p'>-po can be obtailned from those
e}
given above by interchanging p and po or p’ and po in the expressions on

the right-hand side,
Let us multiply the expansions of Egs. (B9) and (B1l0) by exp[ikz cos y]

and define

A (kp_ sin y) = 3(2-8 ) H(l)(
n o on” n

kp sin v). , (B11)
[o]

We thus get the addition theorems for the three-dimensional

cylindrical scalar wave functions:

@

(3) -« n .

i (r,v) = 2 (-1) A (kp_ sinvy) .
e n o
om n=0

. {cos n o wél) (;, v) * sin n @, ¢;1)‘(;, N3

n-+m n+m
. e _
1 - 1 -
£ (-1)m cos n @ Wé ? (r, v) + (-1)m sin n 0, ¢i ) (r, y)} ,
n-m n-m
e
(p<po), (B12)
3) - - ,
m( )(r, v) = Z An(kpo sinwvy) .
em n=0
o}
. {cos n @o1yél) (;?, v) * sin n @0 wél)h(;’, V)
d eem n-+m '
.0 e
1 1
‘ * (—1)m cos n @ wé ) (?/, v) + (--l)m sin n ®, wé ) (?', Y)Yy o,
on—m 4 en+m

/
‘ 6] <p0). (B13)
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Now the curl of a vector point function and the gradient of a
scalar point function are invariants under transformations of the
coordinate system, We can, therefore, obtain the addition theorems for
the cylindrical vector wave functions by inserting the exbansions of
Egqs. (B12) and (B13) directly into the equations (6) and (7) that define

the vector wave functions. In this way we obtain the vector expansions:

fev)
—-(3} —
e v) = T (-D7A (kp_ siny) .
e - n [s]
m n=0
o
- — =(1 —
eq COS 11 @ M(l) (r, v) £ sin n @ M( (r, v)
o e oo
nHn n-+m
o e
-(1 — - -
£ (—1)m cos n © M( ) (r, y) + (-1)" sin n © M(l) (r, v)},
o oo
n-m n-m
o) e
(p<po), (B14)
(3) z
M (r, v) = £ A (kp siny)
e n o
m n:o
o
-0(1) "’,, . —’(l) -+, .
M + M
. {cos n @O o (r’, y) sin n @O o (r’, y)
n-+m n+m
o) e
. m (1) =, mo_ =1 7,
+ (~1) cos n @OMe (', Y) + (~1) sin n QOMO (r", Y) s
n-m n-m
e .
(p‘<po) . (B15)

Taking the appropriate curl of Egs. (Bl4) and (Bl15), we see that
3
identical expansions hold for the vector wave functions ﬁé ). We refrain

m
from writing them out explicitly. o)

It will be useful to have the above vector addition theorems written
in a more compact form, namely,

-(3) -, B y _ n e . -(1) - )
Mem (r', &) = P .( 1) An(om[J, L) Mj, n+ér’ v)

° n, wy J (p<po), (B16)
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-y

=(3) - _ Z e . ~(1) =y
Me (r , v) = An(om!J y W) MJ-’ n+1§r YY)

M n, g, J
(p’<po) (B17)
where
An(e, m[e, m) = An(kpo sin ¥) cos n @O
An(e, mie,-m) = (—1)mAn(kp0 sin v) cos n @o
An(e, mlo, m) = An(kpo sin v) sin n @0
An(e, m]o,—m) = (él)mAn(kpo sin y) sin n @
An(o, mlo, m) = Ah(kpo sin y) cos n ®,
An(o, m!o,—m) =-¢1)mAn(kpo sin ) cos n v,
A (o, mle, m) = -A (ko sinvy) sinn g
A (o, mle -m) = (—1)mAn(kpo sin v) sin n g_ (B18)

with A (kp sin v) given by Eq. (B1l), The range of n is all the integral
n o]
numbers from and including zero to infinity, that of i is just -m and m,

and that of j is e and o.

With the coordinate systems translated as in Fig. 1b
= , = 2h,
¢ = 3 o

Then

A (e, mle, m) =A (o, m|o, m)
n n n

2
(-1) A (2 k h sin v), n even
n

t

0 ) n odd

A (e, mle, -m)= -A (o, m|o, -m)
n n

2 ry
(-1 An(2 k h sin v), n even

0 , n odd
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A (e, m‘o, m) = -A (o, m[e, m)
n n
0 s n even a
n-1
2

(-1) A (2 k h sinvy), n odd 2
n

il

A (e, mlo,—m) A (o, m[e, -m)
n n
0 s n even

n-1
= — +m

(-1) 2 An(Z k h sinvy), n odd (B19)
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APPENDIX C

The Natural Resonances

We shall sketch here the derivation of some rough estimates of the

roots of

H(l)(%) - H(l)(BM)J (n) =0, p>>1. ' (C1)
o o o

If »n and Bn are both assumed to be small, there is no solution to
the above equation. Let us consider next the case where u isg small

but 2% is not small, We let

vo= € - iT, g, M > o, (c2)

We then have approximately from Eq, (C1)

1[B(§ ﬂl)——]
2i log F(% im 2 o : - (C3)
" ™ \/g i
where I' =1,781, . . . We are only interested in those modes for

which the damping is small so we assume that
ey,
g
Keeping only the significant terms in Eq. (C3) we have

BT
1+ E% log £ = U-De (cos BE + i sin BE). (C4)

-

This equation suggests that we set

log [C /2 log B(BﬁE)%]
n = T ” ) o ' (C5)
B
where C is a constant of order unity., We also set
b
§=§, - oo- 1 < b<<B. (C6)
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We then get from Eq, (C4)

log b 7 1
log B

C cos BE = == = ==

1 1 log b ke 1

C si = e e g — + —
in 3¢ /2 /2 log B /2 log B
We now choose
_log B-log b
- log B
Then
1 Tt 1
= o e
cos BE = & * 7 Tog B-log b’
1 7 1
si E = - =0+ &7 TT————
in BE J2 /2 1log B-log b

Now for small &

cos b
- = +
sin < 4

so we find that

/e /2

2nn - EiS + i
¢ = 4 log B-log 2nm
~ 2n-3)x
6 ?
and
N = log[2/n log *§~3
n 2nx

3 .

We next examine the case when both # and PBu are large.

have from Eq. (C1),
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(C8)

(C9)

(Cc10)

(C11)

(Cc12)

(C13)

(C14)

Then we




eiBM cos(%—g) = \/g‘ Bx . ‘ (C15)

or

eiZBM [1+sin 2n] = =B~ . o ] o 7 (C16)

With # as in Eq. (C2), we obtain from Eq. {C186)

eZBn(1+sin 2€ cosh N)

= Bn(f cos 2 B E - M sin 2 B E), (C17)
ezBﬂ cos 2 £ sinh 7|

= Bx(M cos 2 BE + E sin 2 B E) . (C18)

These equations may be manipulated to yield

e4Bn{(l + sin 2 € cosh ﬂ)z + (cos 2 E sinh ﬂ)z}

2
e N Y 19

From this equation we find after further manipulation

g~ 2nm, (C20)
log ZnBﬁz
ﬂn ﬁ’—"—gg——~— . (c21)

In Eq, (C2) Wwe restricted the roots to the fourth quadrant.
These are the ones required in Section VI. We may note that the roots
of Eq. (C1) must lie in the lower half plane, This follows from the
physicalrfact that‘the waves of the natural modes must be damped
because there is no external source of energy. The mathematical analysis

in this Appendix is in complete agreement with this.
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In a recent report on the transient electromagnetic properties of
two parallel wires, Marin [12] has given some numerical results for the
roots of the equations KO(Ya) * KO(Yd) = 0, where Ko is the modified
Bessel function of the second kind, a is the radius of the Wires, and d «
their separation, When » is small and Bxn is very large, with B=d/a,
the roots of Eq, (C1l) when multiplied by -i should agree with the roots
of Ko(ya) - Ko(yd) = 0, A comparison of values calculated from Eqs. (C-13)
and (C-14) with those computed by Marin shows very good results for the
smallest value of a/d, except for the sign of the imaginary part of
-in = -N-i€. This is quite alright, however, because ign—iﬂn are both
roots of Eq. (C1l) ., The choice of -£ corresponds to the assumption of

iwt i —-iwt
the time dependence e v instead of e w as used herein,
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APPENDIX D
e » .
‘ Finitely Conducting Cylindrical Wire
.)‘ »

For low frequencies it is not correct to assume that the cylinder
is perfectly conducting. It is clear that when the skin depth becomes
an appreciable size with respect to the radius of the cylinder, the
concept of a perfect conductor is not a physically sound idealization.
We must take into account the field within the wire,

Let the conductivity of the wire be o . The propagation constant

c
within the conductor is
k 2 i
= + i
c v LLo€ u”%cc
~q ; DL
® v <
: ) 2 2 . 2
We shall discard the negligible term w /¢ in the expression for kc
throughout this Appendix,

We shall consider only the case of transverse magnetic waves. The

magnetic field within the wire can be expanded in the form
v . R
- - V%% %o m
H(r) = ——— (2-5_ )1
c ik sin vy 0 Om
. la cos m o M (r; v; k)
em emn c
T e +a sinm o M (r; v; k) (D2)
om om c
where

K,

- (1) - a (1) -

DR CHEIR SN .(D3)

M (r; v; k) = Uxeé
e c

V4
m m
o] o}
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with

(1) , cas ikz cos vy
HERV =J (k
¢e (r; v; kc) m( cp)si mes (D4)
i
o
Now
- -
P -t od
c . C
ik‘/p, €
_>
= ——————ikilz VXHC (D5)
o : .
k
c

and the expansion of the electric field within the conducting cylinder is

kE

[+o]
E(x) = -~ o 22(2—5 )im a cos m ¢ N( )(r; vi k)
c —————— 20 Om em m c

e
kzs‘
in
e Y

, =(1)
+ a sinmug N
m om

o (x5 vi k- (D6)

We are interested in generalizing the expression for the current
in Bq. (74). We shall keep, therefore, only the terms for m=0. The
explicit expressions for the components of the vector wave functions

introduced in this Appendix for m=0 are

=(1) d ikz ¢ A
M( ) os v

e = —J 7
e0 (r; v; kC) dp O(ka)e e(p s (D7)
(1) i d ikz cos Y 4
NeO (r; v; kc) =i cos vy a5 Jo(kcp)e ep
k2 ik
c "
+ ¢ J (& pe z cos¥Ya (D8)
< ° ¢ zZ

At the boundary r=a, the tangential components of the electric and

magnetic fields must be continuous. Thus we have
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i f scat
Elnc (a’ C.P) Z) + Ere (a) QD’ Z) + E (a) 0y Z)
Z Z Z
P
; scat =,
+ E (r)t =E (a, ©®,. z) (D9)
»n zZ Ccz
. - )
and
i f scat
H nc(a, 0, z) + ue (a, @,z) + H (a, v, 2)
©® - © P :
-3 scat -y, PN
+ [H (xry+e]  =H (a, @, 2) . (D10)
p pTa P
The expressions for the field components in Eqs. (D9) and (D10) are
inc ikz cos
g " (a) = E_sinvy J (\ade Y
z 0 o
ref -i23h si ikz cos
E © (a) = -E_ sin vy e tert sin @ J (xa)e¥ Y
z 0 0o
‘ scat (L) ikz cos v
E =k i H
2 (a) o Sin v .o 4y (haje
scat 1 ikz cos
E’ (a) = -E_sin v ¢ [H( )(Kpl)] e ¥
Z 0 e0 " o p=a
ikz cos v ‘
Ecz(a) = EO sin ~ a0 Jo(kca)e (D11)
and
inc €O ikz cos v
H (a) = -i4/— E J_.(ha)e
[0 i 0 1
0
S . -
ref 0 -i2)}h si ik
. e (2) = i4/2 B e b in ¢ 3 (Xa)el Z COS Y
) . o 0 1
0
[
3 scat 0 1 ik
g H e (a)= -i4/— E ¢ H< )(Xa)e Bocos v
© uO 0 el 1
[ )
€
scat 0 A A ik
B’ ) = i4/2 Eec 8P o) (a8 ) etHB 08 Y
) e 0 e0 1 o
=a

@ i :
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k
c ikz cos v
E — J (k
0 %e0 ¥ oin v J1%®

H (a) = -i
cp

scat -

To express E’
z

coordinates we need the easily established geometric relation

3 ,= 8, sin ( Yy + & cos (p=0’)
Cp, p/ AQ=0© © ©o-p

and the following relations from the addition theorem for scalar

cylindrical waves that is derived in Appendix B,

Hil)(hp’) - H(()l)(2?\h) 5_@p) + o-dependent terms
and
(1) A . ~ _ (l) 7/ 4
Hl O )ew, eCp = H1 Qp’) cos (o= )

H(1)

(2\h) Jl(Ap) + p~dependent terms

The boundary condition equations then become

J Gua) - e_lm\h | (ha) + ¢ H(l)(Ka)
0o o e0 o
a
e 8P @n 7 ) = 22— 5 (x 2
o . o ¢
sin v
and
- i 1
~J_(a) + e 120h sin o J (Aa) = ¢ H( )(Aa)
1 1 e0 1
-k
(1) c
H = —— J (k
* ceO‘o (zah) Jl(Ka) k sin v an 1( ca) !
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(D12)

>, scat
(#') and H '°°?% (%) in terms of the unprimed
@

(D13)

(D14)

{D15)

(b16)

(D17)




SL

from which we obtain

k sin v
-i2Ah sin ¢
(1—e1 s > J (a) I (k a) ———
o 1 c¢ k

- J (ha) J (k a)
1 o cC

?

ed

) k sin v

1

—[H( doa) - 8P @ g O\a)] J (k a) —— & [H(I)O\a) -1 P @ g O\a)] J (k a)
o} 0 o 1 ¢ k 1 o 1 o ¢

(D18)

2 -i2\h sin
2i sin vy <1-—e * Ol)

e0
x [H(l)(}\a) 1P em 7 a a)] 3 (k @) k a siny-da |:H(l)(>\a) -1V aam J(xa)] 3 (k a)
o o o 1 ¢ c 1 ] 1 o cC

(D19)
The total axial current is
27
I=a f H (a) dp . | (D20)
o

From Egs. (D12) and (D20) we get for the total axial current at frequency w, the expression

o

I(w)
25taE
o

i



9L

-i2\h sin o

2
2 sin v(1-e ) kad (k a)e
c 1 ¢

ikz cos vy

T\ a [H(l)(ha) - H(l)(ZAh) d QAa)]l k aJd_ (k a) sinzy— Aa
o 0 o c 1 ¢

from which we find

2 2 ikz cos «o
I{w)——> 2 ikh wa o EO sin o sin o e , (cyc7é ®),
C

w0
and clearly then
© lim

© - 0 I(w) =0 .

But if we let o, - o, Eq. (D21) reduces to Eq. (74).

H(1)
1

(la)-H(
o)

1)

2h) J.Qa)|l J (k a)
1 o c

(D21)
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