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Abstract

A thin, perfectly conducting, spherical shell having a circular aperture
is illuminated by a plane (c. w. ) electromagnetic wave at symmetrical incidence.
Using a formulation of the problem which is, in principle, exact, a computer
program previously developed for the determination of the scattered fields is
modified to permit the calculation of the fields within the cavity. Data are
presented for a variety of cases and compared with the results of approximate
methods.




1. Introduction

A problem of considerable interest in EMP studies is the penetration
of an electromagnetic field through an aperture in a finite cavity. Unfortunately,
it is also a problem of great difficulty with which little progress has been made
even in the most elementary situations. One of the main reasons for this is
the coupling between the aperture and the cavity, and given the difficulty of
treating the problem of an aperture in an infinite screen, it is not surprising
that the determination of the fields which couple into a cavity has so far
defied rigorous solution.

There is, however, a simple case which can be formulated precisely
and then solved numerically to yield data which are, in principle, exact. The
geometry is admittedly an idealised one but the problem does have interest in
its own right. More importantly, however, the solution can be used to test the
accuracy of approximate methods which could be applicable in other, more
practical, situations.

The problem considered here is that of a thin, perfectly conducting
spherical shell having a circular aperture and illuminated by a plane (c. w.)
electromagnetic wave at symmetrical incidence. This was previously treated
by Chang and Senior (1969) by expanding the interior and exterior fields in
spherical modes and determining the coefficients by a 'least squares' method.
Since their main interest was in the effect of the aperture-cavity combination
on the scattering properties of a solid sphere, a program was developed to
compute the scattered field, and by taking explicit account of the field behavior
close to the edges of the aperture, data were obtained which were in good agree-
ment with experiment.

The program has been modified to permit the calculation of the fields
within the cavity, and though it is rather expensive to run, the fields have been

computed at selected points inside and on the shell for two aperture half angles



and for 0.5 < ka < 5.0, where a is the radius of the cavity. These data are
discussed in Chapters 3 and 4.

It is obvious that the analysis would be greatly simplified if the coupling
between the cavity and the aperture were wholly or sﬁbstantially ignored. The
aperture and cavity problems could then be treated independently of one another
and, having found the field distribution across the aperture when placed in an
infinite screen, the determination of the cavity fields would be relatively straight-
forward. For added generality, certain arbitrary constants could be incorporated
into the aperture distribution obtained, which constants could then be chosen
to satisfy the boundary conditions at a like number of points in the aperture of
the cavity. Unfortunately, all this is easier said than done. The calculation
of the aperture fields is by no means a simple problem and this is particularly
true if the aperture is not circular and/or the screen is non=planar. Moreover,
the manner in which the infinite screen should be chosen, and the effect which
the geometry of the screen has on the aperture distribution, are not obvious.

It therefore seems logical to approximate this distribution at the outset, and avoid
entirely the complexity of the aperture problem.

Two approximations of this type are discussed in Chapter 2. The first of
these is appropriate toan electrically large aperture and postulates a field
within the aperture identical to the incident field apart from an amplitude scaling
factor . The cavity fields are now trivially obtainable and v can be chosen to
ensure continuity of a field component at an isolated point of the aperture. The
second approximation is for an electrically small aperture where the distribution
is dominated by edge effects and can be found by considering the problem of é
small aperture in a plane screen. Here again the distribution can be scaled in
amplitude, which factor can be chosen as before to incorporate some minimal
interaction between the cavity and its aperture. The latter approximation is
identical to the one proposed by Enander (1971). Of these two approaches only

the first is implemented in this Note and even then the calculation of the Scaling



factor in the manner that we have described has not been carried out. Values of
Y have been determined by fitting the interior field distributions to the exact
data computed using the Chang-Senior program, and these are tabulated.
Reasonably good fits are obtained,

An approach which is even simpler is to ignore the cavity entirely and
to regard the aperture as being in an infinite screen. Using now the aperture
distribution appropriate to large or small apertures, the transmitted fields can
be trivially computed. The results of these calculations are also compared
with the exact data. Not surprisingly the agreement is much poorer than for

the earlier approximation.



2. Mathematical Considerations

An infinitely thin, perfectly conducting spherical shell having a circular
aperture is illuminated by a plane electromagnetic wave at symmetrical inci-
dence. In terms of the spherical polar coordinates (r, 6, §) with origin at the
center, the equation of the shell is r=a, 00< 6 <w, where 90 is the half

angle of the aperture (see Fig. 1). The incident field is assumed linearly
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Fig. 1: Spherical shell geometry.
polarised with its electric vector in the x direction and propagates in the
negative z direction; we can therefore write
E=%e,  H=gv” | (1)
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where k is the free space propagation constant, Y = 1/Z is the intrinsic
admittance of free space, and a time factor e Jut has been suppressed. The

task is to find the interior fields as functions of 60, ka and position.

2.1 Exact Solution

A natural approach is to introduce the spherical vector wave functions

M and N defined by Stratton (1941). As is well known,
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where the superscript 1 indicates that the radial dependence is provided by

://n(kr) = krjn(kr)

where jn(kr) is the spherical Bessel function of order n. The interior field
in the region I, O_ <p La, can be expanded in a similar manner, but with unknown

amplitude coefficients:
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whereas in the exterior region I, a <p < o0, we have
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with the scattered field gs R y_s having the form
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From the requirement that this satisfy the radiation condition, M ™" and N

differ from M(l) and N( ) in having wn(lcr) replaced by

(5)
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where hx(lz)(kr) is the spherical Hankel function of the second kind of order n.
The unknown coefficients An, Bn, Cn and Dn are to be determined from the
boundary conditions that the fields be continuous through the aperture and the
tangential components of the electric field vanish on the perfectly conducting
shell. Since the shell is thin, there is also the possibility that the edge condition
at 9= 90 must be explicitly imposed.

From the continuity of E_ and E ¢ through the aperture and the fact that

6
these components are zero on both sides of the shell, it follows that for all 6,
0<6<m,

I I I IO -
E9= Ee R E¢=E¢ on r=a,

Application of the orthogonality relations (Bailin and Silver, 1956) for the
Legendre functions to the field expansions (2), (3) and (5) then gives
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where the prime denotes the derivative with respect to the entire argument.

To complete the specification of the coefficients, it is sufficient to impose
the requirements that E ;I and E;I vanish on the shell and that H 0 and H¢ are.
continuous through the aperture. If, following Chang and Senior (1969)," these
conditions are imposed directly, two pairs of infinite series relations involving
the Cn and Dn are obtained, the first holding for 60< 6 <z and the second for
0<6< 90 . These equations can be solved by applying weighting factors to each
pair and using the method of least square error. Having found the coefficients,
Chang and Senior then computed the far bistatic (scattered) field as well as the
tangential components of the electric and magnetic field on the outer surface
r=a+0 of the body.

Unfortunately, the agreement with experimental data was not good. This
was attributable to the poor convergence of the series expressions and the
marginal accuracy of the numerical scheme as a whole. To improve the
accuracy, the formulation was modified to take explicit account of the known
field behavior close to the edge of the aperture. Functions representing the
edge behavior were expanded in spherical vector wave functions, and this
enabled the least squares method to be cast in terms of modified coefficients
c and dn . Some of the convergence difficulties were now removed and the
accuracy of the results obtained was significantly improved. Apart from a few
minor changes necessary to reflect the present interest in the interior, rather
than the scattered field, the computer program which Chang and Senior developed
based on this modified formulation is the one that has been used to generate the
'exact' data included in this Note.

As Chang and Senior noted, the least squares method is only one of
several possible approaches to a numerical solution of the problem. One
alternative is to construct integral equations for the tangential components of

the electric field in the aperture and seek a solution by the moment method.



Although this procedure was originally discarded because of the additional inte-
grations involved, it is of interest to examine the form that these equations take.

Let us assume that in the aperture, 0<6 < 60 .

E,= £(6) cos @ , E¢=- g(0) sinp . (7

Since E ; = E ; = 0 for 9§< 6 < m, application of the orthogonality relations for

the Legendre functions to the series expressions for these components gives
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through the aperture. This is a relatively straightforward task, and using the

and it only remains to impose the requirement that H_ and H¢ are continuous

egs. (6) and the Wronskian relation
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valid for 0 <6 < 90, where
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are proportional to the tangential components of H 0 and H ¢ respectively on a
complete perfeqtly conducting sphere illuminated by the plane wave (1). Substitu-
tion of (8) into ( 9) now leads to two coupled integral equations for the unknown
aperture fields f and g, viz
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In principle at least, the egs. (11) could be solved by the moment method.
Having found f and g, the An and Bn could then be computed from the eqgs. (8)
and the interior (transmitted) and exterior (scattered) fields determined. The
process would involve an integration followed by the summation of an infinité
series for either field, but to our knowledge this procedure has not yet been used.
Based on our experience with the least squares method, it would appear desirable
to build the explicit edge behavior into the functions f and g in order that the
accuracy of the resulting An and Bn’ particularly for large n, is sufficient for

evaluating the infinite series expressions for the fields.

2.2 Approximate Solutions

The main source of difficulty in the present problem is the coupling through
the aperture between the exterior and the cavity, and were it possible to separate
these two parts, the analysis could be greatly simplified. To carry out the sepa~-
ration is, of course, an approximation, but this would permit a variety of less
complicated 'solutions' to be developed. Though their validity is limited, such
approximate methods of solution are virtually our only hope for predicting the
field penetration into cavities of complex shape. It is therefore of interest to
use the exact data obtained for the present geometry to assess the accuracy of
these approximate solutions.

The first two methods to be considered are based on approximations to
the aperture field. If the aperture is electrically large (ka sin 90>> 1) and the
influence of the cavity can be ignored, the Kirchoff approximation in which f(6)
and g(6) are given the values appropriate to the incident field would be a natural
one to employ. In practice, the cavity will certainly affect the aperture field,

particularly at frequencies close to the resonant frequencies of the cavity, but

11



if it is assumed that the main effect is to change the amplitude of this field
whilst leaving its form unaltered, we are led to the following approximation:

f(6) = v cos ejka cos 8

(12)

2(6)= —y ejka cos 6

where v is a factor to be determined. Substitution into the eqs. (8) enables
the mode coefficients An and Bn to be found, and the interior field can then
be computed from the series expressions (3).

Such a solution is, of course, approximate since the formulae (12) for
f and g violate the integral equations (11). The resulting magnetic field com-
ponents H 0 and H¢ are not then continuous through the aperture, but by choosing
Y appropriately, we can force continuity at one point at least. If the point
selected is thevmidpoint, 0 =0, of the aperture, both H 0 and H[b can be made
continuous there. However, the poor convergence of the series expressions
for the kernels Ki (a,0), i=1,..., 4 (or, equivalently, of the series on the left
hand sides of the eqs. (9)) makes it desirable to choose 6§ as large as possible,
i.e., 0= 60 » notwithstanding the actual (but excluded) singularity of the aperture
fields at the edge. We then have the choice of matching H g °F H¢’ but can no
longer match both using a single value of v. Although such a procedure for
finding v has not been implemented, the cavity fields predicted by the approxi-
mation (12) have been computed and compared with the exact results. Selected
data are presented in Chapter 3 and the values of v which produce the 'best'
fit to the exact results are given there.

Whereas the approximation (12) has most merit if ka sin 90 >>1 (implying
ka >>1, a fortiori), a similar approach is possible for electrically small aper-
tures. Edge effects are now dominant and provide a basis for approximating
the functions f and g. If we again assume that the role played by the cavity
is primarily to scale in amplitude the fields which would otherwise exist if the

cavity were not there, we are led to the approximation

12
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f(0)= v { 2(cos 8 ~cos 60)

1/ -1/
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where v is a scaling factor which can be chosen in the same manner as before.

(13)

The approximation (13) has been used by Enander (1971), but no data were
presented. The approach has obvious similarities to Bethe's theory of small
holes and, apart from the factor v, the aperture distribution (13) is just that
which is appropriate to a small circular aperture in a plane screen. As regards
the interior fields, Bethe (1944) simulates the effect of the aperture by electric
and magnetic dipoles placed on the inside of the shell, but since the aperture is
now lumped at the single point 6 = 0, it is no longer obviogs how a factor v could
be determined if one were included in the dipole strengths.

With each of the above approximations, the aperture is part of the cavity
shell, but the entire influence of the cavity on the aperture field is embodied in
the factor v. This is certainly only a minimal inclusion of the true effect that
the cavity will have. In practice, the resonant properties of the cavity may affect
the aperture field in form, as well as amplitude and phase, and though the factor
Y can be chosen to provide a reasonable simulation of the interior fields even
close to the resonant frequencies (see Chapter 3), such a choice requires a
knowledge of the exact solution. If v is determined by matching the tangential
magnetic fields at a designated point, it is by no means certain that the resulting
cavity fields will reproduce the true resonance properties, and it seems probable
that the data will have most accuracy at frequencies well away from resonance
for cavities that are electrically large (ka >> 1),

We can reduce still further the consideration of the cavity by ignoring it
entirely and we are then left with the problem of a spherical cap aperture. By

assuming this to be part of an infinite screen, trivial approximations to the
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‘transmitted field can be developed that are analogous to those examined above
and are appropriate to apertures for which kasin 60 >>1 or kasin 60 <1,
The results are meaningful only for large cavities (ka >> 1) at points which
would lie in their interior.

The geometry for the electrically large aperture is illustrated in Fig. 2.
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Fig. 2: Geometry for the large aperture approximation C.

At points to the right of the aperture, the fields can be obtained from the electric

and magnetic Hertz vectors

e iZ
T@=-5 FA.E §as (14)
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where @ is the free space Green's function, 4) = R’ and the integration is

carried out over the right hand side of the screen and aperture. If the Kirchoff

approximation is now made, i.e., the screen is assumed "black’ (so that ﬁ,,g =
a AE =0 there) and the aperture field is taken to be the undistorted incident

field, the egs. (14) reduce to

(15)

where A is the aperture. These are explicit integrals in which the § integration
can be carried out immediately and from which an expression for the transmitted
(interior) field then follows. If, for simplicity, attention is confined to the elec~

tric field at points on the symmetry axis of the aperture, it is found that

0

0
2 : .
E (z)= a ijcosG+(a-zcosO)(jk+L) e]k(acose-R) Sn6ds (16)
X 2 R R2
0

E(z)=E (z)=0
y z

where V 1/
2 2 2
R={a +2z ~2azcosé@ .

It is then obvious that Hx( z) = Hz(z) = 0 with Hy( z) = -YEx( z). These formulae

are meaningful only if |z|<a and the results of computations based on eq. (16)
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are compared with the exact data in Chapter 3.

The analysis for an electrically small aperture is even more straightforward.
By taking the screen S to be a perfectly conducting (planar) sheet whose circular
aperture is illuminated by the plane wave (1) at normal incidence, the field in the
region to the right can be attributed to a magnetic dipole of moment

16
3

kaa

m= =Y (asin 60)39,J y

(Bethe, 1944) located at the center of the aperture. The resulting electric field is

jk(a-R')

3 e R m

4
E=-3- (kasing ) ey
where R'=(R', 6', §) is the position vector of the point r =(r, 6, #) of observation
relative to an origin at the dipole, and hence

: “R!
3 eJk(a R')

-——k—I—{;——(Qcos 6'+ 2 sin 6" cos f) (17)

1/2
R'= {a2+ r2 - 2ar cos 9}

sin gt = i% sing . .

4 .
E= 3, (ka smGo)

with

It is evident that the approximations (16) and (17) afe much cruder than the
ones considered earlier and since they ignore completely the presence of the
cavity, there is no possibility of observing resonance effects. At best their
utility is limited to points within, and away from the walls of, electrically large

cavities.
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3. Computed Data

The computer program developed by Chang and Senior (1969) was modified
to permit the calculation of the interior (cavity) fields and to make it more
efficient for our purposes, and was then run for a variety of parameter combina-
tions. Nineteen frequencies were considered, corresponding to ka = 0.5 (0. 25) 5.0,
for each of two aperture half-angles: 60= 10° (aperture radius = 0.1742a) and
90= 30° (radius = 0.5a). The output consisted of the aperture functions f and g
(see eqs. (7)) as functions of 6 in increments of lo, and the interior fields at
selected points within the cavity. These points were chosen to yield the maximum
amount of information for a reasonable expenditure of computer time, and com-
prised nine equally spaced (a/4 apart) points along the z axis from the aperture
to the rear of the cavity and a similar set of points in a transverse direction
along the line 6=90°, § = 90°. Since the fields on the latter line were found to
display the same types of variation as those on the main diameter (i.e., the z
axis), the data that are presented are for the main diameter only.

The nature of the aperture field is illustrated in Figs. 3 and 4 where
'f(e)l and ,g(f))' are plotted as functions of 6 for 90= 10° and 30° with
ka =2.5. As required, f is infinite at the aperture edges, and the average
levels of both If I and lg] are greater for the larger 90. Such behavior is typical
of all frequencies including resonant ones, and the frequency for which ka =2.5
is just short of the lowest resonance, ka =2.75, of a spherical cavity, corres-
ponding to the first zero of d/'l(ka). This is a magnetic mode resonance, is
the next higher one (at ka = 3.87, corresponding to the first zero of t//'z( ka)), but
the third is an electric mode resonance occuring at ka = 4.49 and corresponding
to the first zero of zlzl(ka).

Curves showing the variation of the electric and magnetic field amplitudes
along the main diameter of the cavity are given in Figs. 5 through 24. Of the 19

frequencies for which data were obtained, only 5 have been selected for presenta-
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tion; ka=1,0, 2.5, 2.75, 3.0 and 4.25. The data for ka = 1.0 are typical of
low (below resonance) frequencies, and the results for ka =4, 25 illustrate the
high frequency behavior of the fields. The intermediate values were selected
to span the resonance at ka =2,75. Data for both apertures are included, and
though the results are given in the form of curves, it should be remembered
that the computed values from which these were constructed were relatively
sparse (9 values for each curve).

These same figures also show the field behaviors predicted using one or
more of the approximate methods discussed in the previous Chapter. The first
was based on the approximation (12) to the aperture distribution and a curve
(l1abelled A) showing the resulting field behavior has been included in all of the
Figs. 5 through 24, The scaling factors y were chosen visually to give a 'best fit'
to the exact curves for the electric and magnetic fields. The factors that were

used are listed on the Figures and again in Tables 1 and 2, which also contain

Table 1 (6 = 30%)

ka Y E at 6=0
(exact)
1.0 0.7 0.63
2.5 2.5 2.5
2,75 0.1 0.293
3.0 1.8 1.8
3.5 3.0 2.55
4.25 2.6 2.6
5.0 0.26 0.63

the factors for some data that have not been included in this Note. The last
column of the T'ables shows the exact amplitude of the electric field at the center,

6 =0, of the aperture.
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Table 2 (6 = 10°)

ka v E atf=0
(exact)

1.0 0.2 0.1

2.5 0.6 0. 37

2.75 0.5 0.197

3.0 0.6 0.675

4,25 0.7 0.97

The last two approximations considered in Chapter 2 are cruder in that the
presence of the cavity is neglected entirely. Nevertheless, the interior fields
which they predict have been computed for some of the parameter combinations
and the resulting curves included for purposes of comparison. The curves
based on eq. (16) are labelled C and have been plotted in Figs. 13, 14, 23 and
24 for which the aperture is electrically large, whilst those based on (17) are
labelled D and plotted in the small aperture cases (Figs. 5 through 8 and 15
through 18). Not surprisingly, these amplitudes are smooth, monotonically
decreasing functions of a - z, and though they contain none of the structure
which the exact fields display, they do predict the average values of the ampli-
tudes to some degree.

Some idea of how the field intensities within the cavity vary as a function
of frequency can be obtained from Fig. 25 in which the exact normalised energy
density IE, 2+ ‘ZOH,z at the center of the cavity is plotted as a function of ka
for each of the two apertures. The resonances at ka =2.75 and 4.49 are clearly
seen, but are more pronounced for the smaller aperture: indeed, it would
appear that the larger aperture has significantly de-tuned the cavity, and
though Fig. 25 might suggest that the resonant values for 90= 10° are no higher
than the ones for 90= 300, the sparseness of the data points does not enable

us to determine the former precisely. At non-resonant frequencies, the
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density for 60= 30° exceeds that for 90= 10° by as much as 60 dB.

Our final comment is concerned with the computational time involved in
the generation of the data. The Chang~Senior program is, of course, the most
accurate of the ones discussed and is, in theory at least, capable of yielding
data of any desired accuracy. But practice is another thing, and the necessity
for truncating series which are rather slowly convergent is an obvious source
of error. Even with these compromises, the program is still extremely expen~
sive to run and for any given accuracy, the cost increases with ka. Thus, for
ka=4.0and 6 = 30°, the C.P.U. time needed to generate the data is
between 50 and 60 seconds and the amount of core required is about 500, 000
8-bit bytes. In contrast, the approximate methods discussed are much more
efficient. To postulate the aperture distribution in the form (12) decreases the
cost by a factor 20 and though this factor would be slightly reduced were we to
implement a direct calculation of v, it would still seem desirable to pursue
this method further. If, finally, we neglect the cavity entirely and use either
of the approximations C and D, the cost is less than one percent of that for the
Chang-Senior program. However, the utility of the results obtained is not with~

out question.
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4, Discussion

A 'rigorous' analysis such as that provided by Chang and Senior (1969) is
feasible only for the most idealised aperture~cavity configurations, and to deter-
mine the interior fields in more practical situations, it is essential to rely on
approximate methods. In addition to the computation of the exact fields inside
the spherical cavity, an objective of the present study was to examine some of
the approximate methods that are available, and in this context the exact data
becomes even more important in providing a basis with which to assess the
accuracy of these approximations. Admittedly, a sphere with a circular hole
is a very special geometry and there is no guarantee that a method which is
accurate here will prove equally accurate in more general situations, but in
the absence of an exact solution for any other geometry, these data are all that
we have to go on.

The electromagnetic field behavior inside the cavity can be judged from
the exact data in Figs. 5 through 24 showing the variation of the electric and
magnetic field amplitudes along the main diameter. In general, the form of
the curves is mainly determined by ka, with the aperture half angle 90 affecting
the amplitude. When ka is small, the fields show an almost exponential decrease
away from the aperture. For 90= 10°, this same behavior obtains even for ka
as large as 2.5, but with the larger aperture the influence of the first resonance
is already detectable because of the detuning (see Fig. 25) which the aperture
produces. This first resonance is at ka = 2,75 and the field distributions are now
characteristic of the fundamental mode in a spherical cavity. When ka is
increased to 3.0, we again see a rather rapid decrease in the field amplitudes
immediately adjacent to the aperture, but over the remaining three~quarters of the
main diameter, the behavior is 6scillatory. As ka is increased still further (to
4,25), the patterns become more involved, and a simple description is no longer

possible. )



This complexity, however, does not seem to characterise the aperture
fields. Plots of 'f l and ,g' for ka = 2.5 are given in Figs. 3 and 4 and apart
from a scaling factor, these are typical of all the values of ka for which data
has been obtained. In other words, for an aperture of fixed electrical size,
the main influence that ka has is to produce a scaling in amplitude. Rather
surprisingly, this seems true even at the resonant frequencies of the cavity.
Within a distance of about 0. 05\ from the edges, the aperture fields are domi-
nated by edge effects, but over the remainder of the aperture, the amplitudes are
relatively constant apart from a small superimposed high frequency oscillation.
Since oscillatory fields of this type cannot radiate and are primarily associated
with energy stored in the vicinity of the aperture, it is reasonable to expect that
the main source of the cavity fields is the combination of the 'constant' and edge-~
dominated distributions. In contrast, the high frequency structure of the aperture
field is important only at small distances, and has little effect on the fields
throughout the rest of the cavity.

In view of the above findings it is not surprising that the first of the approxi-
mate methods discussed in Chapter 3 is quite effective in predicting the field
distributions within the cavity. The curves based on the approximation (12) with the
scaling factor v chosen to produce a 'best fit' to the exact data are included in all
of Figs. 5 through 24. In general the agreement is quite good, even for the case
ka=1.0 and § = 10° (Figs. 15 and 16) where the aperture is only 0, 055X across;
where there are major discrepancies, these tend to be confined to the portions
of the cavity closest to the aperture. According to the approximation (12), the
amplitude of the electric field at the center, 6 =0, of the aperture is v, and in
Tables 1 and 2 the values of v used in Figs. 5 through 24 are compared with
the exact values of IEI at this point. For the larger aperture the agreement is
remarkably good, with the ohly significant discrepancies occuring at ka = 2,75

(the lowest resonance) and ka = 5,0 (which is close to the magnetic mode resonance,
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ka = 4,97, corresponding to the first zero of wé(ka)). The agreement is much

poorer for 90= 100, and this may be due to the proportionately larger part of

the aperture over which the edge behavior dominates. If this is so, the agree-

ment could be improved by combining the edge distribution (13) over the extreme

portion of the aperture with the incident field form (12) over the remainder.
Table 3 lists the exact electric field amplitude at the center of the 30°

Table 3

ka E ;:3 ka E ;:3
0.5 0.33 2.75 0.29
0.75 0.38 3.0 1.81
1.00 0.63 3.25 2.45
1.25 0.85 3.5 2.55
1.5 0.99 3.75 1.03
1.75 1.24 4.0 1.52
2.00 1.18 4.25 2.6
2.25 1.7 4.5 0.189
2.5 2.5 4.75 2.21

5.0 0.634

half-angle aperture for all of the values of ka for which data has been computed.
The amplitude increases rather uniformly with increasing ka, reaching a maxi-
mum of around 2.5 at ka # 2.5 and then drops to a very low level at the resonant
frequency, ka =2.75. Thereafter, the amplitude again increases to 2.5 before
dropping at the next resonance, ka = 3.87, and so on. To judge from these data,
the peak amplitudes do not exceed about 2.5. At non-resonant frequencies, the
fields within the cavity initially decrease away from the aperture, and though

they may later increase, the maximum energy density achieved is less than that
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at the center of the aperture. At a resonant frequency, however, the reverse is
true. The fields now increase away from the aperture and the maximum energy
density occurs in the interior of the cavity. In combination with Table 3, these
facts suggest that the field levels within the cavity can be bounded by using the
approximation (12) in conjunction with the value y=2.5. This will significantly
overestimate the fields at any resonant frequency of the cavity, and here a some~-
what closer upper bound could be had by choosing (say) v = 1.0.

With the last two approximations considered in Chapter 3, the presence
of the cavity was ignored entirely. The corresponding formulae for the
'interior' fields are given in eqs. (16) and (17), and since, in both cases, the
fields decrease with increasing distance from the aperture, it is at once
obvious that the predictions will be inadequate near any resonant frequency.

The curves based on the small aperture approximation (17) are labelled D

and have been included in Figs 5 through 8 and 15 through 18 for ka = 1.0 and

2.5. Not surprisingly, the agreement with the exact curves gets poorer as

the electrical size of the aperture increases, but even for ka = 1.0 and eoa 10°
the approximation is markedly inferior to that provided by the high frequency
postulate (12)! Throughout most of the cavity the approximation underestimates
the fields that are present and the discrepancy increases with increasing aperture
size. Though it still has some merit for ka = 2.5 and 90= 100, it fails completely
at this frequency for the larger aperture due to its inability to display any reso-
nance phenomena. The curves based on the large aperture approximation (16)
have been computed only for ka = 4. 25 and are labelled C in Figs. 13, 14, 23

and 24, Here also the agreement with the exact data is rather poor.

One purpose in pursuing these simpler approximations C and D was to
use them to provide an estimate of the scaling factor v required in approximation
A by (say) matching the fields predicted by A and C at the center of the cavity.
The data we have obtained give no grounds for believing that this would be effective,
and in spite of the greater time required for the computation of A, the superior
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accuracy which this approximation affords appears more than adequate recompense.
To realise this accuracy, however, it is necessary to compute the scaling factor

v without recourse to a knowledge of the exact fields. A method was suggested

in Chapter 2 and it would seem desirable to implement this in any future study.

It would also be appropriate to consider a combination of the aperture fields (12)
and (13) with (say) (13) being used over the extreme portions (of width ~ 0.05X)

of the aperture and (12) over the remainder. This would now be effective for
apertures either large or small and, with v again determined by some form of
matching across the aperture, should permit the calculation of the interior

fields to a reasonable degree of accuracy.
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