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CURRENTS INDUCED ON WIRE MODEL OF A PARKED AIRCRAFT

It is of interest to determine the currents induced on
a parked aircraft illuminated by an electromagnetic wave,
at least to a reasonably good approximation. To this end,
the aircraft is represented by a thin-wire model, such as that
depicted in Figure la, and a set of coupled, Hallén—type in-
tegral equations is formulated. From these equations, one
may determine the total axial currents induced on the wires.
In Figure la, one identifies those wire segments which
represent various members of an aircraft: wings, fuselage,
nose section, vertical stabilizer, and horizontal stabilizer.
The parking apron is represented by a perfectly conducting
ground plane of infinite extent. In addition, the model
provides for the possibility that the aircraft may be ground-
ed by a strap (wire) connected between the ground plane and
the common junction of the wings, nose section, and fuselage.
Hallén~type integral equations for induced current on
a general crossed-wire structure in free space have been
formulated by Taylor [1] whose work is based upon an earlier,
important contribution to thin-wire theory by Mei [2].
Taylor utiiizes in his analysis an auxiliary scalar function
introduced by Mei, and more recently it has been demon-
strated [3] that integral equation formulation for thin-wire
structures can be based entirely upon the familiar magnetic

vector potential and electric scalar potential whenever the




we

wires are not curved. Taylor et.al [4] and Crow and
Shumpert [6,7] have studied the problem of induced currents
on aircraft with thin-wire structure models extensively.
However, they have not consideredwthe present case involv-
ing the presence of a ground plane or the added complication
due to the grounding strap.

The aircraft model of Figure la is illustrated again
in Figure 1b where more attention is given to the details of
the coordinate system and where only the wire axes are
illustrated. The radii and lengths of the members of the

airfcraft model are tabulated below.

Element Radius Length (axial)
fuselage . af £
£ -
nose a't (= af=an‘) n
. W
wings a w
vertical stabilizer a® h
horizontal stabilizer at t
grounding strap a g

The circularly cylindrical wires of the model are perfecfly
conducting tubes having walls of vanishing thickness. To
facilitate the present analysis, each element of the model
is either paraliel or péfpendicular to each other element

as well as to the infinite ground plane.



Formulation

From the outset, one assumes that currents reside on
the surfaces of the perfectly conducting wire elements
cylindrical tubes) and that the current density may be treat-
ed as being essentially uniform around the periphery of an
element, which, of course, is less accurate near to than
remote from the junctions.

In this note, the integral equation formulation is
based upon the familiar magnetic vector potential A and
electric scalar potential ¢. As wusual, to develop a

1
Hallen-type integral equation, one independently establishes

two expressions for a given component of the vector potential

in the direction of a wire element and evaluated on the sur-
face of this wire: (1) one expression is obtained from the
solution of an inhomogenous differential equation which the
component of vector potential satisfies and (2) the other
is obtained directly from the familiar potential integral
for A. These two expressions must be equal and, hence, are
equated. Next, one imposes the condition that the
tangential component of the electric field on the surface of
the element be zero and evaluates arbitrary constants of
integration which arise in the solution of the inhomogenous
differential equation for the component of vector potential

along the element. The constants of integration must
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assume values which render the resulting integral equations
in compliance with boundary conditions. As an alternative
to explicit evaluation of constants, one finds it more con-
venient in the present analysis to add to the set of in-
tegral equations auxiliary equations which constrain the
constants, and, thus, to arrive at a consistent system of
equations which, in principle, can be solved.

The physical principles which, in general, form the
basis for evaluating the constants or for deriving additional

equations which constrain the constants are listed below.

I. The magnetic vector potential component
in any direction must be continuous; that

is, for example, A Ay’ and AZ each must

X’
be continuous everywhere along a wire sur-

face, and, in particular, at wire junctions.

II. The scalar potential must be continuocus
along any wire surface. The constants
are constrained to enforce continuity
of scalar potential, in particular, at

wire junctions.



II11.

Iv.

At a junction of wires, the sum of
the currents must be zero; this is
Kirchhoff's current law, which only
says that charges may not accumulate

at a junction.

=‘_,

The conduction current demnsity must

be zero at free wire ends.

Often one can reduce the complexity
of a set of equations by recognizing
symmetry properties of the wire struc-

ture under study; for example, knowing

that the scalar potential is zero at a
particular point on a wire structure,
one usually is able to evaluate a con-

stant of integration directly and,

- thereby, can lessen the labor of ob-

taining solutiomns.

Condition I above follows directly from the discussion in

[8], and II and III are stated in [9]); IV simply requires .

that the current be zero at the free ends of the wire seg-

ments.

Y

Expressions for Components of E in Terms of A

To begin the analysis, one determines in three dimensions 0
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how the electric field E is related to the vector potential
A, both of which are said to be 'produced" by the currents
in the region. In particular, relationships are derived
which delineate how a component of E, evaluated along a
line parallel to the direction of this component, depends
upon A and, subsequently, how this component of E varies

as a function of the currents. In infinite free-space, the
electric field E(r) at a point T can be written in terms of

the magnetic vector potential A(Tr) at T as
E(T) = - juk(r) - j-xgrad (div K(?)J (1)
k

where, of course, w is the angular frequency and k is

2n/wavelength. One may obtain the z-component of the
electric field directly:

- (2)
E, (T) =—j;‘(—’7[k2Az (r) + .g?[div A(r)ﬂ .

At this point, one finds it convenient to define a
transverse (to the z direction) vector and a divergence
operator transverse to the z direction in a Cartesian

system:

R, (B) = K() - A, (0 4, = A7) 0, + Ay(¥) uy (3a)



and

1

. S s a,.._
qlvtz {Atz(r)} div A(r) - EE‘Az(r)

. %EAX(?)»f g—};Ay(?} . (3b)

The notation t, implies transverse®* to the z-coordinate.
Vectors transverse to the other two coordinates can be
defined in an analagous way as can divergence operators

transverse to these coordinates:

o+ =y _ 3 - 3 =
d;vtxAtX(r) = g;Ay(T) * 554, (1) (3¢)
and
— -y _ 9 —_ 3 —
letyAty(r) = —a?AX(r) + _B?AZ (r) ) (Sd)

where, of course, tg and ty denote transverse to x and to
y, respectively.
Making use of the definitions of (3) as well as the

expression of (2), one may write the differential equation,

(4)

.

32 2 __-kz _ 8 . e
A, ¥ k A, = 3578, 3z [dlthAtZ

*The letter t also is used to denote horizontal stabilizer
(tail) but this dual usage should not cause confusion.
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The above procedure can be extended to obtain equations
involving the other components of the electric field at a
general point r in space; the resulting equations are

collected below:

82 AL + K2A_ = k2 g L2 [4iv. X (52)

X X X U X X tX tX ?

52 k2 3 i ) :

— A_ + k?A_ = j=&— E_ - == |div_ A , 5b

3y y Yy Jw Yy 5% [ ty ty (5b)

52 2 _ k2 _ 8 .

-8_22_ AZ + k AZ J'(;“ EZ v [letZZ\_tZ . ] (SC)
J

Each equation, (5a) thfough (5¢) above, is inhomogeneous
and is the familiar harmonic differential equation for a
specified component of the magnetic vector potential. In
each case, the inhomogeneous term involves a component of
the electric field, which is a known quantity in subsequent
analysis, as well as a term including components of the
vector potential A. From solutions of Equations (5a) through
(5¢), one may obtain formal relationships among the unknown
components of the vector potential which lead to relation-
ships among the unknown components of current.

Next one considers Equation (5¢) which involves the
z-component of electric field Ez and seeks to obtain its

formal solution along any line in space parallel to the
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z axis or, of course, along the z axis itself.
1
= + i
Az(z) C, cos kz B, sin kz

z
+ L jki E_(g) - & |div, X sin k(z -g) dg
k R Z 5 tZ t, ?

£=1; 2

' - -
where C, and B, are arbitrary constants. The lower limit
24 of the above integral is any point within the region over

which z varies and ( divy Kt is evaluated along the

zZ, 'z

: g
above-mentioned line with the subscript ¢ indicating that

it is a function only of £. Equations (5a) and (5b) yield
expressions for AX and AY corresponding in form to (6).
Equation (6) and the two for AX and AY can be cast into a
more suitable form for later purposes, if the second term
in the integral of each is integrated by parts once. On
the next page are collected the desired equations for the
components of A.

The terms vx(x), vy(y), and vz(z) in Equations (7) are

defined

-

v (x) = Jlf-j E (£) sin k(x -£) d& (8a)
: g

-10-
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. )

1
Ax(x) = CX cos kx + BX

. 1 .
ky + + = |d A
. sin ky Vy(y) { iv,

® o

sin kx + vx(x) + %-[divt K£rJ sin k(x —xb)
X X xq

cos k(x -g) d& , along x-directed line; (7a)

sin k(y -yg)

k t
yoy Yo
cos k(y -£) dg,j - along y-directed line; (7b)
- L .. = L i
sin kz + vz(z) T dlthAtZ sin k(z zo)
%0
cos k(z -&) dg, along Z~directed line. (7¢)



Yy
v, () = jH E (£) sin k(y -§) d& (8b)
£=YO
‘ zZ
Vz(z) = j% J Ez(g) sin k(z -z) dg , (8¢c) ‘v
€=z,

and are readily determined since, for a given structure,
E Ey’ and E, are known on the x-directed, the y-directed,
and the z-directed wire elements, respectively.

In the expression for each solution, Equation (7), one

notices that care is taken to explicitly specify a line

along which a given equation is valid. The reason for this
stipulation will be evident later but it should be clear

at this point that, since each component of the vector
potential is, in general, a function of all three coordinates
(x, ¥, z), one may obtain solutions of the form of (7a)
through (7c) only along coordinate axes, or lines parallel

to coordinate axes in space. Otherwise, some mechanism to
include the variation in three dimensions must appear in

each equation. .

Scalar Potential from Vector Potential %/

An important step in the development of a set of

integral equations for a wire structure under study is the
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cvaluation of various arbitrary constants of integration,
c.g., the C's and the B's in Equations (7), which occur in
the solutions’to the differential equations (5). To evaluate
such constants, one must, of course, impose additional
physical conditions or constraints upon the system of equa-
tions. One physical condition which can be used to evaluate
the constants of integration is the fact that the scalar
potential ¢ must be continuous everywhere and, in parti-
cular, that it must be continuous at wire junctions
(Condition II).

To determine a relationship associated with the
scalar potential along a line parallel to the z-axis, one
first calculates °— A by differentiating (7c) and,

9z Z
after a few simple steps, arrives at

7

1
A ) )
- kCZ sin kz + kBZ cos kz + 57 vz(z)

]
a_Z AZ (Z)

I

+
———
[a®
=N
<

ot
o

+ k div, A sin k(z -g) dg . (9)
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Notice that a minor rearrangement of terms in (9) and an
appeal to (3b), together with the Lorentz condition, enable
one to recognize within (9) an expression for - jgi e(z),
where ¢(z) is the total scalar potential evaluated along

the z-directed line. Similar manipulation of (7a) and (7b)
results in other corresponding equations for scalar potential,
all of which are given on the following page (Equations (10)).
In Equations(10), 2(x), ¢(y), and @(z) each is the total
scalar potential due to all induced charges on the entire
wire‘model. However, one observes that each is written in
terms of the arbitrary constants peculiar to the line along
which it is evaluated. Subsequently, the x-, y-, and
z-directed lines alluded to here are specified to reside on

the surfaces of wire elements in the structure.

Particularization of Equations to Aircraft Model

Application of (7b) to the right-hand wing ye(-w,0)
and to the ieft-hand wing ye(0,w) results in the two equations
below for the vector potential along each of these members

of the aircraft model:

Ag_(y) = Cg—cos ky + ansin ky + Vg-(y)
(11a)
Y o wW-
-J [divt At cos k(y -g) dg ,
Yy Y
g

£=0
YE(-W:O) ’
_14_




1i

x sin kx + kBi

i

sin ky + kB!
y Y y

...S'[_

H

sin kz + kB!
yA ya

o "

d . —
cos kx + EE'VX(X) + (dlthAtX] cos k(x -XO)

X0

sin k(x -g¢) de, along x-directed line;

] . -+ ‘

cos ky + 37 vy(y) + let At - cos k(y - yO)

y 'y

Y0
sin k(y -g) de, along y-directed line;
{
. 3 )
cos kz + 57V, )t dlthK£Z cos k{z ~Zq)
%0

sin k(z -¢) dg, along z-directed line,



and

AW+ 7=7éW+cos ky + BW+ in ky + Vw+
v (v) v 4 y Simky y (yv)

y w+
—[ divt Kt cos k(y-g) dg, ye(0,w). (11b)
y 'y

£=0 £
The superscripts, w and w+, in Equations (11) denote* that
the quantity so labeled is evaluated on the surface of the
right-hand and left-hand wing, respectively. The lower
limits of integration y%_ and yg+ are selected to be zero to
lessen subsequent equation complexity and the arbitrary con-
stants By- and B¥+ are defined (with yg- = yg+ = 0 in

Equation (7b)):

W
- W= 1
BY" = B + = {div, K (12a)
y y k t 't
Yy Yig
and .
w+ 1WE 1 . —
B = B + = |div, A . (12b)
y y k tt
Y Y‘O

From (8b) one sees that V?i(yj = 0 and %§~VYWi(y) = 0 at

= 0. Thus, in view of Condition I, one concludes that

¥y
Cg" = C¥+ from evaluation of (1la) and (11b) at the wing
junction; also, from Condition II and evaluation of @3-(y)

*Similgr notation is used to represent quantities
associated with other elements of the model.
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and ®¥+(y) (see Equation (10b)) at this junction, it is

W+
Y .
reduce to a single equation which suffices for the y-com-

seen that Bg— = B Hence, Equations (1la) and (11b)
ponent of vector potential along the wings in the region
ye(-w,w). A similar procedure reveals that a single equation
suffices for the y-component offvéctor potential along the
two elements of the horizontal stabilizer ye(-t,t) and
another single equation along the nose-fuselage element

in the region xe(-n,f). In summary, then, there are five
such equations for components of A.

Associated with Ainalong the nose-fuselage section are

constants Cﬁn and Bin (Equation (7a)), where
En fn '
it -3’ v Llgiy x : (13)
X X k t. 't
X X|g

Also, associated with Ag along the grounding strap are the

constants C§ and Bf with

g _ 1 . x
B, = B, k div, Ag . (14)

With these defined constants in equations for @f(z), @?(y),
and @in(x), written directly from Equations (10), the re-
quirement (Condition II) that scalar pofential be con-

tinuous at the wing-fuselage-nose-grounding-strap inter-

-17-



section implies QE(O) = Qy(o) = @in(o), which, in turn,

means that Bi = B¥ = Bin . With these three equal con-
bstants replaced by a single symbol B, the vector potentials
4
along those wires intersecting at the front junction re-
duce to those expressions given in (15). In Equations (15), ”
the terms vin, vy, and V§ are given below for clarity:
fn_ *
n .k
v, (x) = j= { Ein(i) sin Kx -&) d&, xe(-n,f) (16a)
£=0
y
w _ .k w .
vy ) = J;I B (€) sin k(y-£) de, ye (-w,w) (16b)
£=0
z
.k .
vi(z) = 35J Bf (£) sink(z -g) d&, z¢(0,8) (16c)
£=0
fn W g
where Ex s Ey’ and EZ are evaluated along the surface of

nose-fuselage, wings, and grounding strap, respectively.

Now attention is focused upon the tail junction. As

before, one enforces continuity of scalar potential at the i’
junction and ‘requires that

f t

e (D) = e (0) = @, (0) (17 @

-18-
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® T O D O

X
Ain(x) = Cin cos kx + B sin kx + vin(x) - [ div, A, - cos k(x -g) dg,

£=0 £
Xe(-n,f) (15a)
‘ ‘ y W
Ag(y)v= Cg cos ky + B sin ky + vg(y) - divt Ki cos k (y -¢) dg,
xe (-w,w) (15b)

z
: _ g
Ag(z) = Cg cos kz + B sin kz + Vg(z) _ J | d1vt At cos k(z -g) dg,
= g
£=0

ze(0,g) (15c)



where, of course, the superscripts t and s denote hori-
zontal stabilizer (tail) and vertical stabilizer, respect-

ively. The requirement (17) necessitates that

4
N
-kCER sin k£ + KB cos kf + 2 v_ ()
X 3x X
£ fn £ s
£k div, X, sin k(f-£) dg = k BE = k B
X X y
£
£=0

where B; and Bi each is defined in a manner corresponding

to that of B¥ and of Bg. With Bt = BS

y ;= D, the auxiliary

equation above becomes

D = - CI™ sin kf + B cos kf + = 2 v_(£)

1
k 3x X

f fn
+ J div, A sin k(£f-g) dg
X X (18)
a2

In addition, one has two more equations like (15) but for
the tail region; these are given in (19).

At this point in the development, one sees that (15),
(18) and (19) comprise six equations which relate all the
unknown currents (through vector potential). To these are

added two Kirchhoff-law equations (Condition III) and six

-20-
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, Yy t
A;(y) = Q; cos ky + D sin ky + V;(y) - J divt K£ cos k(y-g)de,
£=0 R AS:
ye(-t,t)
Z S
A;(z) = Ci cos kz + D sin kz + vi(z) - J divt Kt cos k(z-g)dg,

ze (-h,0)

(19a)

(19b)



equations requiring current to be zero at free wire ends

(Condition IV):

i (0) + 1?'(0) - I¥+(O) - 1£(0) - 18(0) = 0, (202)

f s t- t+ _

IL(£) + I (0) + Iy (0) - Iy (0) = 0, (ZOb)'
and

12(—n) = 0, (21a)

v =

y ('W) - 0’ (Zlb)

1" (W) =

v (w) = 0, (21c)

t- -

Iy (-t) = 0, (21d)

I;+(t] = 0, (21e)

S =

IZ(-h) = 0 (21£)
The total number of equations is readily found to be four- ¥

teen, but, on the other hand, the unknowns total fifteen:

. fn w t s
eight unknown currents plus CX s Cy’ Cg, Cy’ Cz’B’ and D.
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The last needed equation is due to the observation that
the charges on the structure plus those on its image pro-
duce zero 'scalar potential everywhere on the ground plane.
In particular, ®§= 0 where the grounding strap joins the

ground plane; hence,

. 1
0= - Cg sin kg + B cos kg + T 32 Vf(g)
(22)

g g
+ [ divt A sin k(g-g)dg

Potential Integrals

Various components of the vector potential A are need-
ed in the previously derived equations. Before presenting
the potential intégrals for A, one finds it convenient to

define the following total axial currents (See Figure 1):

1™ (x) , xe(-n,0)
15005 = (23a)
X £
I™(x) , xe(0,f),
y 1" (y) , ye(-w,0)
Iy(y) = 4 - (23b)
LD ), ye(0,w),
. 17 (y)  , ye(-t,0) (23¢)
Io(y) = < ¢
y (), ye(o,t).
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In terms of the above-defined currents, the needed components

of K at any point in space are

' £
A (x,y,2z38) = o= L e[K(x,y,2583x7,0,0)

v

x'=-n

—K(x,y,z;a;x‘,O,Zgi]dx', (24a)

l“l:'

N
=

W
A (x,y,z;a) Iw(y')[ K(x,y,z3a;0,y',0)
y y 2 > 2 b H bl
y
-K(x,y,z3a230,y" ,Zg)] dy'

I;(y') [K(x,y,zsa;f,y' ,0)

+
ENEL
=3
A e
o

-K(x,y,z3a;,y",2g)] dy',  (24b)

and

A, (x,¥,2;52) 1z) [ XGx,y,2;a;0,0,2")

i
=17
=
N ey
oQ

+K(x,y,z;a;0,0,2g-z'i]dz'

12(2‘) [K(x,y,Z;a;f,O,Z')

+
B et
=3
BN S
[
- o

+K(x,y,z3a;£,0,2g-2")]dz", (24c)
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where the kernel X is defined

_j kR
K(x,y,z5a;x',y",2') = & (25)

with

R =[a% + x-x)% + (y-y)2 + (z-20)%] . (26)

Expressions (24) are substituted into Equations (15),
(18), (19) and (22); these, together with (20) and (21),
completely describe the current on the aircraft model of
Figure 1. One notes that the components of vector potential
evaluated on the surfaces of the wire elements, Equations
(15), (18), (19), and (22), can be replaced by the explicit

potential integrals of (24):

Ay = A_(x,0,0;a™™), (27a)
Aﬁ(y) = Ayco,y,o;aw), (27b)
AS(z) = A,(0,0,z;a8), (27¢)
At _ to

}’(y) - Ay(f,}’,O,a ), (27d)
AJ(z) = A_(£,0,2;a°); (27e)
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and

di Kfn:f"A(oo-fn)+3A(oo-f“)
Vtxtx WYS”’a 5z 1z (50052 ?
3
. W 3 w 3 W
dlvtyAty aliren AX(O,E,‘O;EL )+ E—AZ(O:E,OQa ),
£
t
- _ 9 ot 3 Lt
div, Aty = 55 A (E.5,027) + o= A (£,5,0,a7),
£
& ] P
i 3 . 3 B
letZAtz Y AX(O,O,E,ag)'*' 5y Ay[D,O,E,a )’
3
S
. = . 9 S 0 .95
dlvtzAtz g = ox A (E.0,5527) ¢ 5o AL(E,0,8507).

In the above, notation such as %E'U(xl’yl’zl) implies

g : =
X U(x,yl,zl) evaluated at some point X = Xq -

(28a)

(28b)

(28c)

(28d)

(28e)

With (27) and (28) substituted for appropriate terms in

Equations (15), (18), (19), and (22), one has a set of in-

tegral equations, which, when constrained by the conditions
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&

represented in (20) and (21), are the equations governing

the currents on the wire model of Figure 1. Notice that

there are eight unknown currents and seven constants of

integration, the five C's plus B and D, totaling fifteen

unknowns. Correspondingly, there are five integral equations,

(15) and (19), two auxiliary equations, (18) -and (22), and

eight equations constraining the currents, (20) and (21);

these total fifteen as one expects and represent a system

of equations which, in principle, should yield solutions.

The desired, final equations are presented in (29), where

the kernels are given by

it

Gpp (X5y,252)

G, (x,y,z;a)

]
It

G, (x,y,z5a)

KN

™

It

G (x,v,z;a
g( 4 )

and

Gy (x,y,z5a)

-lK(x,y,2z5a;x",0,0)
U v q -

E[K(X,Y,Z,a,(),)" ’O)
[K(x,y,z;a;£,y',0)

Tl (x,y,232;0,0,2")

[K(x,y,2;a5£,0,2")

-+

+

K(x,y,z;a;x',0,2g)], (30a)

K(x,y,z;a;0,y"',2g)], (30b)

K(x,y,z;a;£,y',2g)], (30c)

K(x,y,z;a;0,0,Zg-z')], (BOd)

K(x,y,z;a;£,0,2g-z"')]} (30e)

Equations (29), subject to the boundary conditions, Equations

(20) and (21), completely characterize the axial currents on

structure of Figure 1.

E

i

b

the components of which appear in
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Equations (29), is the impressed electric field which exists
in the region above the ground plane (z < g) in the pre-
sence of the ground plane but with the wire structure re-
moved. That is, Bl is the sum of the illuminating electric
field and that reflected from the ground plane in the .

absence of the wire structure.
Conclusions

Equations from which may be calculated axial currents
on the aircraft model of Figure 1 are given in this note.
They are based upon the usual thin-wire assumptions and must

be viewed in this light. The equations can be modified to

include the affects of end caps in a rather direct manner
[10 - 13] and, thus, their applicability can be extended
to thicker wires. Also, if desired, the analysis can be
readily generalized [3,7] to handle the case of swept-wing
aircraft models.

The double integrals which appear in Equations (29) on
the following pages can all be integrated once and, thereby,
the resulting set of integral equations can be greatly
simplified. However, due to desirable compactness in notation,

the single integral forms are not given here.
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