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SUMMARY

The behavior of a multiwire transmission line, or cable,
operating in the TEM, or nearly-TEM mode in response to an
external monochromatic electro-magnetic field, is evaluated
by solving the inhomogeneous, first-order differential equa-
tions of the line with the help of Laplace transforms.

Since, for‘a uniform line, the singularities of these
transforms consist only of poles, the inverse transforms are
readily evaluated by the method of residues. The poles of
the transforms are the square roots of the eigenvalues of the
characteristic matrix of the line, the multiplicity of any
pole being generally eqgual to the multiplicity of the corres-
ponding eigenvalue.

The Laplace-transform attack appears to afford some ad-
vantages in directness of solution, and, for at least one
important class of problems, in reduction in solution
complexity compared to conventional procedures.

End-excitation problems are treated as a special case in
which the "distributed" excitation consists of impulse
functions at the line terminals.

Multiple poles (i.e., multiplé eigenvalues with associated
degenerate modes) present no special problems; they are
handled in a matrix extension of the standard proceéedure for

such poles.



When a number of poles are nearly egual, computational

errors due to matrix ill-conditioning are avoided by expanding

transform integrands in Laurent series around an "average'
pole. This results in a solution in the form of an
infinite series, the rate of convergence increasing with de-
crease in dispersion of the eigenvalues.

The final solutions for voltage and current at any point
along the line each contain four integrals to be evaluated
by the residue method, making a total of eight altogether.
However, only one of these is basic. When the basic integral
for the voltage solution has been evaluated, the remaining
three for the voltage solution are obtained by first-order
differentiation, and by convolution with the distributed
excitation. The integrals for the current solution are the
same, with all matrices replaced by their adjoints.

When the line consists of lossless conductors embedded in
a homogeneous, isotropic dielectric, the inverse transforms
contain only a single, simple pole, whence the solution

exhibits the well-known single propagation mode.
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1. INTRODUCTION

It is customary to initiate the steady-state analysis of
uniform multiwire transmission lines in source-free regions
with a set of homogeneous differential equations of the

forml’2

o1} 49-1 [eTeT}

L ] Nh
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< 1
] li
o o

If the line is excited continuously along its length, we

. . . 1,3
have the corresponding inhomogeneous equations™’

av _ re

ax T L= B

. (2)
I _ e

gz AV = A7)

If the line consists of (N+1) conductors of arbitrary
cross-section, -- one of the conductors being used as poten-
tial reference, -- then the guantities in equations (1) and
(2) are defined as follows:

vV, I, are Nx1 column matrices of conductor potentials and

currents respectively:

T
= [rr, o]

T
[Il, ...,In]

l

(3)

I+
il



where VT is the transpose of V, etc.; Vk, Ik are potential and
current on the kth conductor, k = 1,..., N. The current in
the zeroth (reference) conductor is the negative of the

algebraic sum of the components of I:

N
:E:Ik = 0

k=0

z is the line series-impedance NxN matrix:

z = Fij] Cij = cji for every i,3 (4a)
n is the line shunt-admittance NxN matrix:

n= [”ij]’ ”ij = nji for every 1i,3j (4b)
If in the first of eqguations (1) we specify Ij # 0 while
all other currents are zero, we get, for the potential of the

iEE conductor

dVi
= cij Ij =0 (5a)

If, in the second of eguations (1) we specify Vj # 0

while all other potentials are zero, we get, for the current

in the ith conductor

dI.

1
—_— 4 V. = b
ax nij j 0 (5b)




‘Equations (5a) and (5b) serve as defining equations for

s ny respectively. In practice, their components are

ij J
frequently identified with static capacitances, inductances,
dielectric conductances, and conductor skin resistance and
internal inductance.

The forcing functions, Ee and ﬁe of equations (2) may be
identified with the transverée magnetic field and electric

field intensities impressed along the line3’4. Specifically,

we may write

_E_e=jw;_eH2
(6)

H® = jw c® ES

H® = Ju c® Y

where Ee, c® are field coupling parameter Nx1 matrices; Hi

is the transverse impressed magnetic intensity, and E; is the
transverse impressed electric intensity.

If all conductors are open-circuited (I = 0), equations
(2) and (6) yield

v _ Jw Le

e
dT{ = L HZ (7a)

while, if all conductors are grounded (V = 0),

e

= jw C7 E (7b)

o 0
><|IH

e

Yy
Equations (7a,b) may be taken as defining equations for the

coupling parameters. These quantities may freguently be de-

termined from electrostatic considerationss's.



If, in equations (2), we write

E%(x) = Vo 8(x)
i e ' (8)
Ho(x) = I, &§(x)
where &(x) is the usual impulse function:
§(x) =0, x# 0
(9)

x

j[@(x) dx = 1

then equations (2) are source-free everywhere except at x = 0;
that is, théy are equivalent to equations (1) with terminal
excitation at one end exhibited directly in the equations.
Since equations (1) are linear with constant coefficients,
a standard pwocedure, -- evidently attributable to Carson and
Hoytz, -- for obtaining a solution, is to assume the solution

has the form Ae '% (for forward waves), so that equations (1)

yield
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Elimination of I or V yields one of the following sets of

equations:
(Y'L-znv=0
(11)

|o

(vy?1 - ng)l =




where I is the NxN unit matrix.

For these sets to yield non-trivial solutions for I,V, we

must have

(12a)

il
o

det. (Y1 - ng)

det. (v?I - ng) =0 (12b)

Sihce_ﬂg_is the transpose of gn, and I is its own trans-
pose, and since a determinant and its transpose have the same
value, equations (l2a) and (12b) are equivalent. Since the
determinant is of the Nth order, the eguations represent an

Nth degree equation in v?, with N pairs of roots, ty;. The

line is characterized by N eigenvalues, Yi, with a pair of

propagation modes corresponding to each value.

When the modes are distinct (Yi all different), each
conductor carries N potentials (for a forward wave) which
are arbitraiy in terms of the termihal excitation, but bear
definite ratios to one another in accordance with the first
of equations (11) . Thus, only one constant has to be deter-
mined for each of N modes, corresponding to N terminal
potential conditions. If a back wave is also presentﬁ N
. a&dditional arbitrary constants are present for the N back
wave modes.

At the other extreme, when all eigenvalues are eqgual, as,
for instance, for a line of lossless conductors in a homo-

geneous, isotropic dielectric, a choice of methods has been



available. One can, in principle, resolve the line potentials
and currents into orthogonal modes and proceed as in the pre-
vious case7’8. In addition to yielding a genetral procedure
for solution, this method also implies certain equivalent
circuit concepts which, in special cases, result in powerful
analytical and design»tools7. While certain special situa-
tions readily yield the required mode setsg, the determination
of such sets appears, in general, to be a difficult one.

On the other hand, whenever conductor losses can be ig-
nored, this special case can be solved completély in terms
of Maxwell's capacitance coefficients for the line, if loss-—
less, or by a minor analytical variation if the dielectric
is significantly lossy. The variation consists of replacing
the dielectric permittivity of the first case with complex
permittivity that includes the loss tangent in the second.
This is surely the simpler of the two methods in terms of
computational complexity.

When some ~- but not all -- of the eigenvalues are egual,
some of the degenerate modes must be resolved into orthogonal
components to be treated by the first method. The alternate
approach is a hybrid of the two methods described for the
completely degenerate case.

In many problems of practical interest, the eigenvalues
may be only slightly different, at most. This could be true,

for instance, for a compact multiwire cable in which materials




of differing permittivities and losses are used in various
regions of the cable cross-section. It could also occur in
some problems where one wishes to take conductor losses into
account, and, for the sake of simplicity, is willing to accept
an approximate solution. In such cases it would seem appro-
priate to seek solution methods that are only a little more
complicated than the simple solution for the completely de-
generate case. This type of problem is discussed in Section
2.3.

Up to now we have considered only methods of attack for
the homogeneous equations (1). We have yet to address our-
selves to the general case of egquations (2) involving forcing
functions distributed along the line. Tﬁis problem was also
investigated by Carson and Hoyt (loc.cit.) for a number of
spécial cases which permitted formulation of a solution in
terms of a small nﬁmber of independent modes. The subject is
also treated in the previously cited comprehensive report by
Strawes.

In this report we formulate the solution through use of
Laplace transforms. We obtain results for the general case
in which any number of the eigenmodes may be degenerate, and
we review the special cases of complete degeneracy and of

nearly equal eigenvalues which have been treated previouslyB'll.



2. ANALYSIS: FORMAL SOLUTION

The extension of Laplace transform methods to matrices is

straightforward. Use the general designation .
E(p) = Laplace transform of F(x) .
E(p) = u/PE(K)e_pA dx ; p=c¢c + 3n, c>0 (13a)
o .

and, for the inverse transform,

.

| -1 c+je
E(x) = 7 Elp) = ]—;;[ F(p) eP* ap (13b)
c-je

Taking transforms in equations (2) leads to16

7 I v(0) + £t
(14)
e

zo]
<
_I.
Y
H
it
|

(e

nv + pI = I(0) +

Multiply the first of these by p, pre-multiply the second

by g,and subtract

(p21 - zn) V = pv(0) - zI(0) + pES - ¢f® (15)
whence N
V= (p?L- )t [py_w) - £1(0) + pE® - EB"’] (16a)

Similarly, elimination of i in equations (14) yields the

dual equation

= (p®I - gg)-l [p_I_(O) - nvV(0) + pie - p_E_Q] (16b)

[




To obtain the inverse transforms, write

Q= (p*L - gn) = [qij] (17a)
0" = 'L - 1) = [ay;] (17b)
-1 0
- 19

where [Q| is the determinant of Q, and Q is its adjoint:

Q= [jS} = ..., I:Qij} T (19)

Qinre+ 9

and Q4 is the cofactor of a4 in [Ql.

Then, using equation (13b), the solution for V is,

formally,

m 1._ =
(20)
-z (p)i eP*ap
This may be writﬁen
dT ) ar . . .
Vo= gz V0 - TLI(0) + 3=« E (x) T % ofi (x) (21)
where
1 c+joo R px
T = = 9(?)3 dp
- jZTTf e (22a)

cmje



and terms of the form FiG represent the convolution convention

ct+je
_ 1 = - pX
ExC = =57 Elp)G(p) e dp
c-je

(23)

% X

= F(MG(x~-A)dr = F (x-X)G(A)dx
0 0
To obtain the current from equation (16b), we have,
using equation (17b),
ar’ T ar” e
I=g571(0) - Tnv(0) + g7 =« H'(x)
(24)
T
- T° % nt (%)
where
ct+je
7T L 7 g%eP*ap o (22b)
= j2m Q!
c-joo -

From these results it is clear that the essential problem
is the evaluation of the inverse transform, T(x), equation
(22a). Before investigating various aspects of this problem,
we complete the formal solutions for V and I by eliminating
the terminal quantities, V(0) and I(0), in favor of arbitrary
terminal admittances.

We proceed essentially as in Reference 3, Appendix B.

10




In conformity with previously established notation (loc. cit.)

we introduce the following symbol changes:

V(o) » vt
v(g) - Vv’
1(0) » 1t
I(e) » 1°

where 2 is the length of the line.

In addition we have the terminal conditions

|+
-+

I+,

i<
i

H
I

<

(<
I

where Y', Y° are the line

x =20, %, respectivelylz.

0
(25)

o

termination admittance matrices at

Using these conditions, the following results are obtained

in Appendix A for the potential and current at any point along

the line:
V(x) = { o7 (x) + T(x) _Zgi_}_s_o—lﬁo (83 + U(x)
' " (26)
T = {7 vt T n) s e+ W)

11



where

T (x) = d—-}% ;T (x) = S%T
and
So = gT'(z)_? + 2?(2)3 + YOUTMe) + T(R) YTy (a) -
U(x) = T'(x) » E(x) - T(x) » cH®(x) (b)
Wix) = T0 (%) & HE(x) - T° (%) % nES(x) (c) @
Ko (2) = W(2) - Y°U(®) (d)

Special Excitation Conditions

Certain excitation conditions are of special interest:
(1) impulse excitation (2) linear phase excitation,

1. Impulse excitation. Excitation is localized at a point,

—-- or a number of isolated points =-- &dlong the line. Thus,

at some point, %o, let

E¢(x) = V8 (x-x0)
(28)

HE(x) = 196 (x~x)
where §(x) is defined in eguations (9). Then for any
function J(x), we have

X e .
I(x) 4 Ee(x) =v/' Q(X—C) -V § (E-x%,)dAE
‘ (29a)

= Q(x—xo)yéu(x—xo)

12



where u(x) is a unit step:

u(x) = 0, x<0
(30)
= 1, x>0
Similarly,
J(x) % H3(x) = J(x-%0)I% u(x-xo) (29D)
Thus, U(x) and W(x) of equations (27) become
Ux) = {T' (x-%0)VE = D(x-%0)21% } u(x-x0)
' (31)
f
wix) = {7 (x-x0)1° - _T_T(X—Xo)ﬂ‘{e} u(x-xo)
and
Ko (2) = W(2) - Y'U(8)
= {2 tmxo) + ¥'TC2-x0) g} 18 (32)

In particular, for x, = 0, we have end excitation of the line:

U(x) = {2' (x)V® - T(x)z1® }u(X)

Wix) = {ET (x)1° - 7T (x)nv® }u(x)

(33)
Ko (%)

Il
o
3

=]
-
+
I

o

|3
-
Y

S~
[

(0]

13



If, in the latter case, Ee = 0, we have a generalized

13,10,

Thevenin source with

Ulx) = IT'(x)V u(x)

W(x) = -T7(x)nV u(x) (34)

If, on the other hand, ze = 0, for end excitation, we

have a generalized Norton source, with

U(x) = -T(x)zI%(x)
W(x) = ZT'(X)Eeu(X) (35)
Ko(2) = {T% (2) + g"yz)z;_};e

If we have a shielded cable with a narrow circumferential
break at x = xX,,an external field can produce a gradient
v® §(x-x,) across the break. The effect is the same as
exciting the internal conductors with a series emf,

-vE§ (x-x0) 1 ., where LQ is a unit column vector. In that case,

equations (31) become

U(x) = —E'(x—xo)ldveu(x—xo)
T e (36)
W(x) = I (x~%¢)nI_V u(x-xo) .
and eguation (32) becomes
T Omt e
Ko (8) = {2"(2=x0)n + Y°T' (2-x%0)}L V (37)

14




2. Linear phase excitation. In a large class of problems,

the line may be considered to be excited by a wave incident at
an angle, such that the impressed field has a linear phase

variation along the line. The forcing functions may then be

expressed as

£%(x) = E%(0) exp (-3BX)
(38)
H (%) = H®(0)exp (-38_%)
For any function, J(x), we have
3 X e
J(x) » E (x) = g J/. g(x—i)exp(-jﬁei)di E7(0)
0
and similarly for Ha(x). Equations (27b,c) become
Ux) = 2(x)ES(0)- ¥(x)zH*(0)
(39)
W(x) = oT ()H(0) - ¥Tx)E®(0)
where
X
8(x) =f T' (x-£) exp (~18_E) &
0
(40)

X
¥ (x) =f T(x-€)exp (=38 E)dE

0

15



¢ and Y are not unrelated. By integration by parts one

obtains

2(x) + 3B Y(x) = I(x) - T(0)exp (~jB_x) (40a)

We now turn our attention to the important problem of
evaluating T(x), equation (22a), for a number of special
cases and, finally, a general case involving any number of
multiple poles. First, we note that since both ]g| and the
elements of !é[ are polynomials in p?, the singularities, if
any, of the integrand in the right member of equation (22a)
are poles in the finite region of the complex plane. Thus,

the integral is zero for x<0, and is equal to (j27) times the

sum of the residues at the poles of the integrand for x>0.

The possible poles, in turn, are the roots of

i

S

|Q|= det.(p*I -zn

{det. (vy2L - zn)} 2.2 = 0 (41)

YT =P

Comparing equation (41) with equation (l2a), we see that
the poles of the integrand are identical with the square roots
of the eigenvalues of the line matrix, gn, and of its trans- »
pose, ng. The transform approach affords a routine method for

determining the response of the system in terms of these poles.

16



2.1. Lossless Conductors in a Homogeneous,'Isotropic

Dielectric (Pure TEM Case); Single Multiple-Pole Pair;

Completely Degenerate Mode.
This case has been discussed previously as an isolated
problem3. Here we relate the results to the general formu-

lation. For lossless conductors we have
£ = jwlL = jw [Lij] (42a)

and for a homogeneous,; isotropic dielectric,

. 73 :
G+ juC ={ =—_ + 1 }JuC

o= jwe
(42b)
= (1 -3 tan §4) Ju [Cij]
where
L is the line inductance matrix, henry/meter
C is the line capacitance matrix, farad/meter
94q is the dielectric conductivity, mho/meter
e is the dielectric permittivity, farad/meter
tan éd is the dielectric loss tangent,
tan §., = gd/we (43)

d

Furthermore,

_ _1o-2
LC = [ueaij] = [:v 5ij] (44)

where v is the velocity of wave propagation in the dielectric

(meter/sec.)

17



Thus we have

Q= (p*L - ¢n) = [qij]

= p®I - (JwL) (1 - tan §4) (FuC)

= p?l + w?(1l - j tan Sd)gg (45)
- [-{pz s (1 - § tan ad)} ai.j
v? BEEN,
= 2 _ 2 .. - 2 _'kZ 1
[p® - & 655] = (@ )1

where

Y

k= £5(1 - j tan §,) %8

g = (46)
v
The cofactor of Qij is
- 2 _ p2yN-1
9 4 (p k*) Sij
so that ‘
g= o - ey ] - et o™i
while
o] = (* - x1)N; (48) :

18



Then equations (47) and (48) in equation (22a) yield

T(x) = = Ctie PRyp ; sinh kx
b v 2 1,2 - k
jem C=Fjoo pr-k . (49a)
= 7 (x)
]
T'(x) = I cosh kx = ET (x) (49b)
Equations (26) become
V(x) = [g_cosh kx + 532%—55 EZ'] so 1Ko (2) U(x)
. (50)
I(x) = -[:gl cosh kx + SiRL kX 3] so" ko (2) + W(x)
But
;. ij—J- ; . -3 H
% = y = Z(1-j tan éd) = Z (51a)

j5(1-3 tan6 )"

where Z' is the line characteristic impedance matrix and Z
is the characteristic impedance matrix in the absence of

dielectric loss:

Z = vL (52a)

Furthermore

jwC (1-3 tan 3d) N
1 _ .
= — = Y (1-J tan §4) ° = ¥! (51b)
j;(l—j tan ¢d)™*

w |1

19



where Y' is the line characteristic admittance matrix and Y
is the characteristic admittance matrix in the absence of

dielectric loss:

Y = vC (52b)

Z' ¥' = gy = v’IC = [6ij:l =1 (53a)

by equation (44).

In many situations, tan 5d is so small that its effect on
Z' and Y' is frequently ignored, even though it may be im-
portant in the value of the propagation constant, k.

Using equations (5la,b) in eguations (50), and writing

V(x) = (I cosh kx + P> sinh kx) So Ko (L) + U(x)
(54)
I(x) = -Y' (21 cosh kx + I sinh kx) So YKo (2) + W(x)

where, using these various results in equations (27a-d),

and writing P° = 2'Y°,

20




X
U (x) =/ {_E_e(i) cosh [k (x=£)] - _'z_‘ﬁe(g) sinh[k(x—é’;;)]}da
0

H®(E) cosh [x(x-£)]~ L'E%(E) simh [k(x-E]]} dc

(_Iii + 2% cosh k& + (I + gogl) sinh k%}

(55)
. e -
/ [g cosh [k (2-£)]+ B° sinh[k(& - )] Z2'H"(E)dE

2

-/ [g° cosh [k(& - &)] + I sinh [k(l-i)]] Ee(i)di}
. ,

When it is justifiable to assume that both dielectric and

conductors are lossless, we have k = jB (equations (46)), and

the foregoing results become

(I cos Bx + jf_isinsx) s

(56)

—X(gl cos Bfx + JI sin BX)S

21



X

U (x) =j
0

y ,
W(x) = y_[ §zH%(5) cos [ B(x-£)] - FE® (E)sin[B(x-£)] d&E
0

{Ee(x) cos [B(x-éﬂ - jgﬁe(g) sin [B(x—i)}}di

2
K(2) = ZKo (L) =/ {1 cos[B(2-£)] (57)
3}

+ 3p° sin [ B(2-8)]} 2H*(E)4¢

. :
i/~ {p® cos [ B(2-8)]
0

+ 31 sin [B(e-£)]}E(8)dE

These are the results previously obtained for the lossless

TEM case3.

2.2 Mixed Dielectrics; Poles of Integrand Simple and

Widely Separated (Non-Degenerate-Mode Case) .

In equation (22a) write
N

o] = T (p% - pﬁ), Py all different (58)
k=1

22




(59)

where the symbol, (i), in the product operator indicates
that the factor corresponding to k = i has been omitted.

Then the standard solution of equation (22a) is

(60)

Q(pi)exp(pix)—é(—pi)exp(—pix)
3 p;R(p;)

T(x) = %y°

i=1

Clearly, since the elements of é(p) are functions of p?,

Q(-p;) = Q(p.) (61)
and equation (60) becomes
B Q(p.) sinh p.X
_ =i i
T =2 P, R(p,) (62)

The remaining quantities needed to complete the solution

given in equations (26) follow immediately from equation (62),
and are not detailed here.

2.2.1 Number of Different Elements in é(p).

In general,_g, therefore Q, is non-symmetric, and there-

fore contains N? different elements, each of which must be

23



evaluatgd for N (generally) different values of p, making

a total of N*® computations on é alone. For some special

configurations this numbef may beAdrématically reduced.

Alternatively, if it turns out that the relative dispersion

in eigenvalues is small, the approximate method of Section 2.3

affordsga great simplification in computation for large N.
Cables consisting of a number of conductors in a circular

sheath frequently enjoy a degree of symmetry which reduces

the number of different values of the elements of é. Two

of the simpler cases are indicated in Figure 1. In both

of these cases the total cable cross-section has a circular

symmetry such that rotation of the cable on its axis by any

integral multiple of some fixed angle yields the original

configuration exactly. The first case, (a), consisting of

a single ring of symmetrically disposed conductors of equal

diameter has a characteristic matrix containing (g + 1)

different elements if N is even, (ﬁ%&) different elements

if N is oddg. The inverse matrix has the same property,

whence the same is true of the adjoint.

The second case, having a symmetric ring of N, conductors,

as in the‘preceding, plus a central conductor of any diameter,

N
has a characteristic matrix with (53 + 3) unique elements for
N,+1
N2 even, ( 5 + 2) unique elements for N, odd. Furthermore,

. . , L . 4 L. .
using a bordering technigue for matrix inversion™ , it is

easily seen that the inverse, therefore the adjoint, has the
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(b)

FIGURE 1. TWO SIMPLE EXAMPLES OF SYMMETRIC
CABLE CONFIGURATIONS .
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same number of unique elements. For example, if N2 = 20,
the number of unique element values is 13, whereas, in general,
the matrix of a 2l-conductor cable could have as many as .
(21)2 or 441 different values.

Strawe® has derived explicit analytic expressions in
terms of fundamental line parameters for end excitation of
configurations of the general form of Figure la.

2.3. Pole-Pairs (Eigenvalues) Nearly Equal (Nearly

Degenerate Mode Case): Average-Pole Expansion.

This case has been treated previouslyll; therefore only
an outline of the analysis is given here. The poles, P,

not necessarily all different, are assumed to be contained

in regions in the complex plane bounded by two small circles

of radius, p, such that

l%]« 1, i =1, «.., N
1

An "average" pole, Py is defined by

15 3)
Pa = ﬁ;g% Pi (6

and the pole variations, Si’ by

8,
.| =]<<1 (64)
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Clearly,

N
2: 6i = ( (65)
i=1
Let
lg| = T, (p)-T_(p)
where
N
Hi(p) =iil (p irpi)

In the small circle of radius, p, containing the poles

around p = Py write

N .
N - 8i
- - §.) = - I (1 -
L (p P, l) (p pa) i=l( p_pa)

I ==

() =

1

N

m_ - N N
(p) —izl(p +p, t Gi) % (p+pa)

This leads to

' -1 2 2y N N 61 !
I [(p TR P‘Pa)]
(66)
= (p? - 2)"N % .____S_S_
P Pa : <p_pa)S
s=
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where

i (67)

-
I
s

N i
S, = ., 6.

A recursion formula for SS, s>2, is derived in Appendix B.
A little study shows that the cofactors of the diagonal
elements of é are of degree (N-1) in p?, while off-diagonal

elements are of degree (N-2) in pz, at most. Thus,

- = (q) 2y N=¢g
[jS] q§1 ¢ (p?) (68)

L@

where
cla) - [c..(q):'; L [5] -1 (69)

Q0 may be expanded in powers of (p? - paz) by Taylor's

theorem:

N
Q=2 é(q) (p? - paz)N_q , (70) .
g=1
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wheré

= §,.
17 1] (71)
*) - 2 (%)
The exponential, er, expanded in a Taylor's series
around p = Py is
x  Pgx = (pmp) ¥
N rZ% —_— . (72)

Substituting equations (66), (68), and (72) in equation

(22a) yields, for the poles around Pyt

(Q) b LA (p_pa)r—q-s
A'7's (—T){“——J[ —— dp; (73)
Str j2m d

D X o o :
- (p,) (ptp,)

N
Res(pa) =e @ 2: 2:
g=1l r=0 s

0

Next, expand (p + pa)—q in powers of (p - pa);

(p + pa)_q - (2pa)—qi (_l)m(q;m—l) (_:i;_)?_g_)m
: m=0
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where
Cymrd)= binomial coefficient

(g+m-1) (g+m-2)....(g+l)g
m!

Equation (73) becomes

P X N e o] o ) - A(q)
Res(p) = ¥ ¥ X X (-l)m(qgfll) : —

s
g=1 r=0 s=0 m=0 2pa)q "
where _
1 _ o
Co = ﬁfﬁl/a (p pa) dp
(p,) (75)

o =r +m-g - s
The residue at p = p_ is the coefficient of C_yi that is
the coefficient corresponding to the constraint

o =r+m-gq-s=-1 (76)
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As a result we get for the residue at pa:

Res(p_) = ean : q—E—l 3 é(q) g (g_{_r_> (_l)q+s—r—l <2q+s—r—2)
= l -
a

Following the same procedurerin the region around ~P, yields

‘ -p_x N g+s-1 é ié(q) r\ ,_,,9ts 2g+s-r-2
Res(-p,) =e & X > ¥ S\ ZT — (78)

g=1 r=0 s=0(2pa)q‘ r: (2pa)q+s-r—l q-i
The solution for T is_
T(x) = Res (pa) + Res(-pa)
= EE 2@ Fxip iq) - (79)

q=l 2 q-l
(4pa )

where

qts-1 = +s-r-1 r X -p_X
_ E (-1 9 X 2g+s-r-2 [pa 4\ T Pa ] '
F o= 2: / s-r+l Ss(r!)( g-1 e (-1)7e (80)
= =0 2p,)
r=0 s=0 a

-

Because off-diagonal elements of Q are expected to be

small (reference 11,Section 4), it follows that

L ) () | |
=) |ks|2— <1, r>1, t pos. int.
P2 (r+t-1) Py2(r-1)

31



As a result, we are particularly interested in values of

F for q = 1,2; with the help of eguations (67) we get

Ss
n +1) = & fai 2,2y as

F(X,pa.l) =5 {sn.nh p X + - [(1+2pa x%) sinh P X

a (2p_*)

(81)
- 2 PyX cosh an] S
= - 2_ ; -

F(xjp_i2) = b, ;[%1nh p,X - P ¥ cosh pax}

S

2 1
2,2 . - 2,2
e [U.+ P, X } sinh Py 3pax(1+§pa x“)} cosh pgﬂ
a

+ L3R BN

For low-loss conductors in a homogeneous isotropic dielec-
tric, we expect applications of these results to show that
the dispersion effects are accounted for adequately by the
é(q), (g>1), and that their multiplication by factors contain-
ing Sqr (s>1), introduces only second-order corrections to the
dispersion calculations. In that case, F reduces to the

finite single summation:

g-1
(-1)97="1 (xr)<2q-r-2)[pax r —Pax:,
F = Fo(xsp_:q) = —t e | = . e © =(-1)"e (83)
| 0 a ;;% (2pa)l r r. g-1
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In particular,

|
e [

Fo (x:p_31) sinh p_x

a
(84)

LS

Fo(xip i2) = - (sinh p_x - p_x cosh p_x)

a

g

2.4. General Case: Any Number of Multiple Poles (Any

Number of Degenerate Modes); Pole-Pairs (Eigenvalues)

Not Nearly Egual.

Recall that, generally, |Q| is 4 polynomial of the Nth

degree in p?:

N N

N—

@ = I (p%-p;*) =) a,p* 7 ag =1
i=1 r—o

Let factors, (p - pk) have multiplicities, Tos

(k =1, ..., m; mSN), so that
ol =1 (p*-p,2) & (85)
QI =1 (p*-p, ) ;j?; r, =N 5
k=1 k =1 'k
Then

pX
e” dp (86)

(pz-pkz)

_ 1 ct+jo
T(x) = ,__j27f/
c-j=
k=1

I = 3ho>
R
o
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To find the residue at Py the factor in the integrand not

r.
containing (p - pi) t, namely,

must be expanded in a Taylor's series around p;

The denominator function

x

(pip.) = (p4p.) 1 1 (p2-p.?) (87)
¢+ p'Pi = \p Pi‘ P Pk

k=1

(1)
is a polynomial of degree (2N - ri) in p. Itvmay be inverted
to become a power series in the numerator; more generally,

therefore, it may be expressed as a Taylor's series in

(p - pl):

S
bsli(p—p.) (88)

Assume this done. Also, as in the preceding section,

expand é and exp(px) in Taylor's series around P,z

- © L (p-p )% . ng
Q(p) = g(n)cpi)———ﬁ%—~ ; o) (o) = é—% (89)
n=0 ' dp
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«  Pix& o)t
ep = e 7 2 ! (90)
r= ) -

Thus, equation (86) becomes

- (n)(

P X < bs i Pi), 1 n+r+s-Ir,
Res(Pi) = e nz_:o ;O SZO ’ T j2H <P_pi) dp (91)
T (p,)
NES

The residue is the coefficient of (p - p_)'l; that is,
i

it is that part of the summation corresponding to

n+r -+ s % r, - 1 (91la)

It is clear that neither the sum, - nor any of the indi-
vidual values, - of -the summation indices can exceed (ri - 1).
For a given value of n, r cannot exceed the value (;i - 1)

- n. Finally, s is constrained by the condition stipulated in

equation (91a). Thus, equation (91) reduces to

1 .=1)= ~
rl (rl )-n b Q_(n) (pl) plX

Res (p,) =Z:o Zo T © (92)
n= r=

where

s = (ri—l) - (n+r) (93)

To compute the residue at (—pi), write.
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r. m r

. — _ 1 2 .. 2
¢_(p,pi) = (p pi) g (p Py ) (94)
k=1
(i) ¢
We must now expand
g &
¢_(p;Pi5
in a Taylor's series around (—pi). We have
o n
+p.)
~ A(n (p i
i) =% 4 (-py) —ort 9
n=0
where, recalling that é is an even function of p:
Next, -
-py;x 2 (ptp.)7x
pPxX _ i i
& =€ ‘E: r! (97)
r=0
Finally, consider
r, m \ , Tk
¢, (-pip;) = (-p+p;) I (PP ")
(1)
r, r, m r N
—-1) Ypep) b E (o “p, %) k (98)
k=1
(1)
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But according to equation (88),

oo

[¢+(fp;piq 1 =:E:(-l)s bsli(p+pi)s ;

s=0

that is,

ol

r.
. -t i _1yS S
[¢_(p,pi)] = (-1) E (-1) bS,i<p+pi) (99)
. s=0
Inspection of equations (95) to (99) reveals that,
except for the exponential factors in equations (90) and (97),

the residues at ipi differ only by the additional factor

r.,+s+n Zri—r—l r+1
(-1) * = (-) =(-1)
Thus we have
r.~l(r,-1)-n
i Ui ~(n)
b, .0 (p.) [ p:x + —p.x]
Res(p.,) + Res(-p.,) = 5,1 s— P +(-—l)r ! e *
i i nir!
' n=0 r=0

and, finally,

where

s = (r, - 1) - (n+r)
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This complicated result is the most general form for the
fundamental gquantity, T(x), characterizing the behavior of a
uniform multiconductor transmission line. The reader is re-
minded that this function only constitutes a basis for the
final determination of the response. From it are obtained
its transpose, ZT(X),and the first derivatives, -- T'(x) and
gT'(x), -- of both of these. Finally, all four of these are
convolved with the impressed equivalent series and shunt
sources, Ee(x)and ﬁe(x), and the results used in equations
(26) and the auxiliary equations (27) to determine line po-
tentials and currents at any point, =- including, in
particular, the line terminals.

Equation (100) reduces easily to the special case of

non-degeneracy (equation (62)).

3. Discussion

The procedure developed in Section 2 affords a general
means for evaluating the response of a uniform multi-wire
transmission line to an impressed field, regardless of the
nature of the line eigenvalues, provided the line parameters
are known or can be estimated. The general result is very
complicated; even in the simplest case of a completely
degenerate system, it is well-understood that, practically,
numerical methods must be used if the number of conductors

(exclusive of reference) exceeds two or three.
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When the eigenvalues are all nearly equal in magnitude,
considerable simplification is afforded by application of the
"average pole" method of Section 2.3 to obtain an approximate
result. The result is in the form of an infinite series
whose convergence rate depends on the spread in eigen-
value magnitudes. When applicable, the prescribed procedure
is not only simpler than the general form; provided a suffi-
cient number of terms in the series is used, it should prove
more accurate as well, inasmuch as the characteristic matrix
of .such a system is neafly singular, and approaches singu-
larity as fwo or more of the eigenvalues approach equality.

Although the subject has not been discussed in this report,
it should’be clear that if eigenvalues are grouped around more
than one value, the method can be extended by assuming
average pole-pairs for each group.

Although the multiple-eigenvalue result for T(x), eguation
(L00), is applicable generally, it méy be worth while to
develop separate programs for computing line response, de-
pending on the nature of the eigenvalues. Thus, in a given
numerical problem, an early step in computation consists of
determining the eigenvalues. A judgment should then be
made to fit the eigenvalue set into one of the following
categories:

(1) eigenvalues all equal

(2) eigenvalues all different

- 39



(3) eigenvalues all nearly egual

(4) one or more groups of equal eigenvalues

(5) one or more groups of nearly equal eigenvalues.
Based on this judgment, an appropriate computation program may
then be selected.

4, Conclusion

A general procedure for evaluating the single-fregquency
response of a uniform multi-wire line to distributed excita-
tion has been described. The method is applicable regardless
of the nature of the line eigenvalues. Mode degeneracy is
handled in a routine (but complicated) manner. However,
excessive complexity and computational error associated with
nearly degenerate modes is avoided by expanding the Laplace
transform of the response in Laurent series around a pair

of average poles.
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APPENDIX

A. Development of Formal General Solution.

In equations (21) and (24) write

T' (%)

az
&=

T az*
I &= x

and use the reviged notation for terminal voltage and cur-

rent: .
Vi) = T' (VY - Tzt 4 T 0w B4 (x) - T(x) % gH (%)
: (A-1)
Ix) =10 (01" - 1T vt + o7 (0)#f% (%) - TT(x)*nES (%)
Then for x = % we have
VO o= T ) vh - Tt 4 T () «E%(e) - T (L) <zHE (L)
1 1 : ] (A—Z)
0 =" @rt- Tyt + ot ) «H @) - 2T #nE% ()
Substitute the first of equations (25) for gi:
Ve o= 1t ()vt 4 T vtV 4+ T () RER(R) - T(R) .zH® ()
. , (A-3)
o=~z ) ytvi-rT vt + 1T () «HE () - 1T () *nE®(R)
Combine these in the second of equations (25) and reduce:
goyi - Ko(®) =0 (A-4)
where
_ T! i T ol i
So = [_T_ ()Yt + T (Q)p_:l + Y [z (@) + _T_(Mg_s_z] (A-5)
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Ko (f) = [f’(};)*ﬁeu) - ET(M*Q_E_Q(M]

(a-6) '
- z“[z'(z)*gecz> - 2(2)*§ﬁ%(ﬁ)] ‘
From equation (A-4),
vh = 577Ke (2) (A7)

while, with the help of the first of equations (25), we get

It = ~y'S7 Ko (8) (A=8)

—

Using equations (A-7,A-8) in equations (21) and (24) of

the main text,

ym=[ym)+ymgﬂ§FQM)fgm

(A-9)
Ix) = -[ET'(X)S_Z_J“ + ET(x)p_]_S_Ezg_o (%) + Wix)
where
U(x) = T' () «E%(x) - T(x)+zH® (x)
(A-10)

T (x) % (%) = TT(x) 4nE® ()

1=
%
]

B. Recursion Formula for Sm'

According to the development leading to equation (66),
the Sm’ (m = 0,1,2,...) are related to the 6i (i =1,¢0.,N) .

through
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(L6-a) -2
I 1 - (B-1)
i=1 PPy EE% (p-p, y®

Write
-1
u= (p - pa)

and multiply both sides of equation (B-1) by the multiple

product:

=1

N [}
1 =[ T (1 - 6iu)] Z Smum (B~2)
m=0

The multiple product may be expanded into a‘polynomial

in u:

: N
(1—6.u E(l) a, ; ag = 1 (B-3)

==

i=1

where

(N-r+1) (N~-r+2) N (
+1\J

a, = 2: 2:

ii=1 i2=i1+l
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In particular, ‘ -

N
a, = éi
i=
N-1 N
a, = Z Si fSJ
i=1 j=i+1l
N-2 N-1 N (B-5)
83 T Z 51 63 5k
i=l =i+l k=j+l
o2 N/ w N
aN = Z Z . E ‘El 613 =l£l (51
i=11i,=2 i =N J
N
Then equation (B-3) in (B~-2) yields
N [ N o
r m _ ) o\ m+r _ _
3 (-Dau s U = > > ¢-DF as u 1 (B-6)
r=0 m=0 : r=0 m=0

Collecting coefficients of like powers of u and solving for the

successive Sm:

S, =1
N
Sl=a1=zéi=o
i=1
as used in the main text. Continuing,

S, = a;8, - 5,a,,
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etc. In general,

m
_ k-1
Sp = 2, (-1 ay Sy, TN
k=1
N | (B~7)
— _ k—l =
= =l( 1) ay sm—k’ mSN
-
.
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