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INTRODUCTION

In the study of various problems of electromagnetic compatibility
it is necessary to determine the penetration field of an aperture. At
low frequencies a quasi static solution is available,1 and at high
frequencies the Kirchhoff's solution is available.2 Alsoc a rigorous
solution developed by Flammer is available.3 He applies Babinet's
principle and determines the scattering from the disk equivalent of an
aperture in a conducting plate by considering the disk as a limiting
form of an oblate épheroid and constructs vector wave function solutions
to the Helmholtz wave equation in oblate spheroidal céordinates. However
no numerical results are presented; but it is expected that the greatest

amount of energy penetrates the aperture near the first resonances of the

aperture, the intermediate frequency region.

Recently the singularity expansion technique has been found to be
useful in the study of electromagnetic pulse interaction.q In principle
one should be able to take Flammer's solution and develop singularity
expansions for the induced current and charge as BaumL+ did in treating
the sphere. However, identifying and calculating the natural frequenciles
and modes may be difficult. An alternmative treatment used here is to
develop an integral equation for the induced current density on a Babinet
equivalent disk, solve the integral equation numerically using the method
of moments, and apply the singularity expansion method numerically similar

to Tesche.5




With the singularity expansion solution for the induced current
density on the Babinet equivalent disk the scattered fields are readily
determined. An application of Babinet's principle then yields the fiela
penetrating the aperture in a conducting plate. Computational procedures
for determining the penetration fleld are discussed and a low frequency

check of the procedures 1is proffered.



ANATLYSIS

The solution for the electromagnetic fleld penetrating an aperture
in a conducting plane may be determined by solving the complimentary disk
problem and applying Babinet's principle.3 The electromagnetic form of
Babinet's principle states that if (Ei,ﬁ?) is the scattered field when
(Ei,ﬁ%) is the field incident in the positive z direction on a perfectly

conducting disk lying in the plane z=0, then

§§=—C§? s —IES:.;.ES s zzo
2 z 1 (1a)
-, > > >
ES = ¢ HS s = - 1 ES z20
2 1 ’ 2 r 1
are the diffracted fields when the wave
¥ _ . #i o_ 1
E;=cH , K _;.E1 (1b)

is incident in the positive z direction on the complimentary perfectly
conducting screen with an aperture. Here [ =Vu/e 1is the intrinsic wave
impedance of the medium surrounding the aperture or disk. In the case of
the aperture the total field in the half space z £ 0 is formed from the
superposition of the inecident wave, the reflected wave in the absence of
an aperture, and the diffracted field (Es,ﬁg). In the half space z 20,
(§5,§2) is the total field penetrating the aperture.

To determine the scattered or diffracted field from the aperture it is
necesgsary to obtain the induced surface current density on the disk. The
integral equation for the surface current density, jé, on a disk centered at
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the origin and in the z=0 plane is
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The incident field may be expanded in transverse magnetic (TM) and
transverse electric (TE) cylindrical modes. For the TM case there is no
magnetic field component along the z-axis and for the TE case there is no
electric field component along the z-axis. An arbitrary electromagnetié
field may be expressed as the linear combination of a TM part and‘a TE

part (see Appendix I). These two cases are treated separately.

™ Mode Excitation

6
The form of the TM mode expansion for the incident plane wave field is

ﬁi(?) = I [E? m(r) cos mé r
=0 ’

+ E° (r) sin m¢ $]e'jkz cos Of (3)
2,m

where 6; is the angle of incidence, the angle between the direction of pro-

pagation and the direction of the positive z-axis. The corresponding form

[
of the induced current distribution on the disk is

Lo - e T+ K5 tn m5 ] )
(@ = z [Kl,m(r) cos mp r + Kz,m(r) sin mé ¢ (4)



Using the representations (3) and (4) in (2) yields coupled integral ‘

equations for K? m(r) and Kg m(r) to be solved for each value of m. They are
3 L)

a
Eim(r') = j—% f[Gm_l(r[r') + Gm—i-l(rlr')] Kim(r)rdr

o
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s 2 oG (o) (5)
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where

T e—jk'VQ;;r')2+2rr'(l-cos¢)
6 (rlz) = : cos médg )
o Jkr—r')2+2rr'(1-cos¢)

Apparently G, as shown above possesses a logarithmic singularity at r-r',
Since (7) must be evaluated numerically a more convenient form is needed.

After some mathematical manipulation (7) becomes

w/2
Gy(zleh) = 2[

o
2 -

2 r-r'
T K [1— (r+r' > ] ' (&

.
R = J(r-r')2 + 4rrf sin2 8

[e'ij cos(2m6)-l] /R éde

where

and K is the complete elliptic integral of the first kind. Note that the
integral in (8) does not possess a singularity at r=r' and may be evaluated
ﬁumericélly.

A different singularity appears to occur when r'=0 and r=0 unless a
restriction is placed on the current expansion. The evaluation of (7) at
r'=0 yields

~-jkr

Gu(rlo) = m = 5 (9)

where §,, is the usual Kronecker delta. In order for the respective integrals

in (5) and (6) to remain integrable at r=0 the following is required

K? 0(r) —3 (const.)r (10)
' r=+0



The physical equivalent to (10) is the requirement of a finite charge

distribution at r=0.
Another restriction to be satisfied by the current distribution 1s
the radial component of the current must vanish at the edge of the disk.

That is,

k% (a) =0 (11)
i,m

for all m. Further note that one may set

0
K2,O(r) =0 (12)

Because of the singularities in Gm the derivatives of the integrals

must be evaluated carefully. If the derivatives are taken inside the integrals

the integration is performed by using Cauchy principal values. To avoid .

this additional complication the derlvatives of the integrals will be

evaluated numerically by using finite differences.

TE Mode Excitation

The form of the TE mode expansion for the incident plane wave field is

ﬁ%(?) = I [Eo (r) sin mo r

m=0 I,m

- E; m(r) cos mé &] e~Jkz cos 8y (13)
E]

And the corresponding form of the induced current distribution on the disk is

«©

js(?) = T [Ki m(r) sin m¢; - Kg,m(r) cos mé &] (14)

m=0




Using the representations (13) and (14) in (2) yields coupled integral
equations for KCI) m(r) and KZ‘ rn(r) to.be solved for each value of m. The
b H]
form of the integral equations 1s exactly the same as (5) and (6) when the

following transformations are made:?

K& (r)—K°® (r) N\
1,m 1

] s

(o] e
Kz m(r)———>K2’m(r)

(15)

b

B (r)—E® (1)
2,m 2,m

In order to have a finlte charge distribution at r=0
K& (r) = (comst.)r (16)
2,0 r+0
Another restriction to be satisfied by the current expansion is
K9 (a) =0 17
l,m
For convenience one may set

o - :
Kl,O(r> 0 (18)

for all r.



NUMERICAL SOLUTION

Because of the inherent complexity of the integral equations for
the induced surface current demsity an analytic solutlon appears to be
virtually impossible to obtain. Therefore a numerical solution technique,
namely the method of moments,7 is employed. Moment expansions that satisfy

the restrictions on the induced surface current densities are

N aéf%(;:fp)+aém)(rp+l-r)

K = Z - U(r; s 19
l’m(r) p=1 rp+1 rp <r’rp+l rp) ( )

and (@) (m)

N ,(m m

B8 -r_)+8 (r_,q-1)
Ky p(f) = I pr1 (T8 (Fpu UCesz, g, T) (20)
. P=1 rp+l-rp
where

<
rp"r<rp+1

) 1
U(r3Tp41sTp) ={
0 otherwise

r, = (p-L)Ar , Ar = a/XN

(m)
[s

=0
N+1
a(o) =0
1
(0) 2
Bl 0

If (19) and (20) are substituted into (5) and (B), and the resulting
equations are satisfied at r=rp, p=1,2,...N, a system of linear equations

are obtained for the ap's and the Bp's. This procedure is sometimes referred
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to as point matching or colocation. The resulting system of equations

is
2N+1

Z 1(mI,N)F(m,J) = r'(m,I)
J=1

where I=1,N and J=1,N

T(m,I,J) = % [Fl(m—l,I,J) + Fl(xt+l,I,J)
r

+ F2(m-1,I,J) + F2(m—i~l,I,J)]

+ 2
k(Ar)2

+F6(m,I+1,J) = F6(m,I,J)]

+rJ_1[FB(m, I+1,J) - F3 (m,I,J)]

-rJ+1[F4(m,I+1,J) - F4(m,I,J)}§
for I=1,N and J=1,N+1
M(m,I,J+N) = — IAL [Fl(m—l,I,J) - Fl(m+1,I,J)
T
+ F2(m-1,1,J) - F2(m+1,I,J)]
2m
+ — [F3(m,I+l,J) - F3(m,I,0)

k(Ar)

+ Fé(m,I+1,J) - F4(m,I,J)]

11

2 [FS (m,I+1,7) - F5(m,I,J)

(21)



for I=1,N+1 and J=1,N

n(w, I;K-N,J) =

for I=1,N+1, J=1,N+1

I{m, I+N, J4+N)

and

F(m,J) @

8

- Erp [Fl(m—l,I,J) - Fl(m+1,I,T)
Ar

+ F2(n-1,I,J) - F2(m+l,I,J):]

- @-;Z[FS(m,I,J) + F6(m,I,J)
kAr

+ ri1 F3(m,I,J)

l

= Ti F4(m,I’J)]S

=k o IF1@-1,1,9) + Fl@@+1,1,0)
Ar
+ F2(m-1,I,J) + F2(m+l,I,J?]

2
- % [FB(m,I,J) + Fa(m,I,J)]

(m)
3 J=1,N

(m) -
I J=N+1,2N+1

4 | E1,m(zD) I=1,N

'(m,I) = - j—

4
Ez,m(rI-N) I=N+1,2N+1

(22)

(23)

The integral functioms Fl, F2, ¥3, F4, F5 and F6 are defined in Appendix II.

It should be observed that the foregoing applies for both TM and TE excitation,

The appropriate modal expansion for the incident fields are given in Appendix I.

12




At this point the induced surface current denslty may be obtained by
solving the foregoing system of linear equations using the digital computer.
Obviously a system of equations must be solved for each modal current.

6
Andreasen who treats the body of revolution suggests that the maximum

number of modes needed is

m|  ~ kasin 8y + 6 (24)
max .

for ka sin 64 X 3 and mfmax + 1as 65 > O,

‘13



SINGULARITY EXPANSION METHOD

According to the singularity expansion method the natural frequencies
may be obtained by searching for the zeros of the determinant of the fore-
going system matrix I(m,k). From this point forward in the analysis the
Laplace transform frequency variable s = jck is used for the frequency.

Thus the natural frequencies are obtained from

det | N(m,s) = 0 (25)
g=s
a
for frequencies s, independent of the index m. Note that the natural

frequencies for the TE modes are the same as for the TM modes.

The solution for the induced current distribution is

F(m,s) = T (d,s)T (m,s) 26)
for each mode. Applying the singularity expansion method (26) becomes*
M. (m)
F(m,s) = I ——— C @) (m,s) 27)
a S-S, ¢

where Ma(m) is defined as the natural mode vector and is the solution to
the equation

M(m,s,)M,(m) = 0 (28)

and Ca(m) is referred to as the coupling vector, and satisfies the equation

I{T(m,sa)Ca(m) = 0 (29)

The Ma(m) and Ca(m) are normalized according tot

o | S I@s)| M@ = 1 (30)

®
Here the class II form for the coupling coefficient is used.
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Actually F(m,s) represents the mth cylindrical mode contribution to
the current distribution. Summing the cylindrical mode contributionms,
see (4) and (l4), yields the final form for the current distribution. The
foregoing (25)-(30) apply for both TE and TM excitation. For TE excitation
use the TE mode field components in I' as defined in (13) and (23) and for
T excitation use the TM mode field components in I' as defined in (3) and
(23).

To obtain the time domain response of the induced current distribution
on the disk the appropriate Laplace transform of (27) is evaluated. It isS

syt

T e &
F(m,t) = ¢ U(t)Ma(m)Ca(m)P(m,sa) (31)
o 8y

where U(t) is a diagonal square matrix of unit Heaviside functions which

serves to enforce the requirements of causality.

15



SCATTERED FIELD

Once the induced current distribution of the disk is known then the

scattered field may be readily determined. The electric field is

‘ -jkR
>s _ . > . 2 e
ES(r) = - JZ‘I%(._ [(Js Y+ k 351 = ds (32)
and the magnetic field
Hl(r)--(;fsva s (33)
S
where
e~JkRY /. 1) " JkR -
and
-jkR aln ‘
F v : =3 k% (T RIR + -é-(jk—i-é-)
PPN ' —'ij
= |le
. [B(TB-R)R-JS;]%R (35)

> = > o ->
with R=r'-r and R=R/R. Note that J_, is given by (4) or (14) depending upon
the mode of excitation. The far field approximations to (32) and (33) may

be readily determined by neglecting the R™2 and R™3 terms appearing in (34)

and (35).

In order to verify the numerical procedures that are employed, low

frequency excitation may be considered and the equivalent dipole moments of

the scattered field obtained. These are

-> 1 >
P, == [ Jgds (36)

0-
- e
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> 1 -
MO=-2-erJSdS ‘ (37)

1
From using a quasi-static approximation it is found that

3; = Egﬂ a3 [(X.Einc)x + (Y'Einc)y] (38)
-5 A ~
My = - £ 3G ER): (39)

substituting the current representations (4) and (14) into (36) and (37)

yields

4T e )

Py = Eg.J/‘ Kl,l(r> - Kz,l(r)] rdr (40)
o -
& o e

= _T -

Poy“;;f K,1 Kz,l(r)err (45
o b
a ,

e
My, = - ./ro Kz,o(r)rdr (42)

At low frequency (40)-(42) may be compared with (38) and (39) to check
the numerical solutions for thé components of 35.

The field penetrating an aperture in an infinité plate may be determined
by applying the elect;omagnetic form of Babinet's principle. As discussed
previously the field transformations (la) and (lb) are used with the
scattered field from the Babinet equivalent disk to determine the field
diffracted by an aperture. The scattered field from the disk is given by

(32) and (33).

17



CONCLUSION

The problem of the electromagnetic field penetration through an
aperture in a perfectly conducting plate is formulated by using Babinet's

principle. A numerical solution for the induced current distribution on

the Babinet equivalent disk is developed. This numerical solution is
formulated both as a direct moment method solution and a singularity
expansion solution. Finally computational procedures for determining
the penetration field of the aperture are discussed and a low frequency

check on the computational procedures is proffered.
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APPENDIX I

For convenience consider a plane wave propagating- in the direction
9 =1~ 6; and to be polarized in the direction forming an angle Gp with
the unit vector -8, Here 8 is the usual polar angle of the spherical

coordinate system. Therefore the incident electric field may be resolved

into two components

=i R Ny
= - +
El El 8 El v (Al)
where
E" = E_ cos © e—jk(z cos Bi-x sin ei) (42)
1 ° P
E% = B, sin ep o~ik(z cos 8i-x sin 83) (A3)
Then by the principle of superposition each component of ¥l is considered .
to be a plane wave. The magnetic field associated o will have no z

component - a TM wave. And the z component of E1 will be zero - a TE wave.

™ case

If the electric field E? is expanded in a Fourier series and Ef’set

equal zero, then (Al) yields

o 4

ﬁi(?) = I [%T m(r) cos m¢
=0 !

+ E° (r) sin m¢ ¢] e_jkz cos 81
2,m

where
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e - Ll .

El,m(r) = cos Gp cos ei e J Jm(kr sin 6i) Eo
EC (r) = cos 6 cos 8, € j lm Jm(kr o ei) E
2,m D i ma kr sin ei o

with (r,¢,z) as the usual cylindrical coordinates and e, 28 Neumann's

number.

TE case

is expanded in a Fourier series and E’ set

1
If the electric field E 1

1
equal zero, then (Al) yields

>i > ® o -
El(r) = ZO [%l m(r) sin mé¢ r

m= :

+ Eg (@) cos md)qb:} o~Jkz cos By

where
J_(kr sin 8.)
o _ o+l Tm i
El,m(r) B sin ep td P T Rr sin Si £y
e _ . m+l Y \
Ez,m(r) = gin ep amj Jm(kr sin Bi) EO
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APPENDIX II

The various integral functions used in I(m,I,J) are defined here.

Fl(m,I,J)

For J # I+1, I>1
’ CAr
Fl(m,I,J) =f (u+rJ_l)Gm(rIfu+rJ_1)udu
o

Ar
r7-rr_1-u

N f (u(-rJ-l) K rI+rJ l-i-u du
i rI+rJ_1+u I'°J-1

where

m/2
Gululv) = 2 f %Ea-ij cos(Zme)-l] /R

o

de

R = 41(u-v)2 + 4uv sinze

' 2 4 6 8
K(g) =la, + ayz” + a0 + azt + a,zg

2 4 6 8] 2
—bo+blz; +b2; +b3; +b4; inz

rp = (I-D)ar

ry = (J=-1)Ar

Ar = a/N
a, = 1.386 294 4 bo = 0,5
a; = 0.096 663 443 bl = 0.124 985 94
a2 = 0.035 900 924 b2 = 0,068 802 486
az = 0.037 425 637 b3 = (0.033 283 553
2, = 0,014 511 962 by = 0,004 417 870
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For J=I+1, I>1

Ar
Fl(m,I,J) =f (‘rFrJ_l)Gm(rIfu-f-rJ_l)udu
o]

(1-8)Ar
2 / (whry_{du . TI-Ty_i~u
rrtryogtu ry¥ryoptu

du

"o

+ (Ar)2 a7
where
= ArS
ar ag - 2b° [zn(—er)- 1] %6
§ ,§ 0.1
For I=1
-jkAr -
[gj (1+ikAr)-l] . 3er_1
. K2
Fl(m,I,J) =
0
F2(m,I,3)
For J # I+1, I>1
Ar

F2(m,I,J) =f (rJ+l-u)Gm(rI[rJ+1-u)udu
o]

Ar
+2 (Tpp~wu g | TpTpgte |,
r_+r
Q

T og41™% | TpFEgggu

23

m=0

otherwise



For J=I+1, I>1

Ar .
F2(m,I,J) =/ (rJ+l-u)Gm(rI[rJ+l—u)udu
o

1-8)Ar
SRR T [ S50
o
+ (an)? 95
For I=1
jkAr ., _ - -jkr
[e (1=-ikAr) 11 e J+1 =0
¥2(m,1,J) =
0 otherwise
F3(sz,J) .

For J # I and J # I+1

Ar
F3(m,I,J) =f Gy (ry futr;_)du
o

AT rz-rJ_l-u

+2 S T rptr g tu du
rI-!-r I 1+u
o

For J=I+1
Ar
F3(m,I,J) =‘[ Gm(rl. [u+rJ;1)du

o

Ar

1 rI—rJ_l-u
+2 — X du
f s A T s Sk al
SAr




For J=L

Ar '
F3(m,I,J) =f G, (rr ]u+rJ_l)du
o

(1-8)Ar i - -
+ 2 7 T R |_L _Jd-1 du
S AN 58 rytrg_ tu
o
Ar
+ 3 9
T1
FéngIEJ)
For J# I and J # I+l
Ar
F4(m;I,J) "f Gm(rI IrJ_’_l"u)du
' o)
Ar - +
rI+rJ+1"u rI+rJ+l'u
o]
For J=1
Ar
F4(m,I,J) =f Gm(rI]rJ+1-u)du
o
. Ar 1 < rI-rJ+1+u du
SAr
Ar
+7-4q
rI I
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For J=I+1

. Ar
F4(m,I,J) =f G (r_r -wdu

o)

(1-8)Ar L r1-T et i
+2 T+, .=u R TS
I “J+1
o
Ax
+2q
rI I

F5(m,I,J)

For J # I, I>1

T
F5(m,I,J) =f Gy (ry vy _Fuludu
o

2 Ar 1 rI-rJ_l-u d
—— | udu
f rlEFr J_l'-FE rtr J_1+u
o

For J=I, I>1 N

Ar
F5(m,1,J) =f Gm(rI{rJ Fe)udu
o}

1-8)Ar
1 Tr—ry-1"4
+ 2 K udu
f(o rI+rJ— 1+u rI+rJ- l+u

(Ar)z
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For I=1

Ar —jk]rJ_1+u‘

f e udu m=0
o frJ_1+u]

0 otherwise

5 (m,I,J) =

F6(m,I,J)
For J # I, I>1

Ar
F6(m,I,J) =f Gm(rI 'rJ_*-l-u)udu

o)

4+ Ar 1 % rI-rJ+1+u
[ CARR TS I 3 A S i uds
o
For J=I, I>1
Ar
F6(m,I,J) =J' Gm(rIfrJ+1-u)udu
o
, (1-8)ar FITTgelte |
+ rfro v K TyFrypi-a |Udd
o]
gAr)2
+ q
r I
I
For I=1
Ar
—3k(r g -w
J. e udu m=0
o Ey+1™4
F6(m,1,J) =
0 otherwise
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