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Absgtract

The axial currents and inlLerconductor voltages induced on a
coaxial~cable model are calculated when the cable is illuminated by
an incident plane electromagnetic wave. The model comprises a central
cylindrical conductor shielded by a concentric pair of unidirectionally-
conducting shells, whose conduction angles and separation are arbitrary.
In the low—frequency limit, the currents and voltages iuduced by the TM_
portion of the incident field are singular as (w 1n w)~ T, while those
induced by the TE, portion approach constant values as w+0. The shielding .-
effectiveness parameter, defined as the ratio of the induced current on
the center conductor to the total current on the structure, is determined.
Aa equivalent transmission-line circuit incremental model iz also found :
and its parameters expressed in terms of the physical cable parameters.
Numerical results are presented to illustrate the analysis. It iz found
that the wodel characteristics approach those of an ideal coaxial cable
when either shell conducts in the axlal direction and/or the shell separa-
tion becomts small. Perfect shielding may also be obtained, for a cable
of realistic dimensions, 1f the conduction angles of the shells are nearly
p ‘tpendicular., -




I. Introduction

The problem considersd in this note is that of determining the induced
currents and voltages on a particular model of a coaxial cable, when it is
illuminated by an incident plane wave. The transmission-line characteristics
of the model are also to be found. The objective is to model certain
features of a realistic braided-conductor shield and to examine the effect
of varying the model parameters on the effectiveness of the shielding and
the characteristic impedance and propagation constant of the transmission-
line mode.

In the present instance, the significant feature of the shield model is
the existence of two preferred directions of conduction, a characteristic of
grids of crossed wires. Although we are able to take into account the fact
that the wires are connected in a real shield (in the sense that there is
no potential difference between the unidirectionally-conducting shells), the
model prohibits gonsideration of the finite optical coverage characteristic
of an actual braid shield. As a consequence, the extent to which the
structure analyzed in this note represents an actual braided~shield coaxial
cable is open to some conjecture.

In Section II of this note, we obtain the frequency?domain solution for
the axially symmetric part of the electromagnetic field induced by an
incident plane wave. These results are specialized in Section III to the
low-frequency limit, and expressions are obtained for the induced currents
and voltages and the shielding effectiveness. In Section IV the charac-
teristics of the cable as a transmission line are determined and an
equivalent circuit model is obtained. Numerical results are presented

in Section V; the study is summarized in Section VI.
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II. Formulation of the Problem

The geometry of the problem is shown in Figs. (1) and (2). A plane
electromagnetic wave 1s incident upon the cylindrical cable structure at an
angle © with respect to the positive z—axis (the cable axis). The electric
fiel& amplitude in the incident wave is Eo; the polarization of the incident
wave is described by the angle 8. If B = 0°, the incident wave is E-type
(™ Eith respect to z); if 8 = 90°, it is H-type (TE with respect to z).

The cable structure comprises a central cylindrical conductor of radius
a surrounded by two concentric unidirectionally-conducting cylindrical shells
of radii p1 and Pa (pl < pz).' The conduction angles of the shells are al
and a, respectively, these .angles being measured from the circumferential
direction. Thus if & = 0°, the shell conducts only in the circumferential
direction; if o = 90°, it conducts only in the axial direction. The mediun
between the center conductor and the inner shell is an essentially lossless

(¢ = 0) dielectric of permittivity ¢ In order to model the fact that the

1°
braid wires are electrically connected in a real coaxial-cable shield, the
medium between the inner and outer shells Is assumed to have a finite dc
conductivity Oye Its permittivity will be assumed to be €53 for simplicity,
we shall write €y for 32(1 +'02/jwc2) in what follows. The permeability of
each region is B, and the medium outside the structure is free space (so,uo).
The time-harmonic electromagnetic field, which is assumed to vary as

exp (jut), is expressible in each region In terms of two scalar functions

¥ and ¢ which satisfy the scalar Helmholtz equation:

—_— — l f—
E = =¢ — W
®x & a, + Tae V x 7 x Ya_ {la)
'ﬂ'zvx'{’;+—-]—'—-vxv><¢: (1b)
z jup z ‘
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a<p<p ' €=€,

pi<p<p,i€=¢€, h <1 |

P2<P: €=¢€,

Fig. 1. Geometry of the problem: cable structure and incident S
wave direction. " .



Fig. 2. Geometry of the problem: incident
wave polarizatien.
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in which ;z denotes the ualt vector Lo the z-directioan and

W+ 15 m =0 . ' (2)
k2 = mzus; ¥ and ¢ generate respectively the TM and TE portions of the
electromagnetic field.

It i8 easy to show [l] that only the axial.y symmetric TM portion of
the electromagnetic field induces axially-directed currents on the conductors.
Since it is these currents which are of principal interest, we shall hence-—
forth consider only that part of the electromagnetic field which 1s
independent of the azimuthal coordinate ¢. Furthermore, since the cable
structure and the plane-wave excitation are axially uniform, all field
components will vary with z as exp(-jkzz). Inspfar as the induced fiwlds

are concerned, kz = *kocosﬂ, with ko = wfuoeo. Now denote a typlcal

axially-symmetric field quantity Ao(p,z) = Ao(p) exp(—jkzz); we find

~ "k d*‘ -~ —k d¢
E :——z_-.._o, H = Z_O
fals) we dp po wy dp
A -

- do ~ d¥

= 2 - - — 2
E¢o T dp H¢o dp (3)
. k2 _ k2 . . k2 _ k2 .
E =e———Zy H =——2E2y
zZo Juwe o] zo Juwu o

in which ?o and ¢0 satisfy the zero-order Bessel equation

1 d dR. 2
pdp(p—do+). R =0 ; (4)
2 2 2 » »
AT = kT - kz and R = ?O or @0. Henceforth we shall drop the "o subscripts,

understanding that only the axially-symmetric part of the field is being

- L.
considered. We now construct appropriate solutions for ¥ and % in each

region and solve the resulting boundary-value problem.
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In region 1, a < p < pl, Y and ¢ are chosen as follows:

.
(1) _ I . _
¥ =3 [Jokhlp)Yo(kla) Jo(Ala)Yo(?\lp)l. (52)
d-( *
1y _1Ip 1 i ;
¢ 3,008 0a) = JNGLa)Y Ged] . (5h)
A, = k2 - k2 k., = 20 es imes d te diff tiati with r it t
l 1 z 1 W Llot.l, primes enote 1 Eren ation L egpec o]

H
the argument; ; is the unknown current on the center conductor ‘and P is a
coefficient to be determined, The functional forms are chosen so that Ez
and E¢ vanish on the conducting surface p = a.

The determination cof the coefficient P, as well as that of others
occurring in the problem, follows from the '"sheath conditions" imposed at
a unidirectionally-conducting surface [2]. These conditions require that

1. The electric field component parallel to the conduction

direction vanish:

Ez sin o + E¢ cos a = 0 3 (6a)

2. The electric field component normal to the conduction

direction be continucus:

Ez cos o — E, gin o = continuous ; (6b)

¢
3. The magnetic field component parallel to the conduction

direction be continuous:

Hz sin o + H¢ cos o = continuous . (6c)
If the first condition is imposed on the Field components generated by ;(1)
and ;(l) at p --pl, we find the value of the coefficient P:
= — tan o EE s (7
jwsl 1 Wl




in which ’ .
W, = Joya)Y (dypd - JoGge Y (A ) (8a)
‘a'2 = JD(Ala)YO(Alpl) - JD(Alpl)Yo(lla) . (8b)

This completes the solution for the fields in the iInner »st region to within '

-
the value of I.

L] o~
In region 2, py <P < Dy ¥ and ¢ are chosen toc be

o2 | %l [3,(0,0)Y (e ) - Iy (e )Y (Ag0)]

N

+ %L [Jo(lzp)Yo(Azpz) - JO(AZDZ)YO(AZD)I (9a)

@ %l [3_(A,0)TE o) = TEO,0 )Y (hpe)]

+ 2[5 0,92 (p,) = TL( 0 )Y (Agp) ] (9b)

2 ' )
where lz = k% - ki R k2 - wzuocz, and in which the coefficients A, B, C, D

are to be determined. Applying the firat sheath condition at p = p, and
p = pz, and the second and third sheath conditions at p = pl yields expressions

for these coefficients ag follows:

oy R% W6 -1
A = —E—n[coa al cos o, + ;E'ﬁ" sin al sin azJ .
3
2
2
AW W 1Y)
12 3 7
{sin oy tan oy cos a, 5 [11 ﬁ—-+ hz E—J .
kl 1 5
Ez*i Walg
+ cos @, cos a, [Alwq + Az ——;E-—ﬁg— {10a)
E1%2
2
E A W p——
271 "2
B=-—§'ﬁ-— - - (10b)
EL A 6
172




—_
C= - 325— A tan oy ;ﬁ {(10¢)
2 5

2
D= jiiz izié ;ﬁ-tan @ (104d)

12

in which

Wy = I (R;p)Y Gja) - JE(yqa)y (e ) (11a)
W, = Jo(xla)Y;(Alpl) - J;(llpl)‘lo(kla) (11b)
Wg = J;(lzol)‘fc‘,(?tzaz) - J;(Azpz)Y;(Azpl) (1ic)
Wg = Jo(gpy)¥, Appg) = T ()Y (Aoey) (11d)
W, = Jo(thl)Y;(Azpz) - J;(lzpz)'i’o(lzpl) (1le)
@- Wg = J (0,0 (hopy) = 100,07 (gey) (11£)

This completes the solution for the fields in the region between the shells

L

to within the value of I.
L. L.
In region 3, p > Pos ¥ and 9 are given by

A jwe E
¢33 . © 81n8 cosB 3, p) + QHiz)(Aop) (12a)

A

o WO

~ ~jup E
PAC) —52-2 sin0 s1ng I (1 p) + si®a oy, (12b)
2n oo o o
oo
. , 2 2
in which the scattered-wave amplitudes Q@ and S are unknown; Ao = ko - kz

and n, = Vug?eo denotes the characteristic impedance of free space. Applying
-
each of the sheath conditions at p = Py permits a solution fer I, Q, and

S to be obtained in terms of the incident field amplitude Eo. We obtain for I:

o




- BkoEocosaz_sin 8 )"
1 = "poé I3 cose, cosf Ho (lopz)
- sino, sind sirB RS2 (A p.)] (13)
2 o o' 2
in which
2,2
AW _AC)
b —220 10002 u® 532 - sina, eine H(Z)(R o }21
jwe, t 2 %0 Mo¥2/ 2 o o2
13
o (2) (2)
- ¥ jmso cosx, H (lopz) Ho (kopz) . {14)
A is given in eq. (10a) and
2
AT W
2 F2%1 21
F = )\_cosu [AW - —
y4 2 7 ﬂkzpz c 12 WG
172
2 2
A A €A, W
+ 2 sina, [CW8 + jmz 2 % EELNA2 tanal] . (15)
2 e a5 "5 2Py
172
The TM scattered-field amplitude factor Q is given by
2
_ Jwe E £E_A ~
Q= 75 1 { g e cosf siné JD(AOpZ) + == 22 AWBI} . (16}
H (A p.) A 4e, A
o o2 o 270

The TE gcattered-field amplitude factor 5 is not of interest and is not
considered further. This completes the formal solution for the axially
gymmetric field quantities.

In the following section we obtain expressions for the ilnduced

currents and voltages valid in the low-frequency limit.

10
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IIT. Induced Currents and Voltages in the Low-Frequency Limit

It is convenient to treat the cases 8§ = 0°

8 = 90° (TE incident wave) separately.

(TM incident wave) and

appropriate superscripts and consider the TM cas-: fir.i.

We shall denote the currents with

In the low—frequency limit, the valuea of the expreasions Wl through WB

become

2 20

3 30

40

5 50

W, + W60

Wy * W

WS -+ WSO

In this limit, the coefficients A, B, C, D, P, and F are constants with

respect to frequency, given by

| ]
= =
lowra=
o
e
1

ERISY
)
[ d

EN

EN N
i=]
b

1l

(17a)

(L7b)

(17¢)

(17d)

{1l7e¢)

(17f)

(17g)

(17h)




W

A+ A = lcoso, cosa, + _50 gino, sina =1 .
o 1 2 WSO 1 2

=

{cosal cosa2 [1 +

L 3

60

e T
= Nh~ S
|

S
St

2

X p,W p.W +
+ ~% sinul tana, cCOSG, [a; 20 + IWZO]} {18a)
k] 10 P2%s0
'Aiwzo
B+ B m —— {18b)
o k%
1760
c+0 (18c)
D+0 (18d)
- A W
P+ - L tana, ﬁZQ (18e)
o Juey 10

W
F+F = [cosa cosa + 20 sina, sina ]_1 . P———JE——J .
o) 2 1

1 i WSO 1 ﬂpzcosa
P, W p W Az
2 60 2 1 2 20 71 2 a 2
3 W sima, + = cos g, ﬁ-——--——z-ainul+—5-cosul
50 10 ky 1
2
A W [#] a]
+ —%-ﬁzg-—i [sinal cosa, - ~2.31n02 cosal]z} . (18f)
ky 50 P2 Pl

In the low-frequency limit, the dominant term in 4, given in eq. (14), 1is

_AgFo (2) 2’
A+ Ao ne ijo cose, HO (Aopz)Ho (1092) . (193

We may now consider separately the two cases mentioned above.

fIn this and the expressions to Follow, we have used the fact that

e,(1 + szjwﬁz) + =i agz w + 0,

12




. (= 0% TM ¢xcltaltion

If B = 0% one uses the various limitlng forns given above to show that

-~ -~ 4 cosa
- ITM -1 ™ _ o 2 : (20)

o p
2 (2)
[WT]nvo Ho (ADDZ] Fo

e -
it is apparent that IEM igs singular as (w ln w) l. It will be noted that

this behavior is identical to that of the current Induced on 2 bare conductor.
Thus the TM-induced component of the time-domain current on the center
conductor may be found using the results cobtained by Barnes [1].

The total cable current in the limit, I s 1s given by

to
. {3
I = Linm 2mp, B0 (o) o
to w0 2 ¢ 27 'B=0
N
403
= lim -—2np2 P
w0 P P=P s g=0
®-
4Eo
= D - (21)
nvo Ho ('\op2)

Now defining a “shielding effectiveness parameter” e . I:M/I?: , we find

W

+ 60 5
cosa,; cosa, |cOS®; Cose, w sina, sine,
rTM - 50
2
2 %0 2 Yoo M1 P1
oW sin az + cos az W7 a sin cxl + cos 0‘1
°1 “so 10 k]
2
AT W, 0 p
- + --;— 201 [sinal cose, - 2 £|:I.nc:r.2 cosal] } . (22)
k] "s0 P2 P1
) As a partial check, consider rTM in the special case a, = o @ = 30°, and

2 1
Py = Py- This corresponds to a single unidirectionally conducting shell and

normal incidence of the ililuminating wave. We find
. e

13




2

It] n _
rTM + [l + 2 1In ;}‘ [p—z—i'?} t’anzull 1 {(23)

1
which is identical, except for notational differences, to the result obtained

by Latham for this case [3].

B = 80%: TE excitation

If B = 90°, one uses the various limiting forms given to show that

-4 E 8inbd sina
[] 2

STE |, $TE _
4] n F
o o
E
= - 27p 2! 5in8 tane rTM (24)
2 |n 2
o
and that
*TE
oy M —43 A W I
IEE -+ I:E = o 60 o -0 . (25)

(2) 2
H ™ (A p,y) sin™8

Thus a plane wave of-TE polarization induces no net cable current; the inner-
conductor current is a constant with respect to frequency in the low~frequency
1imie. Hence unless 8 = $0°, the induced current from the TM part of the
incident wave is dominant in this limit. The induced current on the center
conductor is thus given egsentially by the expression (20) multiplied by
cosB; the total cable current is given by the expregsion (21) multiplied
by cos8, when B # 90°.

1t is of intereat to point out thoae conditions under which perfect
shielding is obtained. These are, from eqs. (22} and (24), the following:

(1) cose; = 0: the inner shell conducts in the axial direction;

™. I'F . 0. ST
(2) cosa, = 0: the outer shell conducts in the axial directicng

™ 2 0, but I°F 4 0.
[+ [»]

14




X

(3 sinaz ='0: the puter shell conducts in the circumferential

direction; IzM ¥ 0, but IZE = 0,
0 ™  _TE
(&) cosa, cosa, + ﬁ;g sinalsinu2 = 0 IO = Io = 0.

E ] - TE - TM -
Pir &g 9 Gy IO I° 0.

() o,
Condition (5) reflects the fact that the two shells with zero separation
provide infinite conductivity in an arbitrary tangential direction and thus
form a pexrfect shield. In a realistic shield, condirion (4) above is

essentially equivalent to cos(a1 - a = 0. This occurs because the factor

2)
w60/w50’ which depends only on the ratio pzlpl, is unity when pzlpl = 1 and
drops only to 0.9241 when pzlp1 = 2 (which is a thick shield indeed!).

Thus perfect shlelding 1s obtained when the conduction directions are

mutually perpendicular, for a cable of realistic dimensions.

Induced voltages and shield currents

We may now consider the induced interconductor wvoltages. The voltage
between the center conductor and the inner shell ﬁco is defined as follows,

in the low-frequency limit:

. . k2 21 ~ (1)
Vco - J Epdp = ;EI (¥ (a) - ¥ (Dl)]

p=a

k I
£ ©

2vmel

In plfa

—kocose Io
- ———— In plfa . (26}

Zwmel

15




The voltage between the imner and outer shells Uso is given by

v - 5 P SO PRI
so o wey Py = p2)]
1
=0 . 27)

The fact that %so vanishes in the low-frequency limit is a consequence of

the fact that we have assumed a non-zerc dc conductivity in the region between
the shells. Thus this assumption 18 necessary in order to obtain a realistic_
model of an actual braided shield, The thickness of the shield region

Py 2P L, is agsumed to be much less than a skin depth, so there i3 no

power absorbed In the shield over the frequency range of interest.

The currents on the two shells IEl and 132 are given by
Isl = IO(Ao + Bo - 1) (28a)
IBZ = Ito - Io(Ao * Bo) 3 (28b)

but since the voltage between these two conductors 1s zero, we need not

consider the currents separately. The total shield current“Iao is simply

- ~ ~

so Ito - Io ’ (29)

This compleies the derivation of expressions for the induced voltages
and currents in the low-frequency limit. In the followlng subsection, we

present some speclal-case results for the shielding effectiveness factor . .__

™
.

Shielding effectiveness factor £ special cases

The two special cases we shall consider are a) the counterwound cable,
@, = o=y = ooy and b} the cable with thin ghield, pzfpl - 1 << 1, Both
cases are of substantial practical interest. The results for rTM are given

below:

16




a) counterwound cahle:
W
cosza[coszu - 80 sin a)
W
50
£ )
Pz Yo . 2 2 P2 21 ¥ 2 2
—-—sina+cosa a——2~——sna+cosa
Py 50 kl "10

=

A.’Z

1 720 ’ !
—2—‘3— Bin o cos cx

kl 50

b) thin shield: £ = pzfpl -1 << 1.

(30)

§ cosa, cosa, cos (al - a?_)

{ [91 20 *
Ea——
10 k

™
r =

=
=k

2 2
sin u.l + cos ul] +

N

=
™

(] R

Woq p—2- sing,cosa, - p—l- sinazcosal] } (31}

a) and b}: counterwound cable with thin shield:

2k

2 2
rTM - £ cos u{cgt o - l} s (32)
8] A
£ cotza + — Y 20 —-:-l-‘- + 27W cosza L
a W_.,2 20 2
10 kl kl

The result (32) is of most interest from a practical gtandpoint, gince it
corresponds to most realistic cable geometries.
In the following section, we consider the characteristics of the

coaxial~cable model as a transmission line.

17




IV. Transmission-Line Characteristics of the Model

In this section we gshall consider the behaiior of the coaxial cable
model operating in its transmission-line mode. The propagation constant
kzt for this mode 18 cbtained by setting the denominator of the expression

on the right—hand side of eq. (22) equal to zero. We find that

0., W
ccsza —2-—gg-sin2a + coaza
2 ) 1 Py WSO 2 2
kS fky =1+
zt' 1 2
20 |1 )
T - s.‘ti.rzt:'tl(:t;)sot2 - -p—— sinrxzcosul
50 /P2 1
p, W n. W
+ 1 ﬁgg sinzal{—g-ﬁég sinza2 + coszazJ} . (33
2 %0 P1 ¥s0

Incorporating the assumptions that the cable shield is counterwound and thin,

we obtain

2
2 2 £ cot’ a
kzt/kl 1+ (34)

)
P1

2 a2 -1
1n plfa [4 cos“a + 2&[1 - ——J ]
The result (34) indicates that kzt + o ag o + 0; and kzt -+ kl as o -+ 90°
and/or £ + 0. It is interesting to note that under the assumptions used to
derive the expression (34), rTH = 0 1if cctza =1, but kzt # kl in this case.

The tremsmission~line parameters for the structure are readily found.
Considering the total cable current Ito as a gource term in the voltage-—

change equation, we have+

dv
co

dz _jm(LiIo - LeIto) ’ (35)

where Li is the "internal” and L, the "external®™ inductance per meter of the

cable. With the help of eq. (26), we obtain

+The case whe.reglEb = 0 by virtue of the fact that B = 90° (TE excitation)
is considered in the Appendix.

18




- H
Q 2 2
Li oy In plfa (kzt/k]) (36)
TH™
Le = rl Li (37)

where r{H denotes £ as given in (22), (30), (3I), or (32) with 6 = 90°

(Ai - k%). Using eqs. (22), (33), (36), and (37) we obtain for L, in general

T
coso. co8c, | cosa, cosd,, + E-gg-s::[mt ainn
1 2 1 2 W 1 2
[uo] 50
L = 3

m p P 2.
2 1 2
0 ——-sinalcosu2 - E_ Binuzcosal
™so P2 1

2p W
+ nawl sinzalfig-ﬁgg-sinzaz + coszaz]} . (38)
10 ?1 “s0

For the case of the counterwound cable with small shell separatiomn,

- L = [uo} g;gosza(cotza - 1)
e

o — . . (39)
2w 3 cosza + 2g(1 - azfpi) 1
The current-change equation is simply
dI° i} —2ﬂjw€1 v
dz in plfa co
= —jutV__ (40)

in which C denotes the capaéity per meter of the line; hence from (35}, (36),

and (40), the line characteristic impedance Z_ is given by

n py (k
1 1 zt
zo 27 in a [kl J ’ (41)
with n, = ruofel.

From the transmission—line equations (35) and (40) we construct the

equivalent circuit for a length AZ of the line shovm in Fig. (3). The

19




1, (2) — L,AZ |, (Z+AZ)—
)
\ — UL () .
Voo (2) ____ Caz V,, (2+52)

Fig. 3. Equivalent circuit for an incremental length AZ.

20




imperfect shielding of the cable is manifest in the presence of the voltage
Bource ijeItoﬁz in speries with the internal inguctance LiAZ. We may also
use the transmission-line formulas to construct an expression for i which

u
ugeg the line parametera directly. Defining Lo - E% In pl/a, the internal

inductance per unit length of an i{deal coaxial cable, we have

L /L
rTM - e 02 , o (42)
Li/LO - cos B/crl

where £, = sl/eo.
In the following section, we present and discuss the results of some

illustrative numerical computations.

21




V. Numerical Results
We have carried out numerical ccmputation Cf_kit/ki - Li/Lo, and Le,Lo'
These quantities are the ratios of the internal inductance per unit length
and the external inductance per unit length to the internal inductance per
unit length of an ideal coaxial cable. Using eq. (42) the shielding
effectiveness parameter may be readily calculated for any combination of
desired (note that 0 j_coszafer

9 and ¢ < 1).
r =

1 1

Each of the calculated quantities depends on the four geometrical
parameters 219 Bo» plfa, and pzfpl. We shall restrict attention to the
counterwound case as being of the greatest practical interest, thereby
reducing the number of parameters to three. The results for this case are
presented in Figs. (4}-(19).

In Flgs. (4)-(7) we show the variation of Li/Lo va. a for pzlpl = 1.1,
1.2, 1.3, 1.4, and 1.5 and pl/a = 2.0, 3.0, 4.0, and 5.0. Le/Lo va. o for
the same parameter values ia shown im Figs. (8)-(11). One will note that,
as the equations predict, the line characteristics more nearly approach those
of the ideal coaxial cable as plfa increases and/or pzfplwdecreases. In
order to show more detail in the curves of Le/L0 va. o, we have shown
segments of these curves (a > 30°) with an expanded ordinate scale in
Figs. (12)-(15). The vanishing of Le/Lo for o near 45° is evident.

In order to Show the variation in the shielding effectiveness parameter

rTH with the angle of Incldence @ and the relative permittivity €,.1s Curves

of rTM vs. (ccs&)/ferl for plla = 3.0 and 5.0, pzlpl = 1.1 and 1.3, and

various values of o are glven in Figa. (16){19). One will notice from the
curves in the figures, as well as from eq. (42), that for a given angle of

incidence & # 90°, the shielding is improved as e, 13 Increased. The worst

1
T is in this worst case

possible shielding occurs when 8 = 0 and e = 1; r

1
given by

22
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=
+

, =
[=a)
o

ba ]

1
=l =
wy

tanul tatlﬂ.z

(43)

tanza

|
+
¥

50
or if the cable is cowmterwound with thin shield,

rTH = coa 2a . (44)
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2.0
P
-t'.'l— = 2.0
1.8 -
1.6 -
Li
LO
1.4
1.2
1.0 Y ’ . ' —
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Fig. 4. Normalized internal inductance per meter vs. at pl/a = 2.0.
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Fig. 7. ©Normalized internal inductance per meter vg. a: plfa = 5.0.
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VI. Summary and Discussion

In this note we have calculated the axially symm2tric parc of the
electromagnetic field which penetrates a rcertaln coaxial-cable model when
it is i1lluminated by an incident plane electromagnetic wave. The currents
and voltages induced on the cable conductors were found in *- low-irequency
limit. It was shown that unless the incident wave i5 polarized with its
electric vector normal to the cable axis, the induced ecurrents (and voitages)
are singular as (w 1m m)-l. The time-domain behavioer of these quancities can
thus be found with the help of [1]. In the case where the incident wave is
polarized normal to the cable axia, the induced currentes and voitages are
constant with reapect to frequency in the low-frequency limit. Thus the
temporal behavior of these quantities is simply that of the incident field.

The effectiveness of the two concentric unidirectionally-condneiing
ghells as a cable shield depends principally on thelr conductioﬁ angles
and separation. It was shoun that when the conduction angles of the shells
are unequal, perfect shielding is obtained when the shellg have zero
separation. If the separation is not zero, perfect shielding for the
dominant component of the induced current is obtained if either sheill {or
both) conducts in the axial direction. Perfeet shielding 1s alsc chtained
for a cable of realistic dimensions 1f the conduction directions are
perpendicular.

The characteristics of the model as a transmission iine have alsec been
derived. The line is a slow-wave structure for all values of thec conductlon
angles and shell separation®*, and the characteristic impedance of the Iline

is greater than that of an ideal cable of the same dimensions. The wvoltage

*other than zero.
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source to be incorporated into the incremental circuit model of the line has
been found.

The numerical exploration of this prcblem has been limited by reascn
of time to the most Important case from the practical standpoint, the
counterwound csble of realistic dimensions. More extensive calculations
of the case for which the conduction angles are not equal and oppogite may
be carried out in the future.

The question of whether or not rhis model accurately represents a
realigtic braided-shield coaxial cable is not resclved. Clearly the gpecial
- —q

case p2 = behaves similarly to an ideal coaxial cable, the

P> % 2
deviations from the ideal being of first order in the shell separation as

long as a ¥ 0°. Yet, as was mentioned in the Introduction, tiue finite

cptical coverage of a realistic shield is not a feature of this model; and

the fact that the coptical coverage is not unity may turn ocut to be the most
important source of imperfect shielding in coaxial cables.

For reference, we include in this summary the various formulas pertinent
to the counterwound cable with small shell separation snd o in the neighborhood
of 45, The formulas sre less accurate than those given previously, but
they display the effect of the shell geparation and -conduction angles as,
simply as possible under conditiocns of near-perfect ghielding,

a) intermal inductance per unit length

U P 2
=g gt (L 550
b) external inductance per unit length

uoE

- 2 2 _
Le = B (cot™a 1)
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¢) characteristic Iimpedance

n p 2
z, « 2% 1n o4 [1+.L59_9_9__]

o 2u 8 In pl/a

d) propagation constant

£ csczu ]

kzt = k1 [1 + 8 In pl/a

e} 8hielding effectiveness (cosza < Erl)
2
™ E(cot™n — 1)

roF 1 3
4 in p,/a {1 - cos B
1 [ erl ]




Appendix

In this Appendix, we derlive the voltage-~change equation for the case
in which the incident wave is polarized with its electric vector normal tc

the cable axis. We consider the source current in this case to be

Ioeq = — 2wp2 Hosine . (A1)

in which Ho i3 the amplitude of the magnetic field of the 1lluminating plane

wave, We have

cho

dz

= -3l T+ Jul Imq > (A2)

where Li is given in Eq. (36). Asauming that the wave is normally fncident

on the cable, we readily obtain

1

O
Lel Li-f——— = tana2 Le (A3)
oeq

vhere Le is given in Eq. (38). Thus in this special cagse, the voltage source

in the equivalent circuit of Fig. (3) would be juw tanu2 Le Ioeq AE.
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