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Abstract

This paper summarizes, in handbook form, the definitions,
formulas, and pertinent parameters required to determine the
terminal response of a TEM multi-wire line to an arbitrary electro-
magnetic field impressed continuously along the line, or, in
particular, as a space impuise at any point along the line, including
its terminals. The line model is based on a set of simplifying
assumptions which are explicated. Examples of determination of
terminal matrices in terms of physical impedances are discussed.
The response of a two-~conductor line above ground is analyzed in
detail as guidance in handling a typical problem.
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ASSUMPTIONS

1. All conductors (including shields and ground planes, if any) are
lossless, of arbitrary cross-section invariant in the direction of propa-
gation.

2. The dielectric is lossless, homogeneous, and isotropic. (See
Appendix B). |

3. The impressed fields* are independent of position, in any trans-
verse plane, over the region occupied by the conductor system (including
shields and‘gfound planes) (see Appendix B).

4, If a grdﬁnd plane is present, the impressed magn?tic field is
parallel to that plane. In any case the magnetic field is assumed to lie
in tﬁc line'’s transverse plane.

S. The impfeséed electric field may have any direction normal to the
magnetic field.

Most of these restrictions may be removed at the expense of varying degrees

of increased complexity of analysis.

DEFINITIONS
1. The line. The cable (including shields and groﬁnd plane) consists
of (N + 1) conductors, one of which is taken at reference or 'ground"

potential, while the potentials of the remaining N conductors are referred

* That is, the impressed fields that would exist in the region of the cable,
and in the space between cable and ground plane (if any), in the absence
of the cable system. '



to it. This system of (N + 1) conductors is called an N-line. If a
ground plane is present it is usually taken as the reference conductor;
if not, then the cable consists of (N + 1) conductors, any one of which
may be taken as reference. If the cable has an overall shield contin-
uously connected to ground, that shield is usually taken as refercnce.
If it lacks an ovgrall shield {and there is no ground plane), but one
or more of the cable conductors has an individual shield, any such
shield may conveniently be taken as reference. If there are no individ-
ual shields, and no ground plane is present, any one of the conductors

may conveniently be chosen as reference. Figure 1 shows some examples.

When a ‘groimd plane is present, the distance between cable and ground
may be of importance to the accuracy of numerical calculations. Accuracy
or even solvability, may also be affected when the line terminations are
such as to reduce the number of independent line currents below the rank
(i.e., the N-ﬁumber) of the line., For instance, for the problem discussed
in Appendix B, we have at every point of the line

I +1,=0
so that although the line is a 2-line, there is only one independent cur-

rent. Under some conditions this could lead to computational difficulties.

2. Coordinate System: Magnetic Field. In Figure 2, the rectangular
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(g) Any conductor may be taken as reference; however, symmetry
conditions suggest it may be convenient to use the middle
one. N = 2,
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(h) Conventional two~wire line far from ground., N = 1

Fig. 1. (Concluded)




coordinate system 1s chosen as follows:
1. The z-axis is parallel to the impressed magnetic field, desig-

nated Hj. Thus the z-axis is in the line's transverse plane.
2. The x-axis is parallel to the direction of TEM propagation.
3., The y-axis completes the right-hand co-ordinate system.

3. Electric field. Since the impressed electric field is normal to H:,

it has components Ei and E;. However, only E; affects the TEM response
of the line; Ei is involved in the scattering behavior of the line. Con-
sequently Figure 2 displays only the components Hi and E; of impressed

fields.

4, Location of line in coordinate system. Schematic designations. In

Figure 2 the left end of the line is at x = o. Line and termination param-
eters, and line dynamic quantities associated with this end carry the super-
script "i'" (for "input'). The right end of the line is at x = . Parameters
and quantities associated with this end carry the superscript 'o'" (for
output). The upper line segment labelled "N represents the N conductors
which are not ét,reference potential. The line segment labelled 'G"

represents the reference conductor.

5. Voltages and currents. Label from 1 to N, in any convenient sequence,

the N independent conductors not used as reference. Use subscripts to
associate particular quantities with a given conductor. For instance,

V;'= input potential, jth conductor
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Fig. 2. Schematic, N-line excited bv external electromagnetic field.




IE = output current, kth conductor

(Note that the sign convention on currents is positive in the direction of
increasing x).
Write

i
Y

column vector of input potentials
Myl ]
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vector of output potentials’
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vector of input currents
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o
I = column vector of output currents



At any point, x, along the line, write
V (x) = voltage vector at x
= v “
v, (x)

Vo (%)

,FVN(X)

I (x) = current vector at x

= I (x)]

I, (x)

L,

-t

6. Matrices of impedance; admittance, capacitance, potential, and

inductance coefficients. Associated with the conductor system and depend-

ing only on the system cross-section geometry and the electromagnetic

properties of the dielectric, define the line impedance coefficient matrix
Z= (zij)’ i, j=1, ..., N

and the line admittance-coefficient matrix

-1 .
Y = Z_. = (Yij), i,j=1,..., N




These may be determined electrostatically as follows:
_Y_=VE=V [Cij], i,j =1,..., N

Cij are the Maxwell's coefficients of capacitance for the line (See Sec-

tion 14)
v ='velocity of TEM propagation = quE;
u = magnetic permeability, Hy./meter
¢ = dielectric permittivity, Fd./meter
Z = v! ¢l y'l P=vl (P31, 1,3 = 1,000y N
pjj are the Maxwell's coefficients of potential for the line (Section 14).

Although not necessary for assessing the line response, we have,

also

£=VL=V[Hﬂ,iJ=1“H,N
Lij are the line inductance coefficients (Section 15)
Clearly,

Y=vircs=T

|3

I =N x N unit matrix
This result yields sufficient independent equations to determine the Lij’

given the Cij-*

7. Termination Admittance Matrices. Figure 3 shqws'an N-port
driving-point admittance. The (N + 1) st terminal, normally connected
to the reference conductor of the N-line, is indicated by a ground symbol.
Suppose a potential, Vi is applied to the kEh-terminal, while all other
terminals are grdunded. Then current flows into each terminal, propor-
tional to vy, The coefficients of proportionality are elements of the

termination matrix provided by connecting the N-port to the line.

* provided C is non-singular
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Let Xg represent eitherVZ} or X?: Xé = [Y?P]’ jsk = 1,..., N
d . . .
where Y‘k is the coefficient of proportionality in
J
. d _ .
lj = ij vy (v; =0, 1 # k).
By reciprocity,
y¢ = yd L, k=1,..., N

kj jk
and by superposition, if the potentials applied to the terminals are

arbitrary,

N
iv=12 Y% v , 3= 1,000, N
Kk

or, in matrix motation,

i=xy.

8. Determination of !é. The defining procedure for determining

the elements of the termination matrices is given in the preceding section,
where X} and X? are given the generic symbol Xé. Appendix A gives some
simple examples, including terminations with singular matrices and one
termination for which the definition, and therefore the matrix specifica-

tion, fails. An artifice for circumventing this difficulty is suggested.

9. Impressed-field coupling parameters.

a. Define _
ES(x) = ju L® H (x)

where w = anQ L?‘is the magnetic field coupling vector*

L= [L5] ,i=1,..., N (Hy.)

* that is, a column matrix, not to be confused with field vector quantities,
such as H§ k, where K is the z-direction unit vector.

11



L? is the magnetic field coupling parameter for the iEE-Conductor. The
i

quantity (—L? Hi) is that portion of the flux per meter of line passing

between the iEﬁ conductor and the reference conductor due to the external

field Hg. E?(k) has units of electric field intensity (volts/meter), and
appears in the_line equations as a series voltage-generator vector* per
meter of line (i).** Fundamentaily, L? is measured by determining the
magnetic flux passing between the ith conductor and reférence when no
‘current fiows;iﬁ any conductor, that is, with all conductors ''floating"
with respect to reference (See Section 16).

b. Define

HE(x) = - juC® By (x)

where C® is the electric field coupling vector*

=10l ,i=1,..., N (Fd.)

C? is the electric field coupling parameter. The quantity (-C? Ej) is

that portion 6f the electric charge per meter bound on the itl conductor

by the external field E?. ﬁ?(x) has units of magnetic field intensity

' (amp/meter), and appears in the line equations as a shunt-current generator
vector* per meter of line (1).** Fundamentally, C? is measured by deter-

mining the charge bound on the ith conductor when all conductors are at

reference potential, i.e, "grounded'. (Section 16)

10. Normalized load admittance matrices. The load admittance matrices

* see footnote, p. 1l1.

** cf, Fig. 2
g : 12




. Y and Yo, are normalized by pre-multiplication with the line impedance

11, Miscellaneous Notations.

B=u
Y
8” = Bx
6 = B

S = (E_i + _lf_o) cosd + j(I + P° gi) siné

U(x) = [M(E®(E)cos[B(x-E)]-jZHE(E)sin[B(x-8) 1) dE
0 )
PS W(x) = Y [F(ZHO(E) cos [8(x-£) ]-E° (§)sin[B (x-£)1)dg
0
K(2) =z [W(e) - YOu(e)]

COMPUTATION OF DYNAMIC QUANTITIES

12. Voltages and Current at any Point Along the Line and at the
Terminals. [1] o
_\L(x.)v:' (I cose” + j ?_i sing”) _S__-IE(Z) + U(x)
vi - §_'1 K(2) |
v® = (I coso + j P* sing) S7F K(2) + U(L)

I(x) = -Y (P} 20s8” + jIsine”) S-1K(2) + W(x)

e

a - Yh sl k@) + W(R)
1° = - (_Y_'_i cosé + j Y sin@) 7! K(&) + W(2)

Note that these equations require that S be non-singular.



13. Special Cases:

Forms of equations in section 12 remain the same but U, W, and K

have the special values

U (x) = ¥ E%(8) cos[B(x - )] d&
o]
Wo(x) = -3 igx g_e(r,) sin [8(x - 8)] d&
@) = - [*(6° cos (8% - )] + 5 L sin (B4 o £ d@
.0
b. E; 5;5;  Hi = constant, independent of X.

Again, the forms of equations Section 12 are unaltered, but U, W,

and K take the special values

Ux) = §? sin Bx = g? sing”
B B
W(x) = ihgf (1 - cosBx)
iB
= lhgf (1 - cosg”)
jB
K.(2) =

1 [I(1 - cos8) - jg? sinf] g?
i8 ,
where

e‘; . e e
E = jw L Hz

c. Elementary Example: An example of a two-wire line above ground

(N = 2) excited by a uniform magnetic field, Hi, is discussed in Appendix B.

The results show that the potential across the input terminals of the line

14




is proportional to the difference in coupling parameters of the two conduc-
tors, to the velocity of propagation, and, of course, to the impressed
magnetic intensity, This potential is a complicated function of the line
electrical length and the load admittances* normalized to the odd-mode
characteristic admittance of the line.** When the line is a half-wave-
length long, the latter function becomes simply the reciprocal of the
normalized common load admittance.

On the other hand, the potentials of each of the conductors to ground
constitute a different story. The analysis shows that these potentials go
to infinity like cscé as 6 - w.. In reality, of course, the line has some
losses, due to finite conductor and dielectric conductivity, as well as to
a small amount‘of radiation. If o represents the attenuaﬁion constant of

the line, then the potential buildup is limited only by the quantity cosech (af).

Another example, the response of a three-wire system, far from ground,
is given in Reference 3.

LINE AND FIELD PARAMETERS

14. Definition and Determination of Maxwell's Coefficients of Capaci-

tance and Potential. Maxwell's coefficients are defined in terms of elec-

trostatic concepts. Let a set of constant potentials, V, be applied to
the conductorS'pf an N-line:

V=[v;] , i=1,..., N

* assumed equal at the two terminals.

** The odd-mode characteristic admittance is the admlttance of the semi-
infinite line excited at one end in such a way that equal currents
flow in opposite directions in the two conductors.

15



Let q = [qj], j = 1,,.., N be the resulting electrostatic charges on the

N conductors above ground. The quantity

:
is generally different from, but may be equal to zero. However, if the

reference [(N +71) st] conductor is included we have

N+1
I q; =0
j=17

always.,

The coefficients of capacitance are defined by

a=cy

C= [Cij]’ i,j =1,..., N
For measurement or analysis this definition implies

Yk

For various properties of the Cij see Reference 4. For methods of deter-

=0, k#1

mining capacitance see References 4,5,6.

As stated in Section 6 the coefficients of potential are determined

from

_ _ =1
E'[pij]'c |
provided C is non-singular. Singular C indicates an improperly stipulated
model, However, C can be sufficiently close to singularity so that inver-

sion yields large error. In that case the model may need to be modified.

16




15. Definition and Determination of Inductance Coefficients, Lij'

The inductance coefficients are defined in terms of magnetostatic
concepts. Let a set of steady currents, I, flow in the line conductors:
I=1I;] ,i=1,..., N

The quantity

is generally different from, but may equal, zero. However, if the refer-
ence conductor is included,

N+1

L I. =o0
i=1 %

always.

As a result of the currents, I, magnetic flux, ¢j’ per meter of

line passes between the jtN conductor and the reference conductor, such

that

' ;IILI
¢j—i=1iji

>

, 3 =1,..., N

which defines the inductance coefficients, L.
then

e=LL
For measurement or analysis this definition implies

bij = %5

17



However, as indicated in Section 6, the Lij may be computed from electro-

static parameters according to

L=1_C =p /v
ve

16+ Definition and Determination of Impressed Field Coupling Param-

e re
eters Li’ Ci

The impressed field coupling parameters, L? and Cg, have already
been defined in Section 9. A method for determining both sets of parameters
through electrostatic concepts is discussed in Reference 2. Results for the

special case of small round wires are given in that reference.

The system of conductors to be studied is conceived to lie between
parallel planes so oriented that, at large distances from the conductor
system, lines corresponding to the impressed magnetic intensity are parallel
to the planes. Cdnéult Figure 4 which shows a system of three conductors
above ground. In this case, the ground plane takes the place of one of the
parallel planes‘mentioned above. In the absence of a ground plane the par-
allel planes are chosen so that the conductor system is approximately half-
way between thém. The planes are chosen sufficiently far from the éondugtor
system so that dynamic reaction from the conductor system does not affect
the field at thé pianes. kParallelism of magnetic lines at the edges of the
planes is maintained by introducing magnetic boundaries, either analytically,
if the parameters are to be computed, or by the use of "guard planes' if they
are to be measured. In Figure 4; solid field lines are magnetic lines gener-

ated By io&foéquéncy currents I and -I flowing in the planes,

18
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The dashed lines represent electric field lines generated by potentials :Vs ‘
on the parallel planes, if no ground is present, or potentials V® and zero

if one of the planes is a ground plane.

In order to determine the inductive coupling parameters electro-
statically, potentials + Vs, or VS and zero are applied to‘the parallel
planes. The conductors of the actual system (other than the reference con-
ductor) are permitted to '"float', so that they carry zero charge. The

potentials of the various conductors are then determined. Write

where V; is the pétential of the iEh.conductor. Then it is shown in refer-

ence 2 that, fqr'a system with a ground plane

e .
Li = Lim (ukiD)
Do

where D is the distance between parallel planes. When no ground plane is

present,

e .

L; = Lim [u(k,;-k,)Db]

1 Dovoo 170
where

kg = Xﬂ

VS
V, = potential attained by the reference conductor and D is half

the distance between parallel planes.

The same coefficients, ki, in conjunction with the capacitance coef-

ficients, Cij’ for the line under investigation, may be used to compute the

20




‘ cS.+ Thus, when a ground plane is the reference éonductor,

i
cs Lim [D Pk G ]

v, = = in . '

S

For a system of (N + 1) conductors without a ground plane,

e N '
C, = - Lim [D £ (kj - k,) Ci:]
t Do j=1 or

Consult reference 2 for sample calculations.

* This is in spite of the fact that the C% are defined fundamentally in terms
of grounded, rather than floating condfictors. It is shown in Reference 2
that the floating configuration may be used instead, thus obviating the
need for solving an additional electrostatic problem.

21



APPENDIX A

Determination of Z} or I?: Typical Elementary Examples

Figure 5 shows a series of examples of elementary possible terminations
and their admittance matrices, Xé.

(a) is the'conventional termination for a two-conductor line far from
ground plane (N = 1). |

(b) is the conventional termination for a two-conductor line near ground

(N = 2). Note that the termination matrix is singular.

(¢) is a general termination for a two-conductof line near ground. Note
that its matrix is singular if Yl = Yz = 0, (which reduces it to case (b));
or, if Yz = o and either Yj or Yy is zero. Thus, if necessary, the singu-
larity in (b) caﬁ be removed temporarily by introducing a small Y;, or Yp,
eventuatly permitting it to tend to zero. Analysis of case (b) for an
externally-impressed, uniform magnetic field shows that difficulty occurs
only when the line length is a multiple of half wavelengths, and then only
in determining conductor potentials with réspect to ground, which become
infinite. This is not really a breakdown in analysis, since such a result
is to be expected in the idealized system assumed. Actually, even for
this extreme case, the potential difference across the line remains finite

for finite resistive terminations. See Appendix B.

Case (d) is a common one presenting no difficulties. At (e) we have

a termination that could represent a pair of conventional two-conductor
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Fig. 5. Examples of termination networks and their corresponding
termination matrices. (Concluded on next page).
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lines, far from ground, coupled to each other. One of the conductors is
taken as reference, so that N = 3, Again the termination matrix is singu-
lar; remarks similar to those concerning case (b) should apply, that is,
potentials across each line (1-2 and 3-4) should be finite for resistive
“terminations, but potentials between conductors of different lines (1-3 or
2-4) can become infinite for line lengths of half-ﬁaveleﬁgth multiples.

Case (f) is case(e) with the conductor sufficiently near ground so that
N = 4,

Case (g) represents a breakdown in concept. The definition of,Y?k for
terminals 2 and 3 fails, since a voltage cannot be applied to these ter-
minals ungrounded, in order to measure resulting currents for applying the -
definition. A suggested way around this difficulty (not fully tested by
this writer) is to introduce large finite admittances between terminals
2 and 3, and ground, as in (g7).

A possible configuration giving rise to the situation in Figure 5(g)
is shown in Figure 6. ({left-hand end). The difficulty would not be resolved
if the shields were also grounded at the right-hand end, but left separated
in between. However, if the shields are in continuous contact along the
whole line length, they may then be treated as a single refereﬁce conduc-

tor, the line becomes a 2-line, and the appropriate terminal diagram is

Figure 5(d).
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APPENDIX B

Response of a Two-conductor Line Above Ground to a Uniform Transverse
Magnetic Field (Plane Wave Incident in the Transverse Plane, Electric
Vector Normal to Plane of Incidence)

In this appendix a simple example illustrating application of the infor-

mation in Sections 1-12 is discussed.

Consult Figure 7, which shows a line consisting of two conductors above
‘ground, with equél terminating conductances, G. By Section 1 this is a

2-line (N = 2). The line impedance matrix is (Section 6)
£_=( 11 12)
Z210 222

The termination admittance matrices are (Section 7 and Figure 5(b), Appen-

i 1, -1
Y=Y =0
-1, 1

The normalized load-admittance matrices are (Sectionl0)

dix A)

pO

u
|
-
"
™
o
I
™y
R
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o GROUND
/77 /77 /77

Fig. 7. Schematic, Two-wire lines above ground N = 2,
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Define

Zy; = odd-mode characteristic impedance, conductor No. 1, with

respect to ground

= (Z11 - Z12)
282 = odd—mode characteristic impedance, conductor No. 2, with
respect to grouﬁd
= (Z32 - Z1)
so that 8 0
. : Z -Z
. 1’
Pl =p0 =g ( 01)
- - 70 0
o Z02’ z02

We have (Section 11)

s = 2P cose + F[L+ (P1)2] sine

' ZO, <70 ZO,-ZO
e (e
“Zogs Lol \-Zgys Iy,

where

| 072 4 70 -0 Cr(70 2 « 20 0

= g2 ( [(Zg))% * 25y Zg,15 [(Zg))° * 25, Zp,]
Ee90 12 4 70 50 0 y2 4 50 50

[(Zg)% + Zgy Zg,0s [(25,0° * 25, 24,)

Define (see footnote **, p.l15, Section 13)

28 = odd-mode characteristic impedance of the line

01 02
Then
0, -0 70 o 70
o2 - @2 ( Zoryt 20 0 "Iyt % )

50 0, 50
Zy 0 * 292" g



and we have

S S
l ]
S = ( 1 12)
S210 Sy
0 70 2 20 <0 70 20 @2
Zo1” “Zo1 s (1 + G5 Zgy 20)s =25y 25 C
=2 G coso 0 0 + jsing 0 — 5 0 .
Zozr Zgo “Zgp T 6% (1 ¥ G724, Zp)
Thus,
0 ) 2.0 _0,
Sll = 26 ZOl cosg + j(1 + G ZOI Za) sind
0 2.0 0
Si2 = -2G Zp; cos@ - jG Zg1Z2¢g sine
S,; = -2G 2§, cos® - j6228,28 sine
0 0 0 .
S22 = 2G Zg2 cosd + j(1 + G2 Zg2 Zg) sing
Next,
~f S22, - S12
D, Sl = )
s ————
- \-S21,  S11
where

Dy = ‘511 S0 - S12 521,= det of S.
Straightforward substitution and reduction yields

D, = jsin® {26 28 cosd + j[1 + GZ(Zg)Z] sin6}
For uniform H;, and Ej = 0* we have (Section 13)

K(2) = 1[I (1 - cose) - j PO sine] E®

L
1B

We compute only the input voltage, X}. We have (Section 12)

* A plane wave, with Poynting vector in the line's transverse plane, and
with electric field normal to the plane of incidence, has incident and
reflected components which combine to yield this type of field, provided
the cross-section dimensions of the whole system are much less than a
wavelength. See subsection of this appendix entitled "Effects of Assump-
tions".
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<
H

s k)

o1 ( Saps ’812) K, (2)
s
‘521’ 511 Kz(z)

i

_ D‘l( S, Ky (&) - 5y, Kz(z))
> -Sz1 K3 (&) + 831 Ko ()
where
K (&) = jé'{(l - cos9) ET - jG 281 (Ef - Eg) sin6}
Kp(2) = 1 { 3G 2§, (ES - ES) sin6 + (1-cose) ES)

L
jB
By substitution and reduction V? becomes

Vi = 1 {[2G cose (1-cos®) (Zg, ES + 2§, E) + G 28, (E% - ES) sin2e]

e

jBDg

C s e € , G2 70 (70 E€ 4 70 Ee
+.j sin® (l-cos®) [El + G Z0 (202 E1 + ZO1 Ez)] }

Yz = 1 { [2G cos® (1-cose)(282 Ef + 281 Eg) -G 282 (E? - Eg) sin2g]
8D A
i si - e 2 70 (50 £€ , 5,0 re
* j sing (1-cos®) [E2 + G Z0 (202 El + 201 Ez)] }
where
Dy = j sin® {26 2§ cose + j [1 + G? (20)2] sine}

Evidently the factor, sin®, in Dg suggests sharp resonances at 6 = mm,
m an integer, unless the numerators for V? and V; also go to zero at least
like siné at 6 = mm. As 6 > mm, we have
m . 0 .
D, ~» (-1)" j2G Z¥ sin®
s 0
For m odd, the numerators in V% and V% both tend to
-4G (29 E® + 20 E®
(0251 01 2)
which, in general, is different from zero, indicating that indeed, both
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potentials are resonant. The potentials appear indeterminate for m even,
but further analysis shows that, in fact they become zero. For m odd, the

sharpness of resonance is limited by losses which have not been taken into

account.

Also, for m odd, although V; and V; tend to infinity separately, the

difference VI - vi
1 ‘2
V% ] Vi i (l-cos8) -jG 28 siné (E? _ ES)

2 jB{Zngcose+ jl1 + 62(23)?] sine}

is finite; in fact,

which, for instance, tends to
E5 - E5
jaczl
0
as 6 - w:

(See Sections 9 and 16 on determination of E?, Eg)

Effects of Assumptions

Before concluding this appendix it may be well to emphasize some of the
assumptions on which the results are based. First, as has already been
pointed out, losses have been ignored. These, of course, have a profound
effect in reduciné the largest potentials resulting from exfernal field
excitation. Second, the field has been assumed uniform ét the conductor
system, including the space between conductor group (e.g., cable) and ground.
For higher frequencies (say up to 108 Hz), this assumption places consider-
able restriction on cable height above ground and/or grazing angle (comple-

ment of incidence angle) for a plane wave producing the field. Thus let
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amplitude of magnetic intensity

it

angle of incidence on ground plane

<-
]

~height of cable above ground

=
"

(assumed at least five times cable diametcr)

such that the relative variation in magnetic intensity between ground and

cable is

e e
HY (0) - Hy(h)

2 sinz(%.sh cos )

2 sin?(mhcosy)
: A

where A is the wavelength of the impressed wave.

If the asgumption of constant field is to be rcasonable, then a<<l,

i.e.,

2 sin® (vh cosy ) = Zﬂz(h)z cos2y<<1
x- x

or

h cosy << 1 =0.,225
A v

For various angles of incidence we have

. h
¥ (deg) cos Y X much less than
0 1 0.225
30 0.866 . 0.260
45 0.707 0.318
60 0.500 0.450
90 0 o
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Finally, we must consider the possibility that a group of conductors
above ground may be assembled in the form of an unshieclded cable, so that
the assumption of homogeneity of the dielectric is violated. Under the
assumption of é lossless system, such an arrangement affects primarily the

capacitance coefficients of the system (Sections 6 and 14),.

Consider an unshielded cable of N conductors at height, h, above ground.
Initially, lei h be large. According to Section 14, the coefficient, Cij’
is determined by placing a potential, Vi’ on the iEE.conductor, setting all

other conductors at ground potential, measuring the charge on the jgl

conductor, and computing

Ea

Cii =

Iy

vy
V, =0, k{1
But, regardless of the cable dielectric permittivity, when all conduc-
tors except the ith are grounded, and h is large, almost all electric field
lines leaving the ith conductor will end on the remainiﬁg conductors in the
cable, and the variation, with h, of the distribution of these lines among
the various conductors will be small. Thus, for large h, the Cij are inde-

pendent of h. The higher the permittivity relative to air, the smaller h

may be without significant effect on the values of the Cij'

However, it is also true that the larger h and/or the relative permit-

tivity, the more nearly singular the capacitance matrix becomes, and the
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more prone to error on inversion.

As -h tends to zero, the pvacise balance between capacitance and induc-
tance coefficients, given by (Section 6)
ne=v2leuel
ceases to exist, and cable behavior can no longer be analyzed in terms of
C alone. In fact, transmission is no longer in the TEM mode. Separate

investigation is required to determine the seriousness of this deviation.
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