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Abstract

- This note presents the singularity expansion terms for
first order poles, deriving them from an appropriate, but some-
what arbitrary, integral equation. After presenting the equa-
tions for the natural frequencies, modes and coupling vectors,
the coupling coefficient is considered. Various forms of coup-
ling coefficients are derived from the integral equation and
coupling coefficients are also generalized to coupling operators.
All of these coupling coefficients and operators satisfy the
pole residue requirement but have different forms for complex
frequencies not equal to the appropriate natural frequencies. A
convenient notation for the integral operations in the formulas
is introduced to simplify the form of the equations and make
summaries somewhat more compact for presentation.
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coupling
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I. Introduction

The singularity expansion method (SEM) has been discussed
in several notes in various of its theoretical aspects and the
electromagnetic responses of a few_specific geometries have been
calculated using this technique.l’7 The basic idea involved in
this technique is to expand the solution to an electromagnetic
interaction problem (antenna problem, propagation problem, or
any linear problem (not necessarily electromagnetic)) in terms
of the singularities of the response in the complex frequency
plane. Such singularities can take various forms such as poles,
branch points (and associated branch cuts), essential singular-
ities, and singularities at infinity. For restricted classes of
objects, such as finite size objects in free space, these s-
plane singularities are limited to poles and possible singular-
ities at infinity. However, in certain cases (at least) the
coupling coefficient form(s) can be chosen such that the singu-
larities at infinity are not present or are in effect contained
in the coupling coefficients.

This note considers only the case of first order poles as
the s-plane singularities. Other forms of singularities are ig-
nored. There may be higher order poles in special cases but
such are neglected here. This note is then somewhat tutorial in
that it sets down the format of the singularity expansion in a
simplified form. Various subtleties are neglected in this note
in the interest of simplicity of presentation. .)

The general problem is illustratgd in figure 1. We have
some finite size object described by r&€V or S although one
might also include infinite size objects if other than poles are
included in the response. Figure 1 shows a plane wave incident
on the object, However, other types of electromagnetic problems
are also appropriate for singularity expansion such as antennas
driven at some source region (gap) for which some source field
takes the place of the incident wave in an interaction (or scat-
tering) problem. In general singularity expansion would seem
applicable to any physical system described by linear eguations
(including scalar, vector, tensor quantities) such as in acous-
tics, mechanics, circuits, etc.

In constructing a singularity expansion of the solution of
some electromagnetic boundary value problem one needs to first
formulate the problem in some set of equations which admit of a
unique solution. There are many ways to go about this. One of
the more general ways to formulate the problem is to set up an
integral equation in the form

3 ~ ~
[ Z 2. 2s - 3@ eav = B2,
i 5) - 3

IR % S (1.1) .
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Figure 1, Interaction of an Incident Electromagnetic
Wave with an Object
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where s is the Laplace transform variable (with respect to t)
and a tilde ~ over a quantity indicates the Laplace transform
(two sided). 1In this equation J is the current density response
to an incident (or forcing) function I which might be an inci-
dent electric or magnetic field or some other derived electro-
magnetic quantity which is known (a "given" of the problem).

The kernel is a function of two coordinate sets gnd s and re-
lates the response to the forcing function. Here r' is taken as
the object coordinates over which the integral operator (the
kernel with the integral) operates where r' € V or S. Note that
in some cases the integral equation reduces to one over a sur-
face S with dsS' replacing dV' and a surface current density Jg
replacing J. Without loss of generality we can consider the
case of surface integral equations in the general form of equa-
tion 1l.1.

The form of the singularity expansion of the current den-
sity response for an assumed incident delta function uniform

plane wave (and some other forms of incident waves as well) igl

3(3) >, _ ~ > ->(3) >, _ g, (3) > >,
Up (x',s) = };:na(el,s)va (r') (s Sa) + b (el,r . S) (1.2)

=P

where Wp contains the singularities for s »+ », any essential
singularities, and any branch cuts. The subscript p refers to
one of two orthogonal plane waves arriving with propagation di-
rection e). For other than plane waves the notation can be
changed appropriately. For our present purposes Wp will gener-
ally be ignored and ng will be assumed to be 1.

The current density response for plane wave incidence is
constructed as ‘

FZr,s) = §z(§',s) + §3(§',s)

< (1.3)
x> >, - ~ >(J) >,
Jp(r /S) EOpr(s)Up (rt,s)

where £ is a normalizing constant with dimensions of conductiv-
ity (Sm~l). The singularity expansion is carried further by .
separating the singularities associated with the object in Up
from those associated with the incident waveform in fp as

~ ~
ﬁéJ)(;f,s) = fp(s)ﬁéJ)(r',s)
3 > (1.4)
- >(J) > —"r’(J) >,
Vpo (r',s) + pr (r',s)

(=9




where the object part for first order object poles is

— - >
V@) = DR (s, RV E (s -s )T (1.5)
o 37
and the waveform part is
- E (s) - £ (s)
\7;3) (F1,s) = zo;n @, ,s)"(j) (F1) B Sz < (1.6)

where the object and waveform singularities have been assumed to
be separate in the s-plane.

This brings us to the p01nt of some definitions of the terms

"used in the singularity expansion.

S Natural frequency
This is a complex frequency for which the problem
‘has a nontrivial solution with no forcing function.
Each sy depends only on the object and applies all
over the object.

Natural mode

This is the nontrivial solution at sy (for 3). A
superscript indicates which EM gquantity it applies
to—often a current or current density in which case
it may be suppressed. This can be a vector or sca-
lar (such as for charge) or anything else as appro-
priate. It depends only on the object parameters
including where one samples it on the object.

<+

n Coupling coefficient

This gives the strength of the natural oscillation
in terms of the incident wave parameters. It de-
pends on the object parameters but not on where one
samples the result on the object. It can be fre-
quency dependent as long as it satisfies the residue
requirement at sy. More general forms of the coup-
ling coefficient are also possible.

Coupling vector

This is a term which is used in obtaining the coup-
ling coefficient (evaluated at the natural fre-
guency). For symmetric integral equation kernels
the coupling vector is the same as the natural mode
(for J) within a constant multiplier.

=¥



i Delta function response of object (normalized) '

P A superscript indicates which quantity is being con-
sidered.
fp Incident waveform
Gp Response including incident waveform
ﬁpo Object part of the response
gpw Incident waveform part of the responsg

Rewriting equation 1.1 for the response due to an incident
delta function plane wave of fixed polarization gives

3 o, -
f R(E,Fss) -ﬁ’éJ’ (F1,s)av' = fp(i’,s) ., Fevors (L.7)
\'2

where Ip is the forcing function for an appropriately normalized
incident delta function plane wave. It is not necessarily the
plane wave itself but some modification of it depending on the
form of integral equation used.

Appendix A defines an implied integral notation to write
the various integral operators. In this form and dropping all
additional arguments, subscripts, superscripts, etc. the problem
of the singularity expansion with first order poles in the delta
function response reduces to

Ry
t2

> =

al

<

: Integral equation

(1.8)

3
U

~ -l .
z nava(s - sa) Form of solution
o,

where the domain of integration is V. Again this ignores many
complexities but one purpose of this note is to simplify and ab-
breviate the singularity expansion for the reader. The results
of reference 1 are presented here in continuous operator form
instead of the numerical vector and matrix form in that refer-
ence. The remainder of this note deals with finding the terms
in the second of equations 1.8 from the terms of the first of
these equations, as well as generalizing the form of the coup- .

ling coefficient somewhat.



II. Singularity Expansion with the Coupling Coefficients
Evaluated at the Natural Frequencies

To find the terms in the second of egquations 1.8 first find
the solutions.of the homogeneous equation

f R(F,T':s ) » 3(3) (r')yav' = 08 (2.1)
v [0 o

This gives the natural frequencies sy and the natural modes 3a-
Next with s = sy find for each a the coupling vectors jgy from

f U () « R(¥,T';s )av =10 (2.2)
A\

> .
Note that if K is symmetric then ﬁa(f) is a complex constant
times v, (r).

Next make a Taylor series expansion of the kernel near sy

as
:E > > < ,Q,:; > >
K(r,r';s) = E (s =~ s )"K_(r,r'")
a o
o= &
(2.3)
-+ J
P @ - _l_[_d_mz,;v;s)
o 21 '
2 ds _
s=s
o
where the kernel used in equations 2.1 and 2.2 is just
i > - i > > »
K(r,r';sa) = K, (r,r'") (2.4)
o

Similarly expand 6p near sy as

N@e =, @s )3 Es - s+

(Z1,s)  (2.5)

=g

'
o

where ﬁ& is analytic at sy. Note that p is readily absorbed
into the o index set. Then expand the term associated with the

delta function source in a Taylor series as



4=
I & l[dh‘ (7 )] (
(r) = — I (r,s . 2.6)
o [ ] [ ’
% as” P c=s
o
3 > >
Ip(r,s&) = Iuo(r)

-~

3 ~

Now multiply the expansions for K and 6p and equate to the
expansion for p- The term proportional to (s - sq) 1 gives
the result of equation 2.1. The constant term (s - s4)° gives

-; > > 3> - > : > > - (3) > 3 >
&1(r,r') e U'(x',s )AV' + 11 _(e,,s.) K (r,r') vV (r*)dv' = I (xr)
v ‘o C!.‘ (oA o 1A v C(.l (o3 C!o

(2.7)

Multiply on_ the left by ﬁa(g) in a dot product sense and inte-~

grate over i»‘. Note that .

> -~ ~
j;’/‘;ﬁa(?) oR’ao(z'c’,?')-ﬁ&(?',sa)dv'dv =L3-f5&(§',sa)dV' =0 (2.8

giving
fﬁa(r) I (Dav
o
P _ v o)
nd(el,sa) - > > :; > > —»(3) + (2.9)
f/ ua(r) 'Koc {(r,r') -\)a (r')av'av
VIV 1

This is the general form to which any coupling coefficients for
first order poles must reduce in order to preserve the required
pole residues. This is only a requirement at sy and for other
s # sy the form of fiy can be somewhat different.

Note that in some cases the natural modes for a given sy
from equation 2.1 might be degenerate. In that case the index
set a can have an index to indicate which of the degenerate
modes is being considered. An orthogonal set of the degenerate
modes can readily be obtained if one knows the order of the



degeneracy. For symmetric kernels one can let ﬁa = Ca to get
the coupling coeffjicients for the separate degenerate modes, al-
though almost any pg will still work.

Now let us summarize these results leading to the coupling
coefficients evaluated at the natural frequencies. Drop the
subscripts o, the superscripts, and coordinates, and put the re-
sults in the implied integral (or symmetric product) form. Note
that these results are to be applied for each o, including the
different sy, p, and degenerate modes.

- I
K ;9> =10
Natural frequencies, natural
T modes, and coupling vectors

PR
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I
n
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=¥
o

Q=
U= fv(s - sa)-l + U Expansion near S4
' (2.10)
3 %
I= (s - s,) 1,
=0

Coupling coefficient at Sy




III. More General Forms of the Coupling Coefficients ‘

In section II the value of the coupling coefficient was
found at sy to satisfy the residue requirement at each first
order pole. The coupling coefficients can have various forms
for s # s, and still satisfy the residue requirement at sgy.

To consider thesexformszin a unified manner consider two inte-
gral operators, and %, inverse to each other as

3 3
[ f@ame - Faninmar - i@ - )
\Y
(3.1)
-_Z i - 3 7—> >
83> =TIs(r - ¥)
3 ..+ >
where I is tgeligentity matrix, f&(r - r'}) is the identity oper-
ator, and §(r - r') is the delta function for three spatial di-

mensions.

Convert the integral equation for the delta function re-
sponse from equations 1.8 by a similarity transformation to a

new integral equation as .

<EiE> -1

R

i

.
r

]

§:0>=<8:1> | (3.2)

U2
Ry
F 42

<

-~ e

KLE 1R3> 1<E:8>> =<§;%>

As this indicates we have a new transformed integral equation
with

240

~
-
5>

3 L. :
kernel <8 ;K ;T >, response <§ : ﬁ>, and
> .

forcing function <§ : f>.

One can expand the solution of this integral equation in much
the same manner as in section II, concentrating on the pole res-
idues., Write the solution of the integral equation (at least
for the first order pole contributions) then as

l 7
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where the modified natural modes and coupling vectors are

> = Zﬁ&‘v’&(s - s )7t (3.3)

o

e

<{Bisy) v, >

<+
Q-
]

(3.4)

H
FIV 4

=¥

iy

as can be readily seen by operating these on the transformed
kernel with s = sy and noting the combinations of ¥ and & that
collapse allowing one to invoke equations 2.1 and 2.2.

(s ) >

!
Qo

The solution for the modified coupling coefficient at sy
carries over directly from equation 2.9 to give

3
- - e
i - Y P8(s,) I
. n&(sa) - 3 3 3 (3.5)
>, o S . o o T ‘
R <UO'(.'8_S_<S'K’T> ,\)&>
S=8
a

Expand the derivative of the kernel at s = s, as

U2

=

Y

AN R
|..._l

=N 2

V4

> - <3

- e

5
35<

3.2 .2 -2 N
(B R T+ B R 2T (3.6)

)
i X
S and T together with equations

Using equations 3.4 with 3.1 for
2.1 and 2.2 then we have at s = sggy

) = = f(s_) ' (3.7)

$

Operating on equation 3.3 by T gives

11



0= D A, (s)<T(s) 185 19, >(s - 57 (3.8) .

a

The more general coupling coefficient resulting from this equa-
tion is then an operator of the form

(£,27:8,,8) = fi (s )< T(s) ;8(s )> | (3.9)

which we term a class 1 coupling operator and which for s = sy
reduces to

pu B 2

-> }
(?,E';El,sa) ﬁu(sa)fa(z -z » (3.10)

which is consistent with the requirement of equations 2.10 for
the coupling coefficient at a first order pole. This form of
coupling coefficient has the disadvantage in its general form of
effectively altering the natural mode for frequencies away from
Sqr although there may be some special applications for which

this is useful. .

If g is_used as a matrix instead of a matrix operator, and
similarly # with the requirement

Fs) +8(s) = T (3.11)

then the integral equation and its pole terms reduce to

‘; I S > .
<8.K.T;8.0>=8.%
> e > |
v& = §(sa) * Vv,

- - :"
u&=ua-$(sa)

(3.12)

12
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have

3
<K 8> = &7
i <EiI >
n(s,) = =
> -
<u,Kl;V>
B Zf(s) i (s )3 (s = s )7t
a S((s )

i
m
w
(e}]
Q
<
Q
()
1
0
Q
1
'_l

where cq is also referred to as a coupling coefficient.
also written as

13

(3.13)

This is



% Zﬁa(s)b*a(s S
o
§(s)
§(su)
+ .
§(s) <u ! i’o>

5(5) -> —-’; >
of LUK VD

iy (s) = fi, (sy)

(3.14)

There are various forms that S can take as discussed in a
previous note.l! Let it have the form

~ - 1]
S(s) = ~]f = oSt
T(s)
(3.15)
(sa—s)t'
i, (s) = e fly (8y)
giving
(s,~s)t’ <:ﬁ; fo>> Class 1 coupling
M, (s) = e coefficient for (3.16)

>
> > > turn-on time t'
Uik v

where t' is some chosen turn-on time for the solution, each term
being zero in time domain for t < t'. Some choices for our
coupling coefficients in class 1 are given by choosing t' as

t' = ¢t Type l: time when incident wave first reaches object

Type 2: time when incident wave first reaches posi-
t' =t tion of interest on object (varies with
rl

)

Type 3: time when resultant fields can first reach
t' = t position of interest on object (normally

ty > ti)
(3.17) .

14




All three of these turn-on times satisfy the requirement of hav-
ing the solution terms individually non zero for times at or be-
fore they are needed. 1If one were to take t' > tr then one
would clearly need the additional entire function W as in equa-
tion 1.2 to give a solution for ty < t < t',

The basic feature of these coupling coefficient forms comes
from expanding the transformed integral equation (equations 3.2)
by expanding

7>,

> 3
the transformed kernel <:§';§

~e

> L
the transformed response <:§';ﬁ:>, and

\ 3.
the transformed excitation <:§';f:>

around s = sg. Call the coupling coefficients (operators, etc.)
obtained this way class 1 coupling coefficients. While this
class is defined by expanding and

2 3
<8,1>,

define another class (class 2) by expanding U while keeping

<E, 5>

unexpanded. This will still give the correct coupling coeffi-
cients at the natural frequencies but have a different form for
other frequencies. This is equivalent to expanding the inverse
operator (inverse of

) R
PR
Y 42

< >)

in terms of poles (s - Sa)-l (plus any other singularities) and
applying each term to the transformed forcing function

[ »
4 ’

<:§*;%>

(unexpanded) .

15



Following the same steps, equations 3.1 through 3.4, we
have

et}
Q-

(3.18)

~

s
" Next operating on equation 3.3 by T gives the new form for the
delta function current density response as

~ 3 3
ﬁ'—'z '_f s) ;8 §)>>(s—sm)-:L
< 3 3 3
<uiT(s ) ;1 8¢(s) 1 I(s)> % 3 _
= Z = <—'f( ) ;§(sa) :3>(s—sa) 1 (3.19)

> .3 >
<:p Kl :V

For s = sy the corresponding individual term in the expansion
reduces to the form in equations 2.10. This defines a more gen-
eral coupling operator as

> 3 -
3 <37%(S ) 3 8¢(s) ;I(s) 5 x
ﬁu(g(;' gl s) = O " ><$(s) ;g(sa)>

> > > . .
niR VD> (3.20)

This is similar to the coupling operator in equations 3.7 and
3.9 except for the additional two operators with the excitation
function and the dependence of the excitation function on s.

For s = sy this class 2 coupling operator reduces to exactly the
same form as the class 1 coupling operator in equation 3.10.

3
>
T

U

If are used as matrices instead of matrix operators

we have

and

16




B e PR S CO N U S

have

S
T(s) « S(s) =1
> 0 3 03 3
-> > > -+ > -> pes
<§+KR-T;8-U>=8-.1
- e -
| J— .
Vi §(sa) Vo,
> - 32
' = .
Hy = Hy * T(sy) | (3.21)
> —:‘t 3 - 3
i <u s T(sy) 3 8(s) - I(2)>
fil(s) =

- (3.22)
~ S(s )
U= A (S) —2n
Za: - TEY
iy s Te)> 1
= e \)a(s - s )
-, . >
* <“0L ! ioc ! vcx>
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sult. This gives a coupling coefficient for class 2 as

Note how the scalars T and § have cancelled out of the £final re- .

o (g s) = <:ii s f(s):> Class 2 coupling coefficient
Mg €y - < N for case of transformation

<:u ; Ky : v:> operators reduced to scalars

(3.23)

In reference 1 this is referred to as a type 4 coupling coef-
ficient. Other more general forms of class 2 coupling opera-
tors as in equations 3.20 and 3.21 can also be considered in

which case the transformation operators

U

iR

and

do not drop 6ut so simply.

Classes 1 and 2 coupling coefficients are those which have
been used in their simpler forms (scalar T and S) in reports to
date (references 1, 2, 4, 5, 6, 7) with some success in calcu-
lating responses of various objects. These are not the only
classes of coupling coefficients that one could define. In de- .
fining different classes one merely expands certain terms in the
transformed integral equation (equation 3.2) around sy and
leaves other terms unexpanded. In abbreviated form class 1 ex-
pands SKT, SU, and SI while class 2 only expands SKT and SU.

The expansion of SKT, or at least K, is essential in finding
the poles and of course SU or at least U must be expanded be-
cause this is the desired pole expansion that at least a major
part of the singularity expansion is all about. This leaves
other possibilities for defining classes of coupling coeffi-
cients or coupling operators. Expanding SKT one might expand
SU and S (from SI), or SU and I (from SI) to obtain different
forms. Similarly one might expand U (from SU) and any of S, I,
and SI (from SI). In defining such classes of coupling oper-
ators one can combine some of the properties of class 1 and
class 2 operators.

Another way to view the different classes of coupling op-
erators (coefficients) is to write the general solution for the
response from equation 3.20 as

3 3 General form of
3 S T S > coupling operator:
> >
na(?,r';gl,s) = <“ ; T L S 7 I><"f s §> T, S, I can have
<:E cFoe 3:> arguments s and/or
Py Sy in any sequence
(3.24)



~ ~

—~ -> -
Here let the excitation I and operators T and § have argumentsy
s and/or sq separately in various combinations. For example
appears twice and might have argument s in one place and s, in
the other place. Note that for all such choices the coupling
operator evaluated at s = s, reduces to the form in equation
3.10 (with equation 3.7).

One then has many possible forms of coupling operators
which satisfy the residue requirement at first order poles.
Some are fairly simple and have been used already. Others are
more complex but may have use for theoretical questions in the
theory of the method. Various forms of coupling coefficients
may make the additional entire function (see equation 1.2) zero.
Clearly some forms of coupling coefficients make the final form
of the expansion simpler (such as class 1 in equation 3.16),
but these may not be the best forms for purposes of numerical
accuracy as influenced by the rate of convergence of the singu-
larity expansion series,

19



IV. Summary

We have now gone through the development of the singular-
ity expansion for first order poles to obtain the natural fre-
guencies, modes, and coupling vectors. The coupling coeffi-
cients come in several varieties and can also be generalized to
coupling operators. Let us now summarize the results including
the time domain forms.

The object delta function response is

> -> -
N@,e = Z:ﬁa('e*l,s)b’é‘” E) (s - s) T+ W @ Es) (4.

where the additional function %p has been shown to be zero for
certain objects with appropriate choice of coupling coeffi-
clients. The coupling coefficient is readily generalized to a
coupling operator which operates on the natural mode. The natu-
ral frequencies, modes, and coupling vectors come from

> > ‘ .
<Kao;\)a>=3=<ua;ﬁa> (4.2)

o

Dropping the additional function possibly associated with
the delta function response we have the response to an incident
waveform

ST W SN 16 S 16 ) S (3 =,

Vp (r',s) fp(S)Up (r',s) Vpc (r',s) + pr (r',s)

3 (J) >, _ o L > >(3) >, _ -1

Vo (Fie) = ;fp(sa?”a(eyswa (F) (s = s, (4.3)
3 (3 >, . - > > (J) >, Iép(s) - Ep(sa)’.

pr (r',s) = Zna(el,s)va (r') 5 - s,

Q

For an exponential waveform this is

20




(4.4)
-> >
$ D (s) = 2D (s, - s 7H @y, @
pr (s) = 5= A (s, = 8,) na(el,S)va (r")
For a step function waveform this reduces to
= 1 F = 1
(4.5)

53 1N L. ()
va =3 }E: - g; na(el,S)va (r'*)

There are various possible types of coupling coefficients.
In the form of a more general coupling operator this is

3 03
>
3 SRR B E- DN
. A (E, e ,s) = — 2 <F o8> (4.6)
: <u, v B3N >
Mo 7+ Bg. 7 Vg
1
3 3
.

where %, S, and I can be regarded as functions of s or evaluated
only at sy in any combination desired. For coupling coeffi-
cients this has a somewhat less flexible form implied by making
the term

(T2

e
<t

>

reduce to a scalar times the identity operator for all s, For
s = sy all the coupling operator forms reduce to

o R 24

->
- +'_+ - = > > > _ >,
o‘(r,r. ,el,sa) na(el,sa)lé(r r')

> . '
<Yy i fao:> (4.7)

-3
Q
o
|_l
)]
il
§=2 2
Q
=Ny
<4
Q
\V4

21



There are special forms of coupling coefficients which have
been used to obtain results for the currents and charges on var-—
ious objects.

x
(s -s)t' <:u P I(s ) >
ﬁu(gl's) =e C o Class 1

(4.8)
<iﬁ ' %(s):>
<u ;

Class 2

~ ->
na(el,S)

--; .->_>
Kl,\)a

For class 1 one has t' as a turn on time for all the modes. It
must be chosen such that for any given observer position it is
less than the time at which the first sign can reach the obh-
server, otherwise the additional function Wp is certainly re-
quired.

The class 1 coupling coefficients give time domain re-
sponses (neglecting Wp) as ‘

R s t
I (Fr ey = u(t-t')ZZRe [ﬁa(é’l,sa)%‘f) (Tr)e © }
o

- —>+-)- Syt
+ u(t-t')}E:ﬁa(el,sa)véJ)(r')e o
o

(4.9)
> (J) >, _ +(3) -, Syt
Vbo (r',t) = u(t-t' )}E:ZRe[f (s )7 (el,s )va (r')e ]
> s t
+ u(t - t')Zf CRLNCERINLI L

For an exponentlal incident waveform the waveform part of the
response is

22




33 - ' ' s, (t=t') 28 1. - (% >
v B, (r :S) = u{t-t")e :E:: e[(s -sa) na(el,sa)va (x )]

+

) @) 2
}E:(s So, na(el,sa) MEC )} (4.10)

and for an incident step function waveform we have

3

T (3 ,s) = uie - t')U( ,0) (4.11)

Py

so that the waveform part of the response is the static response
times a unit step. Note that the summation over o4 means the
poles above the real s axis while the summation over oo means
the poles on the real s axis. The class 1 coupling coefficients
then give rather simple forms for the resulting expansions. The
object part of the response has only damped sinusoids turned on
at t = t' and the object part of the response is fairly simple

as well.

The class 2 coupling coefficients give time domain re-
sponses (neglecting Wp) as

-5
(J)

- s
+| — > ° > L) > -l e L] > ( ) >
L (Eht) —ZZRe[[ U va>:| [<ua ; I(t)>]-* [u(t)e ] (x’ )il

> s t -
S N CRENE L RN

(4.12)

a>}-l[<ﬁa ' -I*(t)>:| * [u(t)es t] (J) (r )]

<y
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(o] 84«

B
o

|

®

Fht

Lio]

)
Qv
/\
FY
R

<4

-+ s t 2>
. ~ >, > . > -1 >, > o> (J) >,
* z £(sy) [<“a PRy va>] [<“a ; I(t>>] * [u(t)e ]Va (z")

Note that an asterisk % indicates convolution of the two time
functions. For an exponential incident waveform the waveform

part of the response is
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wt —)(-J)’) -+'
x Juwe ¥ V7 &N (4.13)

For a step function incident waveform set sy = 0. Note that if
to is the time the incident wave first touches the body and tj
is the time it just passes the body (not counting scattered
fields) then the convolution basically affects the result only
for to < t < t1. For t > t3 the convolution form or class 2 re-
duces in time domain to the simple damped sinusoids of class 1.

The waveforms for charge density on an object are also im-
portant. The charge natural modes are related to the current

natural modes by

vép)(i') = -a V' - 353)(2') | (4.14)

where ay is some convenient normalizing constant. By operating
on the equations of this section by -(1/s)V* . the current re-
sponses are each converted to charge responses. In time domain
the 1/s becomes 3/6t. Equation 4.14 gives an appropriate way of
defining the resulting charge modes.

/

The charge response has the form

-1
5P (Fr,e) = D A @ (P) (Z Saa) syl 2w
u, ' (rtys) = . Ny(eprs)v,  (r )(—3— (s=s,) = + W "' (e,r",s)

(4.15)

Lz ~(p) >,
oE,f (s)Up (xr',s)

~ >
pp(r'ps) = E D

where I is a normalizing constant as used in equations 1.3. For
an arbitrary incident waveform we have, dropping Wp, .
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S(p) 2y = F ~(p) 2, = S (p) 2, S(0) 2y o
Vp (r',s) fp(s)Up (r',s) Vpo (r',s) + pr {(r',s)

-1
oo 1

~ s L (0) (21, (5a? -
za:fp(sa)”a(el's)"a (r')(_c'> (8- 5;) (4.16)

—~
a3
-
0]
I

£ (s) -£f (s.)
< (p) _Z~ - (p) (=, (Saaa) P p °a
Vp (r',s) = Ny (eqrstv, " (') | —5 s =S
w o, o1
Note then that the results for the current response carry over
directly to the charge response by the addition of a factor
(sag/c)~L in the terms of the expansion.

For class 1 coupling coefficients the object response has
the form in time domain

' ~ > > s,k
vPY (3 ey = u(t-t')ZZReI:fp(sa)ﬁa(el,su) c (P (e @ }
Ot

a
pO SOLOL o

s t

- - ~ (2 c () z o
‘+‘u(t t')zz:fp(sa)na(el’c)E;E;Va (r')e (4.17)
Co
The waveformvpart for step excitation is
vép) (£1,¢) = u(t—t')ﬁép) (£1,0) | (4.18)

w

The class 2 coupling coefficients can also be used for the
charge response by substituting (saa/c)‘l times the charge mode
for the current mode in equations 4.12 and 4.13. Again the
class 2 forms are somewhat more complicated (but perhaps more
convergent). For t > t] the class 2 time domain forms for the
charge response reduce to the class 1 forms of eguations 4.17
and 4.18.
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Appendix A: A Notation for Abbreviating Integral Operations

For some purposes, such as in this note, where there are
many integral operations and even repeated integral operations
it is useful to have a more compact notation to use in the equa-
tions. This appendix briefly defines and discusses such a nota-
tion which might be thought of as an implied integral notation.

Consider integrals such as

¥

> ->
f (2,2 . BE,Enav = &3,
A\

(AL)
+++ >, > >
f X(z,r') « B(r1)av' = ()
v
Write them respectively as
3 3 i
{A;B>=C¢C
(A2)
I > -
<A ;b>=c

This is basically a symmetric product as distinguished from an
inner product. In an inner product one of the terms is conju-
gated in a complex variable sense before integrating. No conju-
gation is implied in the present_notation but must be specific-
ally exhibited such as by a bar above the quantity. In such a
manner the present notation can also be used for inner products.
In this form an integral over spatial coordinates is indicated
by a comma between terms with :> around the expression. The
spatial coordinates for integration are the last listed coordi-
nates in the term before the comma and the first listed coordi-
nates in the term after the comma such as indicated in equation
Al. Note that the terms can have other variables such as time,
complex frequency, etc. and symbols associated with these (such
as for Laplace transform, convolution, etc.).

Vector, matrix, and dyadic multiplication symbols carry
over and are listed above the comma. Equations A2 then indicate
dot product. This notation is applicable to repeated integrals
as well, such as
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= <3 >f<% p E>> (A3)

where either form could be used. "Another example (a rather com-
mon one) is

ff%(?) . B(Z,T") . S(¥")davav'
VYV

= <& ; % ;e

/\
W+
a+

V

\4

<a

LA B> &> | (a4)

Convolution can also be readily adapted to this notation,
as for example

*
.
14

*
f a(r,t) - B(F,pav=<3a; B> (A5)
v

where the asterisk indicates a convolution with respect to t in
this case where the multiplication (which is part of convolution)
is in the dot product sense.

In using this implied integral notation various of the var-
iables can be listed with their appropriate terms, such as f(t),
etc. if needed for clarity such as, for example, if t were to be
assigned some particular value like to. Various degrees of com-
pactness are then possible provided the variables not listed are
clearly implied. In this regard the domain of integration im-
plied in the symbol < > with commas whether it be a volume V, a
surface S, or whatever should be clearly stated or implied. If
there is more than one domain of integration then the one in-
tended in each case should be clearly implied or an appropriate
symbol such as a subscript added to distinguish the different
domains of integration.
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