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ABéTRACT
;
The singularity expansion method is S,u':,t:ees.fu} in evaluating the
EMP response for large and moderate yalues of tlme.i Ihls‘paper'suggests -
an, asymptotlc serles sultable for early tlme and_thus complements the
51ngular1ty expan81on method gggeéthe solutron 1n the frequency doma1n 7 L
is known 1n certaln forms of ascending series of frequency (1ncluding
optlcal diffracted and creeping waves), asymptot1c formulas are )
developed to translate it readlly 1nto the tlme domain.( Accuracy of
the asymptotlc formulas 1s establlshed by comparlson w1th known exact o -

solutions.
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1. INTRODUCTION

.In EMP (electromagnetic pulse) studies, a typical problem is the

determination of the response df‘a SCétterer due to awtransient source.
Usually, this problem is attacked first in the frequency domain (with
variable s), and then an inverse Laﬁlace transform is employed to obtain
the solution in thé timesaéméin (with variable t). In the second step,

the key lies in the successful evaluation of an integral typically given by

' g+ic
R(E, t) = Tz'TlTif V(s) (2, s) F as (1.1)
g~ie

where G(?, g) is the,f?eQuencyrddmain response for a unit source (Green's
function), V(s) is the frequency spectrum of the transient source, and
R(;, t) ig the transient solution., It should be remarked that in a more
general caée the_séurcg7V(s) may be also a function of ?, and then, ﬁhe

}
>
expression R{(r, t) needs to be modified. Such a case will not be con- ‘

sidered in this paper.

Generally, thelevaluétion of (1.1) by brute-forced numerical inte-~
gration schemes>ié'nét éf%icient. A éiﬁguiaritijéipéﬁsien méthod was
recently proposed b&rBaum.l 'It involves the deformaﬁion‘of the integra-

tion contour to tﬂe léft~héif s-plane in order to capture all of the singu-

(3%

larities 6f V(S)G(g;'é);: Tﬁﬁé,!thg‘problem is converted to the fiﬁdiﬁg

of the singularities, and the determination of their contributions. In

&
several test cases,z’ 3, 4 this method was found to be excellent for large

and moderate values of t; accurate results can be obtained by including
contributions f?oﬁf@ﬁr@risingly‘féw singularities which are located near
the imaginary axis in the s-plane. However, for small t (early time),

the necessity for considering nearly all of the singularities in the
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s-plane makes it inefficiant, Thua, to complement the gingularity expansion

method, a scheme for evaluating (1. l) for early time is needed.
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There is another reason for requiring a relatively s1mple way of
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evaluating (l l) for early time. In many EMP problems, the source V(t) and

-

response R(r, t) as a function of time typically have the forms as those

- 1 Voo edtio 2wy P

sketched 1n Figure 1 After a propagation delay (0 << t ), the response

is quickly built up toward a peak (t = t ), and then gradually tapers
off by oscillation at the dominant natural frequency of the scatterer.
In certain applications, the period of initial shock (t < t st ) isrof

interest. Thus, 1f a rough estlmation for thlS period is available, some

tedious computations can be elimlnated

FIENLF R . I PR TR

There is a third appllcation of the prediction for the early time.
In solving the H-integral equations in the time domain numerically, it is
necessary to know the current distribution at a short interval after the
arrival of the incident wave. Traditionally, the physical optics approxi-
mation (J = 2n X H( )) has been used. However, a more accurate prediction
is desirable, since the solutions at later times are built up through
iterations of the early-time result.

In this paper, we will describe a method for evaluating (1.1l) for

early time. This method is applicable when the frequency response G(?, s)

can be expanded in either of the following two forms:

N -tos dv
(0 G(x, s) = L (1.2)
.V 8
- _ ' 1/q dv 1
(1I) G(x, s) = exp - (t s + Bs )%s—\) (1.3)

where v > -1, q > 1, but neither of them needs to be an integer.

¢

* In terms of the angular frequency w, s = jw for exp (+jwt) time con-
vention; and s = -iw for exp (-iwt) time convention.

3

1, 2, 3, 4
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The above two forms cover a wide :aﬁge of situations inciuding'contriﬁu— '
tions from optical waves [(1.2) with in;eger'v], edée-diffracted waves
[(1;2) with fraction v], andicreéﬁiﬁg$waves t(l.é}fj

This paper will be ofganféédvig‘tﬁé“follcﬁing'ménner. In Section
2 we will first present two formulas for inverse Laplate transforms.
One of the formulas is well-known, while the derivation of the other
will be discussed in some detail, Using these formulas we will
develop an asymptotic series for small t for R(?; t) in (1.1) when
G(?, t) is-given by either (1.2) or (1.3). The foliowing'secfions
will be devoted to examples which illustréte the use of ﬁhe asymptotic

series. Finally, a conclusion is given in Section 6.




2. TWO FORMULAS FOR INVERSE LAPLACE TRANSFORHM

In order to derive the asymptotic series for early time in Section 3,

we shall need the two formulas which are discussed below. The first one

reads

5%3 —% e'® ds = F(i) VL , v>=land € >0
e-i® 8 - (2.1)

where T'(v) is the Gamma function. This is a well-known invéfse—Laplace
transform and can be found in standard textbooks. The second formula is

more involved. The following integral for small T will be evaluated:

| +ieo
U(q) (B, 1) = _-l—- f _l €xp (1s - le/q) ds , q > 1 and real B
v 2ri v '

The result is
2Vg-1  q(i-2v) 2q(v-1)+1

@) . L 2(-1) 4 2(¢-D) | 2(-1)
U, (8, I B
v e - e '

clie Y la@-w o 1fa@ oW =2] ... [q@ =) - n]
n=2,4,6 : o0 o

(A

late-»1Y? | 2.3

ng _(ml) ey . a_ - _l;]'
A Ak et 9T &@/942“.'1“:;,@(,8/«1)‘1“1 :

which is an ascending power series of 1. The derivation of (2.3) is

based on a saddle-point integration method; éﬁd Giilléetffiefly oﬁtlinéd

’ below.
T A changé of the integration variable in (2.23 froﬁ's to z with"



S a(er THe (2.4)

‘results in

o alv-1) .
U§Q)(s, T) = E%I r 41 JE ZQ(l—v>—l [exp T q_l(zq - Bz)] dz 2.5)
.
q-1 '

where contour P is shown in Figure 2. Since qb> 1, the parametéf T

in (2.5) is large and the saddle-point integration method can be used.

Apart from T q—l, the argument of the exponential function im (2.5) is

g(z) = z% - éz W- F_k;.é)

The saddle-point z is located at
1.
g-1
= [E .
2, = (o s (2.7)

the steepast descent path Ps_is shown in Figure 2. Defdrming the

integration path P to PS and expanding the integrand in (2.5) around

zo, i.e.,

zq(l—v)--l - zg(l?v—l)

i+ ¥ (40 - ) - 11(a = ) 2] ... [a@ 2w =) [2" %
=1 n! \ Zs

]
00 breend

the result in (2.3) can be obtained.

In a later application, we need particularly US3)(B, 7). Its

explicit form is given below:
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6v-1 - 3(1-2v) ' 6v=5
(D, o tes T T o[22 r'”z)]

ST, ST wie LT rmae

AEy-D@v-1) 1/2  30Gv =Gy S DG F @D

1
4 32 L 32 g

_ /3(3v = 2)(3v = 1) ... (3v + 32113/2 + 05 |.

128 8?72

(2.9)

The function US3)(B, 1) was studied earlier by Friedlander5 using a

slightly different method; his result was

T ev-l 3(1-2v) 6v-5 |
=(3) 1 A A A -2 3/2 -1/2
U B, ty~—3 B T exp |—— B T )]
v o2/ { (3/5 »

2
J3(9v% - 6y + 12) 1/2
- T
L 32

x |1 P (2.10)
The comparison of (Z;iO) wifﬁ;(Z.g)}revéalé a small difference in the
coefficients of tl/z in the last factor, which may be traced back to
the fact that'diffefent*ap?rbximations were used in expansions around
the saddle point.. In pfactical computations, this difference should

not be significant.- : . . -



3.  ASYMPTOTIC SERIES
FTN

. When G(?, s) 1s expressible in (1.2) or (l.3),lour goal 1is to e

derive an asymptotic series for R(r, t) in (1 l) for T = (t - to) + 0,

Two types of source will be considered

: : , 0, £<0
(A) Step source: vit) = (3.1)
I, £>0
. 0,‘: <0 -
(B) Exponential source: V{(t) = (3.2)
te—t/T, t>0
Their frequency spectra are:
1 | | -
4y v@s) =3 - | (3.3)
1 1 5 i
® V@) = —tgm = ) (D @] (3.4)
1.2 2 T
(s +-E) s’ m=0 -

Practical sources in EMP studies can be well-approximated by the
exponential source, which is- sketched in Figure 1(a). The step source,
on the other hand, is used widely in theoretical analysis.

When G(;, s) is represented by (1.2), an application of the formula

(2.1) in (1.1) results immediately, for (t - to) - 0,

(I-A) Step response:

N d
R(z, t) ='2EF5——_‘;—I)— (t - to)" (3.5)
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(I-B) Exponential response: . Sull

T S vl s s Iiake s{;fz~d ,
RE, 0 =L ZO (@ + DED T ey - e )T
Vv m= B s RS .

(3.6)

The property of convergence of'(3;5).and (3.6) depends . on that of the
series in (1.2). Equation (1.2) is usually asymptotic. Then, under the
worst circumstances, (3.5) and (3.6) should converge asymptotically as
(t ~ to) + 0.

When G(?, s) is represented by (1.3), we have, correspondingly,

(II-A) Step resﬁonse:

=5 EilaeT

S vﬂgizgf'zi:R(;, t) = z:dv U(q)(s, t-t) 3.7
\Y

(II-B) Exponential response:

R(r, t) —%go ’(m + 1)(—’1‘) ! U\E_?;_}_Z(B, t-t) (3.8)

where Uéq)(s, 7) is ‘given in (2.3).
. In the next two sections, examples will be given to illustrate the

use of the foémulaéviﬁ (3;5) throﬁgh.(3.8)}
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4, LINE SOURCE -

We begin with'an.extremely simple problem, namely, the radiation

from a two~dimensional line source with an electric current

3,6, t) = V() 8(x) §(y) (4.1)

where V(t) is given by either (3.1) or (3.2). In the frequency domain
(with e-mt time variation), the Green's.function takes the familiar form
e T _1 (1) i (1) .
“ GG, 8) = FE ) = 2 HY (15D (4.2)
where k = w/c and ¢ is the speed of light. The problem is to determine

R(g, t) as defined in (1.1). When R(g, £) is known, the complete fields

can be veadily computed:

-+ ) -+ o T 3 B
Ez(pa £) = "UO 'é"E‘R(p: t)> qu(ps £) - - 0‘5 R(Q; t) (4.3)

5
Therefore, in the following discussion we will concentrate on R(p, t).

The Green's function in (4.2) has the well-known asymptotic expansion:

> [TITT as(p/e) 1 S 225 |
Glo, ©) ™ TSy © {l 8(sp/c) 128(¢sp/c)?  3072(sp/e)> i "

(4.4)
' *
For a step source, the use of (1.2) and (3.5) yields
1/2
-+ T 1 3 2 15 3
2

* Tt is understood that R(g, t) = 0 for t < 0.

10
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where 1, = 9—5— - 1. For this simple case, fherintegral in (1.1) can be

1
evaluated exactly with. .the fgllgq;ng%reeqlta e
R(p, t) = [Zn( }+m@nALl + Y1 =~ (p/ct) H ' (4.6)

Foeem Lo g

It is a simple matter to verify that for small values of t the approx1-

mate evaluation of R(p,‘t) in (4 6) will result in (4 5)
‘ Next, let us turn to the exponential ‘source in (3 2) Frdm

37 gT 5‘4 Rt

(3. 4), (4 4) and (3 5), the asymptotic solution of the response is
immediately found to bejugfisf o teEn e
CR@, o~Y2E 8 32 (1 + Z h_ 0 4.7
. 4:,3371' :tclf - ) .
”hféhﬂ£:2@£+ix |
whers 577§
L&y 3 1 1. 9
h, =35 (T,2+4T'+128) ’
__ .8 4 .31 18 1 . 2325
hy = 315( 3t 3t 12 T'+3072)’
T T
and T' = el
p

To evaluate its accuracy, we may compare it with the exact solution,

which is . o . _

N . t " 1 '
R(p, t) ‘(; t expv (£'/T) Re - [(t' - t)2 3 {%fzjl/z dt

(4.8)

11.
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In Figures 3 and 4, the exact solution obtained by 2 numerical integra~

tion is shown, together with the asymptotic solutions baséd on the ‘*-

truncated version of (4.7). The symbol RN(p, t) indicates that the
result with only the first N terms in the series in (4. 7) 1s retained.
The following observations may be made:
(i) YFor very seall»r_(say T < 0.5), even Rl gives very good
results, For moderate T (say T < 3),vfive or six terms may be needed
(ii) The convergence rate of (4 7) depends on T' = (cT/p) which -
appears In the denominators of the coefficients: the 1arger>the ?',
the faster the convergence. | o
(iii) The series in (4.7) is alternatipg in sign. The exact
value R(g, t) falls between RN(S’ t)rand RN%l(g, t}rfer every N. Thus,
for an N~term series RN(S, t), the truncation error has an upper bound
given by IRN+1 - RN}, which enables one to conveniently. evaluate the

accuracy of the series in (4.7).

(27

12
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Consider an infinitely long, perfectly conducting cylinder with

L et Lo CRyow k3

its axis in the z—direction and with radius a (Figure 5) For a

time-harmonic plane wave incident in the direction of the negative

x~axis, such that

Egi)(r, s) = ze-ﬂfx »J;es(x/c) , (5.1) ,

the solution for the surface current on the cylinder is found asymptoti-

cally to be’

3,4, 3P 6, 8) + 3P, ) (5.2)

It consists of two parts: the optics contribution JéoP) and the

creeping wave contribution J(Cp). Let us first concentrate on J(Op)

namely,

| i | 2 1
JZ(OP)(¢, s) ='-2_~/§—°c03¢’1+ 3'1 RS TR A
- AHy | L 2 cos ¢,(Eﬂ 2 cos ¢ {EJ 8 j
(B/e)s costd | (5.3)
for 0 < ¢ < %-and %E'< ¢ < 2w, and Jio?) 0 for 21 >4 > —'(i,e.,_shadow).

The use of (3.5) and (3.6) leads imnediately to the response in the time

domain,

(I-A) Step response e

] ‘ 2
(op) _ [ o - _1l+3sin ¢ 2
Jz> (¢, t) = 21 ;f-cos o |1+ —a Ty 3 Ty + ...

o ' 2 cos3 ) 4 cos ¢

13
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(I-B) Exponential response T e e L

L e - - - r — -
R RReTCER € H . bl . =
(OP)(¢, t) = 2 (Q) (;9 cos ¢ Itl + 13 - 5%-)15
A o - L' : 4 cos™ ¢ 7| -
1 1 1+3sin’s '
B +( 2" 3 - 6 Tl+oc" (505)
27! 6T' cos™ ¢ 12 cos™ ¢
for 0 < ¢ < E-and é%‘< $ < 2 where T! (c%/ai.aﬁdJrl'= (et/a) + cos ¢.
The fact that JéoP? = 0 for Ty < 0 is pnderstoodﬁv

Next comnsider the creeping~wave contribution, which in the frequency

domain is asymptotically given by:

-

s 2737
(Cp) .E_Q. 1 ’_ZS}_ i2¢ct i
T s 975 57017 | 2] [1 *+ 0. 2338i sl

[ as ' 2552-1]3!
x 3. exp Y, .L{—-c-} + 2,338 (52 - (5.6)

In this case, tﬁe termp =1 (p = 2) represénté the creéping wave grazing
at p=a, 6 =7f2 (p=a, ¢ ; 3r/2) and tﬁega;gle ¥ (Wz) is the angle

in radlans measured counterclockwise (clockwise) from that point to the
obéerﬁation point (Figure 5). From (1.3), (3.7), (3.8), and (2.10)

it may be shown that

(II-A) Step response

i/3 2
(cp) {2cfa)™'~ -E) ,
@ t)N/;; 0.7012 }=:1 {4/3“3 > BT Eop)

2/3

+ 0.2338 (—2-:-) v§3) (8, t - to'p)}f s (5.7)

14
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(II-B) Exponential response

(CP) ZC/a -n (3)
J (¢ t)"“ (m+l)(T) (B, £ -t )
uo 0. 7012 o= = ééb B » m+7/37 p’ " Top
223 2 = ) m“23) | P
+0 2338(—;} 5 Y @+ 1)) 38,0 £ =t ) ) (5.8)
m=0

where U§3)(B, ) is given in (2.9).

" In tbe illuminated region (x > 0), the magnitude of the creeping-
wave contribution is relatively very small in the early time and can be
neglected as compared to the optical wave. Now let us estimate the
accuracy of formulas in (5.4) and (5.5). In Figure 6, (5.5) was com~-,

puted with one, two, and three terms at the point (p = a, ¢ = 0). For

" a two-ternm series, the upper bound of the error is estimated to be the

diffetence between the two-term and the three-term series. Thus, the

upper bound ¢f the error is about 9% at t' = 0.5 and almost 100% at

' =1, The result computed with three terms is believed to be more

accurate.

Aé mentioned in. the introduction, the result in Figure 6 may be
used to estimate rogghly the peak value of the currenﬁ due to the
e#ponential source specified by (3.2)‘and (5.1). TFrom the information
obtained in Section 4, the peak value of response occufs roughly at one
time constant T after the arrival of the incident:wave. In the present
problem, the peak value of the current on the cylinder at ¢'= 0 should
occur roughly at t' = T' = 1, which has a value of about 3 milliamperes,
Since there is no exact solution available, the accuracy of the number
"3 milliampéres" cannot be ascertained. However, for many applications
in system design, this number "3 milliamperes'" is valuable information,

¢

especially in view of the simple steps in arriving at the solution.
15



To demonstrate the angular variation of the transient current in

the illuminated region, we display J_(9y t) for several different values

of}¢ in Fiéﬁre 7itf6r éﬁep souréé) and Figure 8 (;d; exbonenziaimséérééj.
As may be exéected; the currents assume maximum values at the specular
point ¢ = 0, and decreasé;ﬁdﬁard the shadow boundary at ¢ = /2,

In the shadow region (w/2 < ¢ < 31/2), bnlyrtﬁe creeping waves as
given in (5.7) and (5.8) exist. 1In Figures 9 and. 10, the currents:at
the point (p = a, ¢ = ) are plotted for step, and exponential sou?ces, .
regpectively.” These results are computed from (5.7) and (5.8) by ..
retaining terms only up to the fourth power of T, = (ct/a) - (u/2).
Because of the approximate nature of the formulas, we do not expect the
results to be reliable for ri beyond, e.g., 0.3. Generally the current
due to creeping wave is built- up exponentially in the early time, and
the sudden jump at the arrival of the incident step source (Figure 7)

no longer exists. The magnitude of the current due to the creeping

wave 1s much smaller than the current in the illuminated region, as

expected,

b

16
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6. CONCLUSION

This paper proposes an asymptotic method for evaluating the

cniuRr 8Ll 0O

'early-tinéi;egpoéae4in;3ﬁé ;fg@i»fgfbnhich can be use& in combination

P

with the singularity expansion method covering the entire range‘of time

efficiently, Once the response in the frequency donain 1s known in
the form of (1.2) or (1.3), its "translation" into the time domain is
given by one of the formulas in (3.5) throngh7§§£§).:;?hese formulas

are asymptotic. However, in an example (Section 4) where the exact

-

solution in the tlme domain is known, our formula can yield good re-

sults even when the normalized time (v = ct/p) is as large as unity

(Figures 3 and 4). This is ot surprising in view of '!success

enjoyed by other asymptotic methods in electromagnetic theory (e.g.,

geometrical theory of diffraction).

x .».Z:...kf

in the form of (1.2) or (1.3). A notable exception is the current on
a thin wire, which is given by the form
—Sto - dv
G(z, s) = e L,_——__—_T; . (6.1)
' v (£n as)
A future task would be to develop a "translation" of this and other
forms of frequency response commonly encountered in EMP problems.

A limitation of the present method lies in the fact that G(?, s)

- has to be known analytically in the form of (1.2) or (1.3). In many

>
"practical problems, G(r; s) may be given numerically. Then an immediate

problem is to convert the numerical data to an expression in the form
of (1.2) or (1.3) by curve fitting or other numerical processes. Until
a systematic'and efficient way is devised for this step, the early-time

asymptotic series will be of limited use in such cases.

17
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Figure 2. ' Contours in the complex z-plane
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Figure 3.

1.5
T= (CT/,o)‘ |

Early time response of a line source excited by an exponential current. '

R is the exact solution, and RN is computed from Equation (4.7) with
N terms in the series.
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Tigure 4, Early time response of a line source excited by an exponential current.
R is the exact solution, and RN is computed from Equation (4.7) with

N terms in the series. ' ~
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Figure 5. Cross section of an infinitely long cylinder
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Figure 6. Current on a cylinder at ¢ = 0 due to the incidence of an exponential
source as computed from Equatiocn (5.5) with one, two, or three terms
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Figure 7. Early time response for the current on the cylinder due to a step source
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Figure 9. Early time response for the current on a cylinder at (p = a, ¢ = )
due to a step source )
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Figure 10. Early time resﬁonse for the current on a cylinder at (p = a, ¢ = )
due to an exponential source with T' = ¢T/a = 1



