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Abstract

Strong electromagnetic fields along with a time-varying air conductivity
are generated from nearby nuclear surface bursts. This note describes an anal-
ysis of currents induced on a plane and a sphere in such an environment. The
view point is taken that these {scatterers act as the generators of the scattered
- field with an incident field ag the source. The calculation falls naturally
into two parts. One is where the air conductivity is low at early times. Here,
Maxwell's equations are solvedfvia an eigenfunction technique. For later times
at higher conductivities, Maxwéll's equations are simplified with the diffusion
approximation and solved via Laplace transforms. From this analysis an important
approximation at high conductivities is pointed out. Also emphasized is the
great influence which the air conductivity has on currents and current rates.
Solutions for the sphere have been coded for an IBM 360 and some example cal-
culations are presented.

air conductivity, surface bursts, calculations
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1. Introduction

This note is an attempt to assess with some accuracy the electric currents
induced on above ground metallic bodies in the presence of a nearby nuclear
surface burst. The electromagnetic enviromment from such a burst is generated
by Compton currents and consists of intense electric and magnetic fields along
with a gamma-ray induced time-varying air conductivity. The work here does not
concentrate on'specifying this enviromment any further. The emphasis is rather
on the calculation of currents once the environment is given or assumed. A

background discussion which places this problem in context has been given by

Baum.7

Any conduciors in this environment will necessarily experience large in-
duced currents not only from the fields alone but also from the enhanced coupling
due to the surrounding air conductivity, Specifically, the motiviation for this
work grew out of the necessity to know the combined envirommental effects on the
above ground Minuteman UHF antenna. First attempts at this replaced the antenna
with a simple equivalent circuit with the time-varying air conductivity replaced
by a time-varying resistor incorporated into the circuit.6 While this procedure
has the obvious advantage of simplicity, the uncertainties involved were felt to
justify a more firmly based approach. The approach taken ﬁere is to simulate
rather complicated metallic objects with ones having simpler boundaries in order
that the correct boundary conditions can easily be applied to solutions of
Maxwell's equétions. Some judgment, of course, must be exercised in applying
the resulting calculated currents to any specific problem of interest.

It is the air conductivity and its temporal behavior which complicates
the problem and necessitates the special mathematical techniques described below.
The techniques are somewhat unconventional. The equations describing electro-

magnetic problems are usually Fourier transformed in the time domain and the
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analysis carried out in the frequency domain. However, this requires that the
coefficients of the pertinent equations (e.g., the conductivity) be independent
of time. The fact that the conductors are considered to be immersed in a
medium with a fime-varying conductivity forces a different attack on the prob-
lem.

The model conductors considered here represent the extremes in which the
relevant wavelengths of the fields in question are much smaller than the metallic
body of interest or larger or comparable to it. For simplicity, these are
chosen to be a perfectly conducting plane and a perfectly conducting sphere,
respectively. These are then considered to be subjeéted to an incident electric
field in a conducting medium. An important point of interest is not only how
the combined electric field and conductivity enhance the magnitude of the in-
duced current but also how this current varies with time. To emphasize this,
the following assumptions are made about the field and conductivity which re-
tain their time histories but which also reduce the compie#ity of the solutions
so that numerical estimates can more easily be carried out. First, the electric
field is assumed to have a constant direction in space and to vary with time
only (no spatial dependence). Second, the conductivity is a simple scalar func-
tion of time only, like the electric field. Just how these assumptions simplify
the analysis will become evident from the explanation which follows in the next
three sections.

The view point is taken7 that the plane or sphere acts as the generator
of the scattered fields with the incident electric field as the source. The
only field that has to be calculated is the magnetic field intensity ﬁ'since

induced currents are obtainedl from
- A -
K=nxH (I-1)

A —
where n is a unit normal to the surface and K is the induced surface current.



Both the fields and the air coanductivity from a close-in surface burst
rise rapidly to their peak values and then fall off. 1In general, the conduc-
tivity lags somewhat behind the fields and does not fall off quite as rapidly.
On physical grounds, then; it can be anticipated that the calculation of ﬁ.as
a function of time will fall naturally into two parts. The.first is at earlier
times when the conductivity is low and the wavelike properties of the solutions
are emphasized. The second part is later, when the conductivity is larger,
and the conduction currents dominate the displacement currents. At these late
times the field equations may be approximated by ignoring the displacement cur-
rent altogether and it is in this region where peak currents are to be expected.
A feature of the latter approximation i1s that it requires initial time informa-
tion from the first part for a complete and accurate time history. The appro-
priateness of the division of the general problem in this way must, of course,
be determined for any particular case of interest.

Although the following discussion is limited to scattering from a plane
and sphere, there are circumstances for which the induced current can be esti-

mated independently of any geometry. If the conductivity becomes great enough,

experience with calculations has shown that a good estimate can be made with
Eq. (V~1) below.; This is an important result owing to the relative simplicity
of the integral in this equation, and we point it out here because of this.
Further discussion of this approximation is appropriately deferred until Section
V after the solutions for the plane and sphere have been obtained.

Each paft of the problem requires a different:technique to arrive at a
solution. Briefly, the technique of the first part is essentially a gehefal-
ization of the Fourier transform method in which expansions of the fields are

made with a set of orthogonal functions defined by a Sturm-Liouville system




with time as the independent variable. This set of functions depends directly
on the conductivity and reduces‘to the usual sines and cosines when the con-
ductivity vanishes, That is to say, for zero conductivity the expansion is
just a Fourier expansion. The Sturm~Liouville system is chosen such that the
coefficients of the field expansions, which depend on spatial coordinates,
satisfy the Helmholtz equation which is subsequently solved for the two geo-
metries already mentioned. For the second part, omitting thé displacement

current results in a vector diffusion equation, This is then solved with the

appropriate initial values and boundary conditions by means of Laplace transforms.

The answer for this part is expressed as a sum of integfals. Two features of
the entire solution are that all analyses are carried out with fields rather
than potentials and that no complex quantities are ever introduced.

Some examples are presented in Section V to illustrate numerically the

influence and importance of the air conductivity.



II. General Analysis of the Problem

In this section an over-all analysis is rﬁade of the general problem in .
which advantage is taken of the special assumptions made about the surrounding
alr conductivity and the incident electric field (see the discussion in the
Introduction). The details presented here emphasize the time-varying aspects
of the problem, and are independent of any particular geometry in question.

The discussion centers around a division of the problem as outlined in the
Introduction. For the initial low conductivity region a review of the Toulios2
eigenfunction approach is given starting from Maxwell's equations. For the dif-
fusion approximation (high conductivity region) a simple transformation is made
on the basic equations so that the Laplace transform method can be applied to
arrive at a solution.

The pertinent Maxwell equations are

2
v X-E = =M, g%— (I1-1)
and
— —t
v xT—I‘-=—3 + g, -a-%—= c(t)-f+ €, g—f . '(II-Z)

Note that Compton currents have been omitted from Eq. (II-2) as a source term.
These could be included easily with the same assumptions abéut the conductivity
and the incident electric field, i.e, time variations but no spatial dependence.
The effect would be to modify the calculations of the field expansion co-

efficients (see Sections II and III below). Both E and H are divergence ~ free
v-FE=v.%=0. (1I-3)

A new function g(t) is now defined in anticipation of later use:

____=_______=_é_' II"&-
5 (I1-4)




A wave equation for.ﬁ'can now be easily derived from Eqs. (II-1), (II-2) and

(II-4), it can be shown to be

- - 2—&
oy _ L [g3H  9°H ] _ -
V2 - [g T 0. (11-5)

It is this equation which has to be solved in order to find surface currents
according to Eq. (I~1).

For the low conductivity region the equation 1s attacked by the classic
method of separation of variables which is discussed at length in many text-

3,4

booksl’ ’ Briefly what happens is that the partial diffefential equation
(II~5) separates into a set of ordinary differential equations which with appro-
priate boundary conditions form classic Sturm-Liouville systems,3’4. The result
is that the solu;ion is expressed as an expansion over one or more sets of

eigenfunctions. This is the procedure followed here with regard to the space

and time variables and we anticipate therefore an expansion of the form

- - e
H(r,t) = H () y (t) (11-6)
n
A summation is written here because the time domain is chosen to be a finite
interval (wto,to). We now proceed to show that the set {yn(t)} can indeed be
specified as an orthogonal eigenfunction set generated by a Sturm-Liouville
system.

Insertion of Eq. (II-6) into Eq. (II-5) gives

* —
P . _H;n_ - e _ (11~-7)
Z[V oy~ 2 _(g y_ o+ yn)] - 0.
Now we choose
_g . ve = -
e In T In ‘n Yn (I1-8)
or
d . N 0
e @) tA 8y, =0 (1I-9)



After suitable boundary conditions are imposed on the solutions of this equation,

the set {yn} is shown below to be a complete orthogonal set. Then each mode of
Eq. (II-7) is simply
-

A
2 bel = -
v2H +BH, =0 (1I~-10)

which is the familiar vector Helmholtz equation. This is the equation which
contains all reference to geometry and the solutions of which form the content
of the two succeeding sections on the plane and sphere. The attaimnment of this
much studled equation is one of'the reasons for the choice of Eq. (II-8).

Assume with Toulios2 the artificiality
g(t) = g(-t). (II-11)

This makes no difference to the discussion at hand since only t>o is of interest.
Then Eq. (II-9) has even and odd function solutions on the fundamental interval

(-tg,ty). Boundary conditions are now imposed on the solutions as follows:

(-ty) =y (11-12)

—~
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(e}
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and

v (-to) (11-13)
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where the additional (e,o) refer to even or odd functions respectively. These
boundary conditions are chosen for the particular reason that in the limit of
zero conductivity the eigenfunctions reduce to sines and cosines with the same

eigenvalues !

2

e,o _ fnr ‘ )
An to) ¢ (II 14)

There are, of course, many ways to impose boundary conditions but this particular
choice facilitates the identification of properly scattered outgoing waves for

0 = 0. The question of identifying outgoing waves for ¢ # 0 is an important one

and is dealt with a little later.



The general conditions for the set to be a complete orthogonal set are
(1) they satisfy a Sturm-Liouville equation

. e . .
(2) the lowest eigenvalue is zero (yO = constant in this case)

. to
3) ey, v, ] = 0.

-t
0

Since the system in question meets these conditions, it is complete and ortho-
gonal and expansions in this set can be safely performed. In addition, the set
can be normalized by merely adjusting multiplicative factors. With the weight
function g(t),

t
o

[ e v v ae =g (11-15)
—to
where for the moment all designations of the functions (e,o included) have been
incorporated into the single indices.

We emphasize again that the generation bf the set Y depends only on the
time-varying conductivity. This means that once the set has been obtained along
with its eigenvalues, it can be applied to systems of any geometry and in
particular to the plane and sphere considered below.

In general, the calculation of the eigenvalues and eigenfunctions will
have to be done numerically. There are, however, two simple cases in which
the eigenvalues and eigenfunctions can be found explicitly. First, there is
the case of ¢ = 0 which has already béen ﬁentioned. To repeat, the eigenvalues

are

2
e _ e,0 _ /0T _
=0, A _<t ) , (1I-16)
o]
with

. (II-17)
sin¥ )2 t



The second case is for ¢ = constant. Equation (II-8) is then

" g - -
¥+ . Vot A, Y, = 0. (11-18)
The eigenvalues are
2 2
e _ e,o _/ nm g II-
28 = 0,8 <t )+<2€ ) (11-19)
o) o
with the eigenfunctions
Y ot /e -1
v —<Eo) [:e 1} , (11-20)
-0t
2t
o} 1 o nrnt
= e sin — , t©>0 II1-21
Ve, % R
and —at
e 1 2to nm nrt g nnt
y. = = e — ¢c0§ — 4 =— sin — | , t>0. (11-22)
n t A t t 2e t
o’n o o} o 0

Note that these functions explicitly display damped behavior and that in the
limit o+0 they degenerate into sines and cosines as expectéd. These functions
have proven very useful and have had practical application in examining and
checking out the computer code which was written for the spherical solution.
In the expansion given by Eq. (II-6) there will be in general expansion
coefficients, thqh in this case are incorporated in the factor E;(;’), and
which have to be calculated from physical boundary conditions. For a perfect
conductor one condition is that the total tangential electric field vanish at
the surface.l This condition is not difficult to apply if the object is simple
enough geometrically (which is the case for the solutions for the plane and
sphere below). There is one other condition sometimes called the boundary
condition "at infinity'". 1In the case of zero conductiviﬁy this is taken in a
scattering problem to be an outgoing wave in the asymptotic limit from the

scattering object. A relationship between particular coefficients can usually
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be established from a direct examination of the expansions involved and these
together with the above conditions aré usually sufficient for a solution of the
problem at hand. On the other hand, when ¢ # 0 such identifications are not
obvious and the calculational procedure is not clear. However, the fact remains
that the wave front of the scattered magnetic field intensity can travgl out-
ward no fastér than the speed of light.

There is no apparent way to apply this condition directly to the cal-
culation of the expansion coefficients so instead the following procedure has

been followed. Call ﬁ% the value of the field at the wave front. Then
HF = 0. (11-23)

The condition which in fact is used, is to minimize the integral

) ,
I = J'° ]ﬁ‘? | 2 e (11-24)
(e}

with respect to thé uncalculated coefficients. This results in a linear system
which can then be solved with the usual techniques of linear algebra., This
procedure has given satisfactory results for many calculations, and the ex-
amples presented in Section V were all calculated in this‘manner. It should be
emphasized that Eq. (II-24) has no strict theortical basis, but is merely an
attempt to force ﬁhe correct outgoing character on the wave front.

Attention is now turned to the diffusion approximation for which the
calculations are more direct. The foregoing analysis was made with no approxi-
mations to the basic Eqs. (II-1) and (II-2). When the conductivity becomes

large enough and the electric field is not changing too rapidly,

lc(t)-fl >>l EO%I | (11-25)

11



and Eq. (II-2) can be approximated

—h a-hn
E

VxE = ¢E. (11-26)

It is not difficult to show that the equation for the magnetic field intensity

now becomes

4
Q
P
ot
A
QO

—
=5 —%% (T1-27)

which is a vector diffusion equation. This equation can be put into a simpler

form with the transformation

t
2 dt . - (11-28)
5 & ° j. o(t)
t
o
The result is
- o>~ '
2y - 2B '
V<H 5% ) (11-29)

which is easier to solve in terms of the variable £ than was the original
Eq. (II-27) in terms of t.

1

Calculations with the Toulios elgenfunctions require the weight function

>
(o}

t .
g(t) = exp [1— I c(t)dtjt . (11-30)

This function can become very large, depending on the problem under study,
for the values of ¢ in the range of interest. Thus for regions of high con-~
ductivity the eigenfunction expansions can become impractical. The exponent

in Eq. (II-30) is large when

Oto=>> (11-31)

12




where 0 is some mean conductivity. Sincerﬁoris usually of the order of magni-
tude of a fundamental period in the pfoblem of interest, Eq. (II~31) also
suggests the condition (II-25). The diffusion approximation is not only con-
venient but also necessary in some cases for the estimation of currents at

later times.

13



III. Scattering from a Plane

This is thé first of the two geometries to be considered in this note.
Scattering from a plane can approximate the situation in which the relevant
wavelengths of the incident electric field are much smaller than the dimensions
of the scatterer. Thus, in a sense, the solutions presented here can be con-
sidered complementary to those of the sphere. Comparisons of the solutioms
for both cases are of some interest and make evident the importance of certain
features in the diffusion approximation, a discussion of which is deferred
until Section V. The solutions for the plane also have the edifying feature of
being much simﬁler'so that the essentials of this type of calculation stand
out better and are not obscured by too much detail.

The situation to be considered is as follows. Consider a perfectly
conducting plane perpendicular to the y-axis at the origiﬁ as illustrated in

Fig. 1. Assumé an incident electric field

b o

B (t) = z BEX(t), t>0 , (1II-1)

is scattered from this plane. From these imposed symmetries it is evident
that the magnetic field intensity has only an x-component, the magnitude of

which depends only on y and t,
s ~
H = x H(y,t). (I11-2)

In the low conductivity, early time region H is expanded in the Toulios

eigenfunctions according to Eq. (1I-6).

H(y,t) = § H (y) y_(£) (I11-3)
where the Helmholtz Eq. (II-10) for Hn is

dan n n :
dyz + —;'2-— = 0. (111-4)

14




Figs 1 Cartesian Co-ordinate System
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The lowest eigenvalue is, of course, zerc and the corresponding solution of

Eq. (I1I-4) is
H =a y+ b, (I11-5)

where a_ and bO are constants. Both parts of this part of the solution must
be retained. Usually the first part would be ignored on the grounds that the
solution is unbounded. 'However, it must be remembered that a finite time
interval (O,to) is the domain of calculation and that this limits the extent
of the fields froﬁ the plane to y < cto.’ Thus for the calculations here (and
later for the sphere) decisions based upon asymptotic arguments are not per-
tinent. The values of the fields beyond c:to are known: they must be zero.

For the remainder of the eigenvalues it is not difficult to see that
5500 = 2%9° gin k&0° y + b52° cos k52° y' (ITI-6)
n n n n n

where the even-odd designations have now been introduced and

Vie,o

H
k%0 = Mo (I1I-7)
o c
The total solution is then
E-= % [a y+b +F ye (ae sin k= y + b cos k° y)
_ o) o n\n n n n
(111-8)

+ yg (ag sin:kg v + bz cos kg)}>}.

For the solution to be complete it is necessary to specify the coefficients

aﬁ’o and bz’o. The technique for doing this is outlined in the Introduction
and the condition that the tangential electric field be zero on the plane
i
E+E =0 (I11-9)

is applied first. From Maxwell's Eq. (II-2)

- =2 _F 4+ E (1I1I-10)

16




and Eq. (III-9) we have

) =2 gt + g (I1I-11)

€ dy £

(o] o]

y=o0
or
e e e (o] o] o]
a +% [kh a_ + kn Yy 2 ] =

(II1-12)

Now the orthoﬁbrmality of the Toulios eigenfunctions (Eq. (II—lS)) can be em~

ployed directly to give

t

e e _ e i © i,e
koa =gt ) y (e ) E7(t ) - j g E7 y_ dt, (I1I-13)
o
t
o
0 o i.0 ) _
koa J' g E” y dt (I11~14)
0
and
tO
1 :
a =g(t) E (to)/[z j g dt] . (I1I-15)
' o

When these are substituted into the expression for the magnetic field intensity,
Bq. (III-8), the coefficients b , bZ, bY remain to be found. For the finite
conductivity case these will have to be calculated according to some scheme
based on the outgoing wave conditions, (Eq. (II-23)). For this, the method
discussed in association Qith Eq. ('II-24) could be tried.

For the case of 6 = 0, to + « there should exist expfessions for bo’

bi and bg which can be determined directly from the solution itself. The

17



scattered field must be an outgoing wave with the conventional generic solution
of the wave equation, i.e. some function of the argument y-ct. To see this
note that g = 1 and
i
E (to).

- a, = ——z—t—o—— (TTI~16)

If we assume that El remains bounded then

8 0. (III"17)

Since the wave must have an outgoing character it is not hard to ascertain that

bo = 0 (I11-18)
B = - 2° (III~-19)
n n ‘
and
e .o _
b =a_ (III-20)

fulfill the condition for the choice of Toulios functions given by Eq. (II-17).
We now turn to a discussion of the situation in which the conduction

current dominates the displacement current as already anticipated in Sections I

and II. From Eq (II-29), we obtain

2
28 1; = -g—lg- . 7 o ‘ (I11~21)
dy eme o e

A unique solution to this equation”isAinsured3>given boundary conditions at

0) for all y. These are

y = 0 and initial conditions at t = t_ (&

o}
VgH = - ¢E7, y = 0 : (111-22)
or =
%§-= oE" = ¢ (&) (111-23)
y : : oo
and
H (y) = H(y,t ), t =t , £=0. (1T1-24)

18




A common technique for the solution of diffusion equatilons such as
Eq. (III-21) is the Laplace transform method and it is used here in the case
of the plane and.later for the sphere. The Laplace transform of a function (&)

will be denoted

[+

(s) =j‘ .88 £(8) dg (I11-25)

o

and of its derivative f' (&)

sE(s) - £(0) =j‘ e £1(e) ac. (111-26)
] |

With these, Eq. (III—Zl) transforms to

25 .
%;I} - sH - u_. (111-27)

The transform of the boundary condition, Eq. (III-23) is

a"

& = $(s). : (III-28)

y=0
Now the homogeneous solution of Eq. (III-26) which remains bounded as y -
is

B = eYVe (111-29)
A particular solution can be found by assuming

HP = H F(y) (111-30)
where F(y) is yet to be determined. The advantage of this device is that it

results in an easily solved equation for F(y),
d (g1 2VE Y -Vey
5 (e )= -H e . (III-31)

The total solution of Eq. (III-26) is then

H= ﬁn (A+F () (III-32)

19



where A is some constant., From the boundary condition Eq. (III-27), it can be

seen that
3(s) = F'(0) -Vs F(o) -Vs A. (III-33)

To obtain a simple expression for A, we place a condition on the unspecified

function F. Let

Vs Flo) = F' (o). - (11I-34)
Then immediately "
A= - 38) (I1I-35)
Vs

A function F(y) which satisfies both Eqs. (III-30) and (III-33) such that ﬁp

remains bounded as y » « is

y 1" = 1
F(y) =J' Moy dy" f H(y') e Ve gy

S y
(ITI-36)
1 1 "'\/S-Y'
+\73=f0 Ho(y ) e dy'
with '
o . '
F'(y) = 2’8 yr Ho(y') e Vs y dy'. (11I-37)

¥y
That F(y) is indeed a solution of Eq, (III-30) can be determined by simple

substitution and Eq. (III-33) is obviously satisfied. The boundedness of the

particular solution 1s evident from the limit

- H
R o) (III-38)

s

Since the current density on the plane y = 0 is the quantity of interest,

the first term of Eq. (III-35) disappears, resulting in the simpler expression

Vo

L (7 I LI AR -
F(o) \/E\fo Ho(y ) e dy'. (I1I-39)

20




Now the total solution for the Laplace transform of the magnetic field intensity

on the plane is

= 5 (s) 1 g Vs y!
H= - — (y ) e dy'. (ITI~40)
\/" )

To identify the inverse transform of the first term, the convolution theorem

for Laplace transforms,

o t
£(s) g(s) = f e 5t dt I £(1) g(t-t)dr (I11-41)
(o} (s}

is employed. The inverse transform of the second term is readily availlable

from existing tables.5 Then

H= - SE | [ﬂqzéa-'-);?']% + f H (y") 5—_:27—;%2—;2—5-— dy'. (I11-42)
The second integral can be simplified by letting
x2 = '1%2- . (III-43)
Then
H_=;\7—}T S %g——)%-)'—% \/'2' : e"x2 H_ 2xVz ) dx, (III-44)

o
from which it is evident that in the'limit t > to (¢ = 0), this reduces to
H = H_ (o) . (III-45)

as it should.
At this point we leave consideration of the plane and turn to the

corresponding calculations for the sphere.
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Iv. Scattering from a Sphere

The analysis for spherical geometry closely parallels that for the plane .
except that certain details become more complicated. We assume as in the casé
of the plane that the incident electric field is directed along the z-axis (see
Fig. 2 for the conventional definition of spherical coordinates). Since the
field is assumed to have no spatial dependence, this axis must be an axis of
symmetry. From these it is assumed that ¥ has only one component, the magnitude

of which is independent of the angle ¢. Thus we may write immediately
T=9 H (r,0,t) (1V-1)
where gis a unit vector in the ¢ direction

$ = § sin ¢ - % cos d. (IV-2)

For the low conductivity region the field is expanded according to

Eq. (II-6), the Toulios eigenfunction expansion. Direct substitution of each

mode of this expansion into the Helmholtz Eq. (II-10) can readily be shown to

e,o e,o
1 3 278Hn 1 3 BHn
7 3 r T + . 35 sin 6 Y
r r4 gin 6

give

{(Iv-3)
He,o }\e,o
-2 + 2 5%°%=0,
r2 gin2 @ c? n

The superscripts "e" and "o" refer respectively to the even and odd Toulios

eigenfunctions as discussed in Section II. This equation can be separated
further and the details can be examined in many textbooks, i.e., Panofsky and

Phillips.l We shall temporarily suppress the n, e and o designations on Hi’o

\
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Fig. 2

b

Spherical Co-ordinate System
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in Eq. (IV-3) to avoid unnecessary complication. The separated form of H can

be shown to be

H=1 Pl (cos 6) R, (1) (IV-4)
2 2
%
where PQ (cos 6) is the associated Legendre functionl’5 solving the separated
differential equation
: 1
1 4 4Py ). N S (S -
<in 6 0 (sin ® 5 )+ [z(z+1) sinze] Py =0 (Iv-5)

The separation comstant is A(%+1) where £ is a positive integer. The function

RQ is the solution of the differential equation
2
d’Ry 2 ARy _ RUADLIRg ARy g (1V-6)
dr2 T dr r c2

We now distinguish two cases: X = 0 and A # 0. For » = 0, the linearly in-

dependent solutions of Eq. (IV-6) are r2 and r—(2+l). For A # 0 the solutions

R, = a, J, (\—/_g— r) +b, yz(\if— r) (IV-7)

where jz and y, are spherical Bessel functions4, and a, and bg are constants.

are

We now show how the expansion for each mode of the H-field given by Eq.

(IV~4) reduces to a single term. The incident electric field is

Ty =2 gleey (11T-1)

or

i

Ei = (r cos 6 ~ 6 sin 9) Ei(t); (IV-8)

Maxwell's Eq. (II-2) has a 6-component

.1
r

= 9 ;
- )—-EE+E. (Iv-9)

o] o
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The boundary condition that the total tangential (6-component) electric field

vanish on the sphere r = a is written

E, - sin 6 E-(t) = 0. (IV-10)
Thus
13 ) o i, e )
- TS 5T (rH¢) —sine(e E +E). (1v-11)
o r=a o
Using the fact that
1 .
Pl (cos 8) = sin 9 (Iv-12)

and the orthogonality1 of the associated Legendre functions, we can conclude

that the only non-zero term of Eq. (IV-4) is for & = 1.

With this simplification the scattered H field can be written as a sum
only over those indices (n, e and o) which distinguish the Toulios eigen-

functions:

a
> ~ 0 e e , e
H=¢ sin 8 [—r—z—+ bor + X yn(t) {an Jl(kn r)
e e v o v o, o
+ bn vi (knr)} + 5 yn(t) {— bn Jl(kn r) (IV-13)
+2%y, &)Y | = 8 sin 6 H(r,E) |
. a vy T = ¢ sin r,t).

The definition

-
ﬁ\
le)

k&:°
n

(Iv-14)

111

(¢}

has been introduced and the expansion has been given to display explicitly the
division according to the eigenvalues Ai = 0, Ki and A;. It is emphasized that
the relative simplicity of Eq. (IV-13) is due directly to the assumed nature of

the incident electric field. The advantage of avoiding multiple expansions is

obvious for numerical computations.
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The derivation of Eq. (V-13) has been somewhat abbreviated but the important

details have been pointed out, and one can always verify that indeed the solu- .
tion given by Eq. (IV-13) satisfies the general wave Eq. (II-5). Uniqueness

of the solution can be inferred from the imposition of the proper boundary

conditions and it ié to this which we now turn.

It is convenient to define

P = o G, (19-15)

6t = 5 Gy, (1v-16)
and

Fo'° = F(k°° a) ‘ (IV-17)

67 = 6(>"° a). | (TV-18)

Then substituting the expression for the field Eq. (IV-13) into Eq. (IV-11),

we find

1 ao e e e e e
-;; [f ;7-+ 2a bo + X yn(t) (an Fn + bn Gn)
(IV-19)
o 0 .0 o .0 _ad i
+ ¥ yn(t) (- bn Fn + a Gn)] =2 at (g E7).

From the orthonormality of the Toulios eigenfunctions, Eq. (II~15), the fol-

lowing set of equations can be derived

a ae g(t) EX(t)
L _2ap = 2 0 o (IV-20)

t
2 S ° g(r) at
0]

ag ® - %78 =2 & (IV-21)
and

(Iv-22)
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where the definitions

t ..
) .
e,0 _ e,o d i _
En j; v, G (g E7) dt (IV-23)

have been introduced. That is to say, Eqs. (IV-20), (IV-21) and (IV-22) in-
corporate the boundary information at the surface of the sphere as discussed
in Section II,

The other condition imposed on the solution (IV-13) is that the scattered

wave front travel outward from the sphere no faster than the speed of light,
H(a+ ct, £) =0, - (Iv-24)

However, as discussed in Section II, from a calculational standpoint it has
been found more convenient to minimize |

I =St° | H (a + ct, t) |2 dt (IV-25)

o
with respect to the undetermined coefficients in the expansion (IV-13) (see
comment under Eq. (II-24)). The sum (IV-13) is, of course, truncated after a
certain number of terms. 1In the actual calculations the set (bo, b;, bi) is
chosen as the undetermined set of coefficients. The minimization of the in-
tegral (IV~25) together with Egs. (IV-20), (IV-21), and (IV-22) ptovide jﬁst
enough equations so that the a's and b's can be found from a simple mafrixyin—
version. As mentioned in Section II, experience with this technique has given
satisfactory results and the examples presented below were all calculated in
this manner.
As in the case of the plane, we have retained both the terms proportional

tor < and r corresponding to the zero eigenvalue. The reason for retaining

these may be reviewed under the discussion of scattering from the plane, Section

27



ITI. In the special situation for zero conductivity and t, ™ = the solution

of the wave Eq. (II-5) must have an outgoing character proportional to r_l

asymptotically. 1In this case g = 1 and Eq. (IV-20) becomes

a, a ey Ei(to)
P a— (1V-26)
(8]
and in the limit tb > @,
}
a = 2a3 b . (IV-27)
o )

Thus the part of the H-field solution (IV-13) corresponding to the zero

eigenvalue is

3
H =b_ (r + 2—;‘—-) (1V-28)
r

Now asymptotic arguments can be invoked to require bo = 0. For the remainder

of the solution, note the asymptotic form of the spherical Bessel function34

are
3 (x) . _Cos x | (1v-29)
1 X ~» & X
and
., sin x -
yl(X) el (Iv-30)
X > ®

These with the Toulios eigenfunctions for o= 0, Eq. (II-17), indicate that the

proper outgoing solution at asymptotic distances is for the choices

e (s}
a = a
n n
(IV—31)
b = b°,
n n

Thus the solution for ¢ = 0 and to -+ ® igs easy to specify directly and the

involved process for ¢ # 0 can be avoided.

This completes the discussion for the calculation of the H-field in the I
low conductivity region. Once this field is found, the surface current flowing

on the sphere is, from Eq. (I-1),
28




I (6, t) = 27ma sin 6 H (Iv-32)

Note that from this and Eq. (IV-13) that the current has a simple sin2 O~
dependence,
At higher conductivities where the condition (II-25) can be employed,
it is necessary to solve the diffusion equation
=
- JH

2 = o8 - -
vEH = (I1I-27)

where the variable £ has been defined by Eq. (II-28). From the arguments
given at the beginning of the discussion for the low conductivity region, the

H-field can immediately be written
- A
H(r, &) = ¢ sin 6 H(r, &) (1Iv~33)

It is straightforward to show that when this is substituted in Eq. (II1-27)

(using Eq. (IV-2) as before) that the result is

1 3 2 oH ZH__S_I-_I‘
r2 0T (; or ) - 2 A ‘ (Iv-34)
It is convenient to define
u=r H (IV-35)
Then
3%2u  2u _ 3u
.2 r 9 " (Iv-36)

To obtain a unique solution3 to this last equation it is necesséfy to
have proper boundary and initial conditions, and they are the next order of

business., At time t = to

u=r Ho(r) (Tv-37)
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where Ho is the field given by the Toulios expansion at this time, The

boundary condition is obtained from Eq. (II-26), the relevant component of

which is
(VxE, =0 vEe (IV-38)
or
%a—;‘ = - o(t) EL(e) (1v-39)
r=a

where the requirement that the tangential electric field vanish on the sphere
(Eq. (IV-10)) has been incorporated. The boundary condition in terms of £ is

written (really a definition of ¢ (£))

au
et $(2). (IV-40)

Now as in the case of scattering from a plane, the Laplace transform
method is used to solve Eq. (IV-36). The notation used has already been in-

dicated in Eq. (III-24). Application of the transform gives the equation

e .
4T 20 m - - uo) = -t B (). (IV-41)
r

The homogeneous equation is

2..— 3
d uy 2 uy )

dr2 r2

sﬁﬁ = 0. (IV~42)

The solution of this which is bounded as r + » can be seen to be

5, - e-r\/s‘(\7_;_+§_r) . (IV-43)

To obtain a particular solution we try

ﬁp = B(r) 'ﬁh(r) (Iv-44)
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and proceed as we did for the plane. The total solution is now
U=u (A+B() (IV~45)

where A is a constant. The transform of the boundary condition Eq. (IV-40) is

% - - 30s). (TV=46)
r=a
Then from this
- ¢(s) = [A + B(a)] Gg(a) + Eh(a) B'(a). (IV-47)

The quantities A and B(r) are as yet unspecified. To obtain a simple ex—

pression for A we impose on B(r).

= 0. (Iv-48)

Then this requires

A= 3(s) sa? ea\ﬁ?

. (1V-49)
1+ ayk + a2s
To find B(r) substitution of Eq. (IV-45) into Egq. (IV-41) gives
d_ (B' %) = ~-Tu, H | - (1V-50)
dr h h 7o’
Since‘_ﬁh is a decreasing exponential of r, the solutions forvar) and B(r)
are
B'(r) = L © 3 (") r' H (') dr' (Iv-51)
-2 Uh o) ’
Yho Yr
and
T o]
n -
B(r) =g —d—r———j GG r' B (') dr'
; le(r") o
a h

1
r (1V-52)

o«

1 e ' 1 1 [
R Sa G (') r' H_(r') dr'.
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Any doubt about the boundedness of the particular solution EhB as r -~ = can be

removed by an examination of its asymptotic behavior. After some manipulation .
(omitted here) this can be shown to be

T ee— T Ho(r)

P (Iv-53)

r > o )
Also note that Eqs; (Iv-51) and (IV-52) satisfy Eq. (IV-48),.

The expression for B(r) is somewhat formidable. However, the concern
of this note is the current induced on the sphere r = a so that the first
terih of Eq. (IV-52) vanishes. Then, after a little algebra, the Laplace

ransform of the solution can be written as

a (s) (a\/s: + 1)
1+ aVs + a2s

u(a,s) =

(IV-54)

o

- -VS_( '- ) 1
+ a2 “- dr' H (r") € * 2 (x \é-‘f' 1) .
a ° 1+ a6 + a’s

To perform the inverse transform, Eq. (IV-54) is put into simpler form by

means of the partial fraction reduction

1
\érrf + 1 = R €D + complex conjugate (Iv-55)
14 aVs + as aVs + h
where
1-1iV3
= (Iv-56)
and
o o :L\@r hr'
l(r y = - —5 (1 - ). (IV-57)
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5 ,
By employing the convolution theorem, Eq. (III-40) and a table” of inverse
transforms, we can write the final solution as

g
u(ag) = 2R | E; S 6(g") dg'

1
o {[n(a—a')i%

h? .
— (& ~-£&") [r _ -t
- 1n—-e a erfc h Ve &
a a
3 - a)? (1V-58)
' ' ' 1 4t
+ a S dr Ho(r ) Dl(r ) l<ﬂ 5L e
o
h o, £h?2 '
h a (¢! - a) + 2 r' - a h Ve
-—e a erfe : s
a 2-\/5' a
where
3-1iV3
By = — (Iv-59)
and
erfc (Z) = 2 e_tz.dt (1v-60)
VT
Z
is the complementary error function.5
The current as before is
I(8,t) = 27 sin? 6 u(a,f). (IV-61)

Note there is the explicit need for the transformation from t to £ as given

by Eq. (II-25).

As a check, the solution (IV-58) should reduce to

u(a,t) = a Ho(a) (IV-62)
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in the limit £ + 0. To see this it is sufficient to consider the third integral

(all the others are zero in this limit). Let

9 (rr - a)?

X= = 4(2

Then the third integral becomes

-
I, =i§%: SP e ¥ Ho(a + 2 xVE) dx

(o)

which obviously has the proper limit.

34
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V. Discussion and Examples

As pointed out in the Introduction, the prime concern of this note is
to describe an analysis of currents induced on metallic bodies in the presence
of a nearby nuclear surface burst. These were estimated from surface currents

induced on perfect conductors according to

~

- e
K=1nxH (I-1)

which means it is necessary to compute.ﬁ, the magnetic field intemsity. Ac-
curate calculations of this field come, of course, from solutions to Maxwell's
Eqs. (II-1), (II-2) and (II-3) (or equivalently, the wave Eq. (II-5)) with the
proper boundary conditions and source terms. There are two common ways to>
approach the problem. One is to attack the equations directly by means of
numerical finite difference techniques. The second approach, adopted here,
is to analyze Eq. (II-5) with the classical techniques of separation of vari-
ables (at least when the conductivity is low enough). The discussion in
Section II centered around the separation of the equation into temporal and
spatial factoré, and Sections III and IV were concerned with further separétion
of the equatiéns_resulting from the spatial part. At later times when the
conductivity is expected to grow in magnitude, a very good approximation is
to ignore the displacement current altogether as discussed in Section II.
The resulting equations were then solved directly as shown in the latter parts
of Sections IIi and IV,

At earliér times, the separated temporal differential equation was
chosen to be a Sturm-Liouville Equation (with proper boundary conditions) on
a finite time interval. Because of the presence of the time-varying conductivity

and its functional dependence on the time, analytic solutions of this system
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are out of the question and numerical techniques have to be employed to generate

the necessary eigenvalues and eigenfunctions. This approach was first described

by P. Toulios.2 We might remark that in general the separated differential
equations result inm Sturm-Liouville systems and that the time part of the
problem is no exception.

Scattering from a plane and sphere were considered in Sections III and
IV respectively. As remarked in the Introduction these are complementary in
the sense that the ﬁlane approximates the scattering from a body of which the
dimensions are large in comparison to the relevant waveleng;hs of the fields
while the sphere approximates the opposite situation. At higher conductivities,
however, the geometry of the scatterer is not too important. Physically,
what may occur 1s a skin-depth phenomenon. That is, for high conductivities
the important dimensions of the conducting medium may become much smaller than

the diameter of the sphere for the range of relevant frequencies and the locally

induced currents do not depend on the features of the sphere far removed from .
any small segment under consideration. Another way of saying this is that

for higher conductivities, the sphere acts more and more like a plane. There-

fore it can also be anticipated that the current densities induced on a sphere

may approach those induced on a plane for larger and larger radii (the examples

below illustrate this). These considerations can be made quantitative. In-

spection of Eqs. (III-44) and (IV-58) reveals the common expression (aside

from a trivial'sign change and the multiplying factor a, the radius of sphere,

in the definition Eq. (IV-40)),

:
1[0 e ax :
Vi L - E0% -1
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Trial calculations‘with the computer code have confirmed the dominance of this
term in the region of higher conductivity (see the examples which follow).
Note that Eq., (V-1) does not contain any reference to a particular geometry,
i.e., Eq. (V-1) could be used fo estimate induced currents on any body provided
the skin depths are smaller than the relevant dimensions. Since the integral
involved is a contribution to the H-field, the total current could be found

by including an appropriate perimeter~like factor. The definition‘of the
variable Eq. (II-28), requires the choice of tyo the point at which the con-
duction current can be considered to be much greater thaﬁ the displacement
current. This can'usually be estimated from the input data Ei(t) and o(t).
Note also that using the integral Eq. (V-1) is equivalent to ignoring the con-
tributions froﬁ Ho(r). Thus at later times at least (higher conductivities),
the entire Toulios eigenfunctions expansion can be ignored and the induced
current can be estimated from Eqs. (V-1) and{II-28) alone.

However, at early times when the conductivity is lgw the eigenfunction
expansion is necessary. In addition to the two geometries above, similar but
unpublished calculations have been performed for the infinite cylinder and the
prolate spheroid when the incident electric field is parallel to the axis of
rotational symmetry. The need for application along with simplicity dictated
the concentrated effort spent on programming the sphere solutions for a digital
computer.

In general; the importance of the conductivity cannot be emphasized too
highly. It is evident from the fundamental Eqs. (II-1) and (II-2) that the
solutions scale linearly with the magnitude of the incident electric field.

The conductivity, on the other hand, enters non—lineariy and can have an enormous
effect in which currents and current rates can increase by»an order of magnitude

or so. A metallic object always has some reactive (capacitive, inductive)
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relationship to its environment. When the conductivity of surrounding medium
rises, this relationship can change to a more resistive one with consequently
large changes in the induced currents. It is important to realize that ;oé
only is it inconsistent with Maxwell's equations to try to estimate induced
currents from fields alone but that these estimates will be grossly under-
estimated if the conductivity is omitted. These points are illustrated in the
examples below.

Before turning to the examples, however, we would like to make a few
comments on the analysis and £he computer code in genmeral. An important question
is how many terms are to be included in the Toulios eigenfunction expansion.
Usually one can estimate what high frequencies are likely to result from an
analysis of the.incident electric field by considering those regions in which
the field is changing most rapidly. It is well known3’é that the higher order
functions in a. Sturm-Liouville system become sinusoidal. Thus a direct com-
parison can be made and the number of even and odd eigenfunctions to be in-
cluded can be detérmined. On this basis, for a few test cases, the eigenfunction
expansions were examined term-by-term and it was found that indeed the low
order terms were orders of magnitude greater than thé latter ones. This, of
course, is a somewhat case-dependent conclusion and one could always make
provision for this examination in every case.

Comparisons were made between the known eigenvalues and eigenfunctions
for 0 = 0 and 6 = constant (see Egs. (II-17) thru (II-22)) and those generated
numerically. The low order eigenvalues agreed to about 5 significant figures
while the highest order agreed to about 3 (agreement here was always much
better than 1%. See, for example, Table II). The values of the eigenfunctions

agreed about as well. The reason the higher order comparisons are poorer than
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(o] e

n Kn ' >\n (ﬂn/to)2
1 .034052 .021644 .028528
2 .13064 10077 11411
3 | .27922 .24375 .25675
4 o .48111 44291 45645
5 74294 .69657 .71320
6 1.0597 1.0109 1.0270
7 1.4292 1.3841 '1.3978
§ - 1.8585 1.8103 1.8258
9 . 2.3467 2.2936 2.3108
10 " 2.8876 2.8381 2.8528
11 © 3,4855 3.4381 3.4519
12 4.1447 4.0919 4.1081
13 4.8591 4.8059 4.8213
14 . 5.6275 5.5794 5.5915
15 6.4566 6.4063 6.4188
16 | 7.3449 7.2900 7.3032
17 . 8.2867 8.2355 8. 2446
18 9.2861 9.2378 '9.2431
19 10,348 10.294 10.298
20 11.465 11.411 11.411

TABLE I COMPARISON OF EIGENVALUES FOR £, = 18.6 ns AND o (FIG. 3)
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e,o0 2
n Xn (nn/to)

1 .0061685 .0061685
2 | 024674 024674

3 .055517 .055517

4 098696 .098696

5 .15421 .15421

6 22207 .22207

7 .30226 .30226

8 ’ .39480 39478

9 49968 49965

10 .61692 61685
11 (74651 74639

12 .88846 .88826

13 1.0428 1.0425

14 1.2095 1.2090

15 1.3887 1.3879

6 1.5802 1.5791

17 1.7842 1.7827

18 2.0008 1.9986
T 2.2298 2.2268

20 2.4714 2.4674

TABLE II COMPARISON OF EIGENVALUES FOR t, = 40 ns AND 0 = 0
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the low order ones can be traced to the fineness with which the fundamental
time interval (0, to) is divided. This division is made so that the highest
eigenfunctions are represented by about five points per half~cycle. Sub-
stantiation of this comes from choosing different numbers of points in (0, to)
and then comparing eigenvalues and eigenfunctions of the same order for the
two different éases. Since the eigenfunction expansions are performed over a
time interval for which the conductivity is not too large, the calculations
for the case of a variable can be assumed to be satisfactory.

To illustrate the results of the computer code, consider the input data
in Fig. 3. It should be emphasized that this data is pure invention. It is
not even consistent with Maxwell's equations and does not reflect any known
real situation reéulting from a nuclear burst. It was invented, however, with
these four features in mind. TFirst, there is the rapid rise time of both the
incident electric field and the air conductivity. Second, the electric field
rises first and is then followed later by the conductivity. Third, the elec-
tric field peaks before the conductivity, and the decay of the field is
then more rapid than the conductivity. Fourth, the data ranges span orders of
magnitude. While this is not'real' data, it does serve to illustrate the
workings of the computer program and the kinds of results obtained from the
foregoing analysis. The electric field is plotted with an arbitrary scale
because the solutions scale linearly as mentioned above. The conductivity
given in Fig., 3 is referred to as o(t) in the discussion which follows. TFor
comparison, examples are also given for .250, .50 and 20. The switchover
points from thg eiéenfunction expansion to the diffusioﬁ approximation are
given in Table IIT along with the corresponding_ratios of the conauction current

to the displacement current.
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CONDUCTIVITY t, (ns), Loona’Taisp
25 g 19.2 11.0
5 0 19.0 . 9.68
o 18.6 S 7.49
2 18.2 . 7.82

TABLE III SWITCHOVER TIMES FOR THE NON-ZERO CONDUCTIVITIES
ATONG WITH THE RATIOS OF CONDUCTION TO DISPLACE-
MENT CURRENTS AT THESE TIMES '
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Figures 4 through 7 show typical computer-generated eigenfunctions for
the conductivity of Figure 3 (o(t) and t, = 18.6 ns). Note they display damped
behavior toward the end of the interval as expected (see Egs. (II-21) and (II.22)
in this regard). Figure 8 illustrates the variation of the variable £, Eq.
(11-28), with t from 18.6 ns to 100.5 ms.

Figure ¢ shows the equatorial currents induced on spheres of radii .3M,
.5M and 1M outlto 40 ns. These were computed with 20 even énd 20 odd eigen-
functions. Of cogrse,‘the diffusion approximation is not appropriate here
and the entire interval was used for the eigenfunction éxp;nsion. Note the
oscillations of the current which can be interpreted as a nétural ringing of
the sphere when subjected to the incident field. The damping of the oscillations
toward the end of ﬁhe interval indicate at later times the spheres re-radiate
as expected.

Figures 10, 12, 14 and 16 show equatorial currents for .250, .50, and
20 respectively for the three perfectly conducting spheres. The currents in
the first three cases were calculated with 20 even and 20 odd eigenfunctions
while the last was calculated with 30 even and odd. These values were esti-
mated to be sufficient to give high enough frequencies to reproduce the re-
sponse of the épheres. Note that the curves have some small oscillations
superimposed on the general trend of the current. These have a period about
that correspoﬁding to the first ignored eigenfunctions. Since these oscillations
are down by least one order of magnitude or two in comparison to the currents
at later times (the region of interest), no attempt was made to suppress

them.
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Equatorial Currents Induced on Spheres for Zero Conductivity -




Figures 11, 13, 15 and 17 show the equatorial currents calculated with
the diffusion approximation from 19 ns to 28 ns (where the currents peak).
These currents are the continuations of the current plots discussed in the
previous paragraph. A comparison of these figures with Figure 9 serves to
illustrate the decided importance with which the presence of conductivity
can influence results. The enhancement factors given in Table IV and plotted
in Figure 18 are defined as the ratio of the peak values of the currents and
current-rates for ¢ # O to those for o = 0 for each of the three spheres.
Finally, Figures 11, 13, 15 and 17 also illustrate the approximation Eq.
(V-1) to the current in the high conductivity region. As mentioned above,

this approximation is better for higher conductivities and larger spheres.
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ad (Metets) .250 .50 g 20

Current 6.39 11.0 18.2 28.8
«3

Rate 2.15 3.53 4,98 7.49

Current 5.18 8.44 13.1 20.0
.5 |

Rate ' 1.79 2,82 3.89 5.99

Current 4.34 6.52 8.55 13.8
.1

Rate 1.88 2.85 3.85 5.70

TABLE IV ENHANCEMENT FACTORS (SEE TEXT) FOR CURRENTS
AND CURRENT~RATES
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