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ABSTRACT

When a TEM transmission line is excited by an external field having a
magnetic component parallel to the line axis, the quasi-static concepts on
which the simplicity of conventional line theory rests may, under certain
conditions, become invalid.

While not rigorously argued, except for the case of a single, lossless,
round conductor above a lossless ground plane, we believe, as a result of
this study, that the conventional concepts for multiconductor lines remain
- valid, provided the transverse component of propagation wavelength is much
greater than the maximum dimension of the line in the transverse direction
of propagation.

Voltage measured between conductors in a transverse plane generally
will not be independent of the position of the voltmeter connecting wires,
even though confined to the transverse plane, but cenductor currents should
be as predicted by conventional theory. Under these conditions the axial .
component has no effect on the TEM response of the line.

An attempt to explore the effect of small, but non~-vanishing radius
of an isolated conductor in such a field yields the suggestion that the
relative error in assuming quasi-static behavior of the line will be of
the order of the ratio of that radius to the transverse propagation wave~
length, and out of phase with it.
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1. INTRODUCTION

The study of the TEM response of transmission lines to external fields
has a long history, dating from early studies of inductive interference
between power and telephone circuits, lightning discharge effects, and tele-
phone crosstalkl»2, More recent studies have been concerned with distur-
bances, in control-~ and communication systems of airborne and gréund instal-
lations, produced by high-energy radiations of short duration arriving from
arbitrary directions. Such studies have concentrated on the effects of
impressed fields having, at most, transverse electric and magnetic components
of intensity, and an axial component of electric intensity378,

When the magnetic intensity is transverse and the electric field is
axial, two alternate methods of.dealing with the problem vield equivalent
results for solid-conductor lines3:5,6, However, in the case of a braided-
shield cable, where the coupling to the interior of the cable depends on the
total current and charge on the sheath exterior, the vector-potential method?
yields the totallexte:ior current, while the generalized transmission~line
methodS yields only the normal TEM current of the cable exterior.l Neverthe~
less, in the case of a single thin wire above a perfectly conducting ground
plane, Harrison has shown that only the transmission-line component of cur-
rent is present7. Furthermore, the nature of the proof implies that the
conclusion is valid for any number of conductors of any cross-section (much
less than a wavelength ) above a perfectly conducting ground plane.

Thus if the exterior current of a braided-shield cable above ground is
computed by the elementary transmission-line method, the subsequent analysis

of the interior response remains valid for the stated excitation conditions.



The only question that remains for an arbitrary wave incident on a line
above ground is the effect of an axial magnetic field. Intuitively one is
inclined to dismiss this component on the grounds that it cannot contribute
a forcing function to the voltage differential equation Sf the line., Never-
theless, the line differential equations cannot be written in the usual way
without imposing certain restrictions. For a single conductor, -or for the
exterior of a braided-shield cable~ above perfect ground, these restrictions
are ordinarily easily satisfied. In fact, insofar as the line mechanical
structure is concerned, it is sufficient that the maximum transverse dimen-
sion of the system be much less than a wavelength, thus yielding quasi-static
behavior in any transverse plane in the vicinity of the line. An attempt to
explore this criterion quantitatively is made in section 2.3 by studying the
deviation from quasi-static conditions for an isolated round wire excited by
an appropriate wave, as the radius of the wire is increased.

2. TECHNICAL DISCUSSION

We consider, first, the case of a surface wave travelling in the trans-
verse plane of the line, and then generalize to a surface wave at arbitrary
incidence.

2.1 Surface Wave Transverse to Line

Consider a system of lossless conductors of arbitrary invariant cross-
section above a lossless ground plane (fig. 1). With a coordinate system
specified as shown, assume a plane surface wave travelling across the line
in the positive-z direction, with vertical electric field intenéity, E;},

and horizontal magnetic intensity, HiI, parallel to the line axis, Assume,
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further, that the conductors above ground (N in number) are so grouped and
of such size that the maximum dimension of the system in the transverse z
direction is much less than the wavelength of the travelling wave. Then
the impressed fields appear as quasi-static fields to the conductor system,
with the following implicationms:

1. In the (perfect) conductor interiors the magnetic and electric
intensities are zero. Exterior to the conductors the magnetic
intensity is everywhere the same, namely Hiz, and the surface
current densities on all conductors are also everywhere the same,
namely,

i = HS (1)
Since the current around the periphery of each conductor is
independent of position, there is no accumulation of electric
charge at any point of any conductor due to Hi.

2. The impressed electric field, Eg, induces charges on the conduc-
tors in accordance with quasi-static concepts, since variations
of the field are felt simultaneously over the cross-section of
the system,

As a result of these considerations the total charge on any conductor

(say the kth) results only from the impressed quasi-static electric inten-
sity, Es, and the potentials, V; (i = 1,..., N) on the various conductors
associated with TEM waves, if any, on the line, Furthermore, the conductor
traces are equipotentials in any transverse plane. Thus, the law of current

continuity applied to the line axial currents and total linear charge densi-

ties yields the conventional result?®
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[

Lty =H00 = juc® B 2
dx

where5»8 I and V are the line current and voltage column vectors respectively,
g? is the impressed electric field coupling colummn vector, and

n=jugl (3)
where C is the N x N matrix of Maxwell's coefficients of capacitance for
the system. The vector, H®(x), is defined by the third member of equation
(2). It may be represented as a continuous distribution of current sources
along the 1liine.

To write the voltage equation we proceed along conventional lines as
indicated in figure 2. Curve, C, is an integration path for the electric
inﬁensity, E. Segments 1 and 3 are corresponding transverse segments at x
and x + Ax respectively. Segments 2 and 4 are at the surfaces of the kth

conductor and ground respectively., We have, by Faraday's law,

[ Eeds = - jug, -Ax : (&)
[

where ¢ *bx is the normal magnetic flux through any surface bounded by C.

Since the conductors are lossless,lf = 0 along segments 2 and 4, and

[}

- juwéy dx f E(x; v,2) *ds + f E (x + Ax; y,2) *ds
1

3 .

n

f {ft(x; ¥,2) - fk(x + bx; y,z)]eds
1

where Et is the transverse component of E. For Ax+0,

3 [ Eeeds = judy (5)
9% 1 .

In terms of the electrodynamic potentials,

Ep = = VeV = Juwu Ap (6)
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Fige2. Integration path for voltage equation.




where V and A are the scalar and vector potentials of the total field,
respectively. Thus equation (5) becomes

3 [V Veds + juug 3
3x 1 9x

[ Apeds + jug = 0 (7)
1

The first term in the left member is (dVy/dx). Since Hi is indepen-
dent of x, so is the transverse current density, i (equation (1)). Conse-
quently, X; is independent of x, whence the second term in the left member
is zero. The final term is a summation of the effects of axial currents
on all conductors above ground, so that equation (7) becomes the conven-

»

tional result in the absence of transverse magnetic intensity:
N
Ve + ju ] Ly I3 =0, k=1,..., N (8)
dx i=1

or, in matrix notation,
Vrrr=o0 (9

where we have written
L=3ulL | (10)
and L is the N x N matrix of line inductance coefficientsS8,
i Thus, for this particular case of excitation, the conclusion is that
the axial magnetic intensity does not affect the TEM response of a line
of sufficiently small dimensions.

2.2 Surface Wave at Arbitrary Incidence

Consult figure 3. P, the poynting vector for the surface wave makes

an angle, o, with the positive x-axis. The direction cosines of P are



Fige3s Field couponsnts of surface wave at obligue incidence to linse.




A = coso

u=cosB =cos =0 (11)
2

v = cosy = sina

As before, the electric intensity is E; 3, while the magnetic inten~
sity is

e - €% ey
H™ = Hxi + sz

= 3¢ ( - vi + k) (12)

To show the relative phase of ue explicitly write

H® = HS exp[-jk,(Ax + vz)} (13)
where
ko = 21 ' (14)
Ao

and Ao is the wavelength of the impressed field in the direction of propa-
gation., Then, by equations (12) and (13)
e _ _ e -
He = - v H] exp| jko(lx + vz)]

HE = A ®HE j (43
2 = o expl-jk,(Ax + vz)]

The wavelength of propagation transverse to the line is given by

k, = 2n (16)
g
that is,
Ay, = ig = A, csca (17
v

Thus, a sufficient condition on the wavelength of the impressed field

is that A csca be much greater than the z-dimension of the line. As



o+ 0, A, may have any value greater than zero, for any line cross-section, .

in accordance with previous concepts,

It follows immediately that the current equation (2) is valid under
the lesser restriction that Az be much greater than the line's greatest
z~dimension.

However, in trying to reduce equation (7) to the form of equation (9),
we are in difficulty with the second term of the left member of équation
(7). For, since the wave has a propagation factor, exp(-jkyAx) in the
x~direction (A # 0), we have

3 f Ageds = - jkoh [ A ds #0
0x 1 1

generally.
The difficulty can be resolved if a path, (1), can be found, such that

[ Agrds =0 (18)
1

Leaving general considerations aside, we can certainly satisfy this
criterion in one elementary case of special interest. Figure 4 shows a
conductor of circular cross-section above a ground plane, excited by an
uniform, axial, quasi-static magnetic field, which we can imagine to be
supported by currents travelling in the ground, and in a source plane far
above the conductor-ground system, in planes transverse to the conductor
axis. As a result of the impressed field, a uniform current circulates
on the wire surface, with the same density as the ground current.

The dashed line represents a path along which X;-d§'= 0 (a stronger
condition than'that specified by equation (18)). To see that this 1s so

it is only necessary to show thatKt is everywhere normal to the path.

10
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We note first that the ground and source currents contribute only compo- ‘
nents of E% normal to the path. On the circular conductor, current elements
symmetrically disposed with regard to the path (and equidistant from any
point on the péth) yvield horizontal components which add and vertical com-
ponents which cancel. Thus the totalzt at any point of the path is normal
to the path, whenceixc-dg = 0 at every point.

The requirement that integration be limited to a specific path implies
that the flux linking the conductor must be determined for a surface bounded
by that path. In equation (7), since the first term in the left member is
independent of the path, any variation in the second term due to change in
path must be compensated by a corresponding change in the third, i.e., by
a change in the normal flux. (See Appendix A).

Although we have not taken the time to explore this subject thoroughly,

it appears offhand that there must be a singly-infinite family of paths

satisfying the condition
A+ds = 0 (19)
For equation (18) implies that

Aydy + A,dz = 0

or
El}i"".liz. sAy#O (20a)
dz Ay

or
dz=-% ,a #o0 (20b)
dy A,

12




Equation (20a), or, alternatively, equation (20b), is the first order
differential equation of a one-parameter family of curves. The equation
has a solution at any point (v,, 2,) for which a Taylor's expansion of the
right member exists. For well-modelled physical functions this will gener-
ally be true unless both Ay and A, are zero. However, at such points,
equation (19) is automatically satisfied,

There is no guarantee, a priori, that amy of the curves will intersect
both a specified line conductor and ground. We have shown that at least
one such curve exists in the case of a single round conductor above ground.
In that case, also, the designated path yields the static value of induc-
tive coupling parameter determined previously13. Further study appears
warranted. |

With the conclusion that the middle term of the left member of equation
(7) may be dropped, the line equations, at least for the case of a single
round wire (or the exterior of a braided cable) above ground, become®

Ve + juLI, = E%(x) = ju L® HS

dx
(21)

e + ju € v, = H(x) = ju C® Ey
dx

where E®(x) may be represented as a continuous distribution of series volt-

age sources along the line.

2.3 Isolated Round Wire Excited by Plane Wave; Electric Vector Normal

to Conductor Axis.

In this section we explore, briefly, the deviations from static charge
and current distributions on an isolated round wire as a function eof wire

radius,

13



In figure 3 assume that no ground is present, and that the "line"
consists of a single round conducter of radius, a, with axis coincident
with the x-axis. In Appendix B we derive, by a simple extension of
standard work®»!0  the approximate values of circumferential current den-
sity, i¢, and surface charge density, o, as a function of polar angle, ¢,
for small kja:

iy~ = v Hg exp(-jk,x) {{1~ L (k,a)%c0s2¢]-3 1 (k,a)cos¢} (22a)
2 2

0~ - 2 ey Eg exp(-jkyX) {[sincb-_é_ (k,a)?sin3¢]~j % (k,a)sin2é} (22b)

In the limit, as k,a » 0,
e
ig>-v Ho exp(=jkyx)

o (23)
o+ = 2c¢, Ey exp(-jkyx) sin¢

In the limit, i, has the expected constant value at any transverse

¢
plane, while the charge distribution is identical with the familiar elec-
trostatic distribution induced by a uniform field!2?, except for the phase
variation with . To the extent that the actual charge distribution devi-
ates from this behavior because of non-vanishing kza, the conductor surface
cannot be an equipotential surface. Similarly, in equations (21), as the
conductor diameter is increased, the meaning of Vc can be expected to become
increasingly vague in the presence of an axial component of magnetic inten-
sity.

It appears quite difficult to estimate the effect of this deviation
on the terminal response of a TEM line. The r.m.s. deviation of charge
density over the conductor circumference is approximately

(-52)1/2 = jK kza

—

2V2

14




where K is the factor outside the bracket in equation (22b). The r.m.s,.

value of the electrostatic limit is
(sin2¢) 1/2 = K_
V2

The relative r.m.s. deviation is therefore

jv.a_ sina (24)

Ao

d =] l kya= jn a=
2 A,

Since this is out of phase with the electrestatic limit, the magni-
tude of d measures the r.m.s., "'error" in the phase of the charge denéity.
The r.m.s. error in its amplitude is measured by the square of the magni-
tude of d (Appendix C). As an example, for a cable sheath with outer
diameter of 5 cm., we have, at a Az of one meter,

[d] = 0.0785

|d|2 = 6.16 x 1073

3. CONCLUSION

The TEM terminal response of a multiconductor, isolated transmission
line, or of a cable sheath above ground, to an external field impressed
at arbitrary incidence, may be determined from the comventional analysis
using only transverse components of the impressed field, provided that the
impressed component of propagation wavelength transverse to the line is much
greater than the maximum dimension of the line or cable in the same direction.

An attempt to explore the effect of small but non-vanishing radius of

én igsolated conductor in such a field yields the suggestion that the relative
error in assuming the usual quasi-static behavior of the line will be of the
order of the ratio of that radius to the transverse propagation wavelength,
and out of phase with it.

15
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APPENDIX A

Variation of Flux with Integration Path

To understand the nature of the variation of flux linkage with path,
consult figure 5. This shows a length, Ax, of conductor above ground, for
which two alternate paths of integration have been chosen. One of these is
formed by the segments, Cl’ at x and at x + Ax, and the lines joining their
intersections with the conductor and with ground. The alternate path is
formed similarly with C,. Surfaces S1 and Sz’ respectively, are formed by
axial line segments sweeping along C1 and C2 from conductor to ground. “End-

cap surfaces S, and Su are formed by portions of transverse planes at x and

3
at x + Ax intercepted by the closed path formed by Cl’ C2, the conductor,

and ground.

The total normal flux into the volume enclosed by Sl""’ S“ nust be

zero: :
4 _-
L u, [ Hends; =0 (A-1)
i=1 Si
Let
¢1'Ax = normal flux into surface S1

110 .f -ﬁ’;l_ ds 1

51

[}

$,*8x = normal flux out of surface S,

= = U [ §3§'d82
52
For the flux into S; we have, with the help of equation (15)

17
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= U, f {-v Hz exp[-jko(Ax + vz) ]} dy dz

53

= = Uy v H§ f exp[-jko(Ax + vz) ] dy dz
S3
For the flux out of SQ we have
- - e -
¢, = Hy g {-v Ho exp{-jk,(Ax + Mx + vz)]} dy dz
4

Uy U Hi exp(-jkok-Ax)'f exp[-jk, (Ax + vz)] dy dz
S
3

1}

b4 exp(-jkoA+Ax%)
Then equation (A-1) yields

(8,=6,) 8% + ¢, (1 - exp(~fkorax) = 0
For Ax » 0,

(91=8,) bx + ¢5(JkoA+ax) = 0O

whence

-©-
1
-
i
La
o
o]
e
-©-
w

==3 1 ugky Hg sin2a* exp(-jk,Ax) f exp[—jkouz] dy dz (A-2)
2 S
3

Evidently, the difference in flux through S1 and 52 is a consequence
of (1) the areasweighted phase difference as measured by the integral in
equation (A-2) (2) the magnitude of the transverse component, i, Hg sina,

and (3) its phase shift along the line, as measured by the factor k, cosa.

19



APPENDIX B

Effect of Conductor Diameter on Current and Charge Distribution Induced

by a Travelling Wave with Axial Magnetic Component

The physiéal situation is again represented by figuré 3, except that
no ground is present, and the "line" consists of a single round conductor.
In cross-section the situation is shown in figure 6, the conductor, of

radius, a, being located at the origin of coordinates.
Analysis of the scattering effect of the conductor is well~documented®»10

for a = m , which is the extreme case of interest here. For the more general

2
case, - 0 s a = » we start with the impressed field components (cf equations

il
2
(15))

HY = - v Hg exp[-ik,(Ax + uz)]
H: = ) us exp[-ik _(Ax + vz)] > (8-1)

eﬂ e -
Ey n, Ho expl jko(kx + vz)}

/

where N, is the wave impedance.
With obvious minor modifications the analysis proceeds as in the spae-

cial case, o = 1 . Begin by writing
2

e e
Hx = -y Ho exp(-jkolx) exp(~jkouz)

and using the well-known expansion
exp(-jkyvz) = exp(-jk,z) = exp(-jk_pcos¢)
o

= Jolky0) + 2 1 (=37 I, (ky0) cosng
n=1

20
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Figebe Circular conductor excited by travelling wave.
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to get

<«
e . .
Hy = - u Hg exp(-Jkyx) {Jo(kpp) + 2 Zl (=) Jp(kgp) cosnd)  (B-2)
n=
This component of field induces circulating currents around the con-

ductor periphery resulting in a scattered component Hi. The total x-compo-

nent of magnetic intensity is therefore
e 8
Hy = BS + HS (B-3)

The scattered component must satisfy the cylindrical wave egquation

13 (o é_w_) + 1 8%y + 8%+ kZp =0
p 3p . (B-4)

kg =

<le

To insure proper matching of fields continuously along x, the scattered
component, like the impressed component, must have an appropriate propaga~
tion constant in the x-direction, thus:

¥ =‘T (p,9) exp(-jkyx)

32y = - k2
=Y

Noting that

2 12 2 12 = 12
kZ - k2 = k2 = k2

reduces equation (B-4) to

: 2 2 = -
ll.@ﬂ)+Lwaﬂlo (B-5)
P 30 S p2 392

Solutions of’equations(B-S) representing outgoing scattered waves are

of the form

v = H(?) (ko) exp(ing) (B-6)

22




where Héz) is an nth order Hankel function.
Thus equation (B-3) may be written

Hy = = v Hg exp(~Jkyex) { [Jo (kzp) + 2 Z (—j)n Jn (kzp) cosnd)
n=1

+ bo HS2) (ko) + 21 B{2) (k,0) [apsin né + bcosnsl}  (B-7)
n=

At the surface of the conductor the tangential component of electric
field and the normal component of magnetic field are zero. From the appro-

priate field equation we have

juwe, E¢ = = jky Hy - OHy
ap
yielding
H,, =0
3p

p = a
Using this in equation (B-7) and following standard procedures then
yields |
a =0

-2 (_j)n Ji(k,a) n=1,2,3,.... (B-8)
ng)‘(kza)

o
it

where, as usual, primes denote derivatives with respect to the function

arguments.
The solution for the axial magnetic intensity is therefore
He = - v HS exp(~jkyx) {[J (k) - _ Jo(kz2) .H§2>(kzo)]
1§2) “(k ja)

+2 7 (-j)n{jn(k o) - Jalkza)  g(2) i p) Jcosné} (B-9)
n=1 z Héz)’(kza) ! ‘

23



From appropriate components of Maxwell's equations we have

?Ei = jwug Hp
ax

My - My = jweoE¢
ox ap

Noting, once again, that

OB = - fkyEg

3%
etc., reduces these equations to
-jkxE¢ = jwuoHp
- jkap - §§§_= jweoE¢
Eliminating E¢,

- ik H - g = (Jue)( - Yo ) H

p
3p kx

s—jEsz?_Hp
ky

whence

H = A SHy (B-10)
Jkguz %

Then from equation (B-9), noting that kz = kou .

B, = 30 S exp(-3k,m) ([950k,0) = J8(kaa)  u(®) (e p)]
ng)’(kza)

+2 ] DT k) - InRa®  nl2) ko)1) (B-11)
n=1 Ht(‘Z)l(kza)

24




Again, from Maxwell's equations,

BE = - i = e
axg kaEp jwpoH¢

and

Py - M = 1 WMy + gy = Jueoh

e

5 dx o a6

O |-

Eliminating Ep and solving for H¢,
H¢ = 2 oHy
jkoUZD 99
Then equation (B-9) yields

By = 2050 exp(aii) ] (=) nl kye) - Tnke?)
Jkoup n=1 Héz)’(kza)

Finally, from results obtained previously,

= . WU = - N
E¢ . 0 Hp Xg Hp

p=a

p=a

The surface charge density is

(B-12)

Héz) (k_0)]sin n

(B-14)

(B-15)

(B-16)

With the use of equation (B~9), the second of equations (B~15) yields

i¢ = - v Hg exp(—jkxx)[}oﬁgz) ’—JZ)HSZ) + 2 z (_j)n[_]n}{éz) "'JI’lHn(z
u(2)-
n

2y » =1
{2 n
25

(B-13)

%}cosn¢ (B~17)



where every Bessel function has the argument, kza.

By standard relations in Bessel function theoryll,

Zy (2) =% [Zge1 (E) - Zpe1 (8)1, D integer (B-18)

where Z, (£) is any Bessel function. 1In particularll,

z; (&) = -2, (&) (B~18a)
Furthermorel!,
In Héf)l = Jh-1 Hé"‘) =_2_ (B-19)
img :
Thus, by equations (B-18), (B-18a), and (B-19),
- - = L 2 = -
3, 882~ - gz w2 =5 w2 - w2 E%E (3-20)

and

In H§2)’ - Ja ng) - % {3, ngi - Jn—l H122)}+[Jn+1 H§2)- Jn Héii]}

(B-21)
Therefore, equation (B~17) becomes
ig = - 2ZuH§ exp(~jkyx) 1 +2 § (-7 __cosn (B-22)
j'n'kza ng) ‘(kza) n=1 ng) '(kza)

Next, using equations (B-14) and (B-13) in equation (B-16), and reducing

in the same manner as the preceding,
(24

o= - 4€o§§,exP('jkxx> ) (--j)n n sin n¢ (B-23)
w(kza)2 n=1 Héz)‘(kza)

e e
where we have set No Ho = Ey .

We are particularly interested in the behavior of iy and o as k,a » 0.

26




To that end we can use the following approximationsll:
As &+ 0,
1{2 (&) » - j N, (®)
therefore
B{2) “(E) » - 3 N2 (E)
where

N2 (£) > nl (g)““, n>1; 0! =1
2 \E

Using these results in equations (B-22) and (B-23) respectively yields

i¢ = -y Hg exp(—jkxx) G.+'4 Z (—-j)n (kza)n cosn¢) y kya<<l (B~24)
n=1 20 !
o=-2 €, E; exp(*jkxx) Z (-j)n (kza)n sin (n+l) ¢, k,a<<1 (B-25)

n=o 20!

Finally, approximating each of these to early terms,

i

Q

p Y Hg exp(-jkyx) {[1- 1 (kzzat)2 cos26] -3 1 (k,a) cosé}
2

2
o~ -2 e, B exp(-jk,x) {[sing - % (k,a)? sindp] -j _%_ (kya) sin 2¢}

provided k,a <<1.
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APPENDIX C

. Deviation from Quasi-static Distribution of Surface Charge Density

Amplitude
From equation (22b), the square of the magnitude of the surface charge
is given by

b o 12 ~ K2 {[sind - 1 (kza)? sin3]2 + L (kya)? sin? 24}
8 4

where K is the factor outside the bracket in equation (22b), Expanding
combining terms, and discarding a term in (kza)“,

lo |2 ~ K2[1 + 1 (k,a)?] sin%¢
4

The static limiting case is
luol = K lsin¢[
The deviation from the static limit is

6,= 1 ol -lo,| =k |sing| {[1 +_% (k,2)2]1/2- 1)

The root mean square deviation averaged over ¢ is

(32112« k {2+ 1 (ep)2- 2 [1+ 1 (k,a)2]1/2)1/2
a V2 4 4
~ K[ 1 (k,a)? )
V3 4

Since the r.m.s. value for the static case is K/ V2, the relative
r.m.8. deviation is

d, =

1 (kza)2 =1 (2ra )2 = f[ra)?
4 7 X

28




7.

10.

i1.

iz,

13.

REFERENCES

Wright, C.A., and Puchstein, A.F,, Telephone Communication, Chapter
XVII. McGraw-Hill, New York, 1925.

Peek, F.W., Jr., Dielectric Phenomena in High Voltage Engineering,
Chapter IX, McGraw-Hill, New York, 1929.

Harrison, C.W., Jr., "Generalized Theory of Impedance-Loaded Multi-
conductor Transmission Lines in an Incident Field", Sandia Labora-
tories Report No. SC-R-71 3303, July 1971, Interaction Note 82.

Licking, L.D., "The Response of an Arbitrarily Terminated Wire Near
the Side of a Conducting Cylinder," Sandia Laboratories Report No,
SC-TM~71 0319, July 1971, Interaction Note 94.

Frankel, S., ''Response of a Multiconductor Transmission Line to Exci-
tation by an Arbitrary Monochromatic Impressed Field Along the Line,"
Sandia Laboratories Report No. SC-CR-71 5076, April 1971. Also, AFWL
Interaction Note No. 80, April 1971,

Taylor, C.D., R.S. Satterwhite, and C. W. Harrison, Jr., "The Response
of a Terminated Two-Wire Transmission Line Excited by a Non-Uniform
Electromagnetic Field," Sandia Laobratories Report SC~-R-65-978A,
November 1965, Interaction Note 66.

Harrison, C. W., Jr., '"Bounds on the Load Currents of Exposed One~ and
Two-Conductor Transmission Lines Electromagnetically Coupled to a

Rocket," IEEE EMC-14, No, 1, February 1972, pp. 4-9, SC-R-72-3209, Apr 1971,
Interaction Note 71.

Frankel, S., "TEM Response of a Multiwire Transmission Line (Cable)

to an Externally Impressed Electromagnetic Field: Recipe for Analysis,"
Frankel Associates Technical Memorandum FA-181, February 1972.

Kaden, H., Wirbelstrome und Schirmung in der Nachrichtentechnik,
pp. 118 ff. Springer-Verlag, Berlin, 1959,

Harrington, R.F,, Time-Harmonic Electromagnetic Fields, Chapter 5,
McGraw-Hill, New York, 1961.

Jshnke, E., and Emde, F., Tables of Functions with Formulae and Curves,
Third Edition, B.G. Teubner, Leipzig. Also, Fourth Edition, Dover
Publications, New York, 1945.

Smythe, W.R., Static and Dynamic Electricity, McGraw-Hill, New York,
1939, First Edition, Section 4.03, pp. 65 ff.

Frankel, S., '"Field Coupling Parameters for a Single Round Wire Close
to a Ground Plane or Twé Large Round Wires in Free Space', Harry Diamond
Laboratories Report No. HDL-TM~72~14, April 1972, Interaction Note 120.

29



