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Abstract

A discussion of the small hole model for braided cable shields is
presented. Four facters upon which the hcole polarizabililitles depend are

examined.
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I. Introduction

The work reported here was motivated by the need to understand braided
cable shields. However,many of the results obtained are also applicable to
any cable shield that has a single small leak.

The model used to study the braided shield is that of an infinitely thin,
perfectly conducting shell with a regular array of small, diamond-shaped holes.
Such a model is not new. Vance and Chang [1J have employed a similar model
and also have included, Iin an approximate manner, the effect of the conductivity
of the braid wires. There are differences between some of the results here and
some of those in reference 1. The reason for these differences 1s that in the
braided shield sections of this note it is assumed that the dominant aperture
leakage comes through the holes between intersecting belts of-wire, while in
reference 1 the aperture leakage was assumed to take place through the holes
between individual intersecting wires. But thesge differences are minor, for
either model could be readjusted once the main aperture leakage mechanism has
been established.

The purpose of the present note 1s to use the above model to make a
somewhat more detailed analytical study than has been given up to now of the
effect of the holes on shielding by braids. A detalled study of the effect
of conductivity may be given in a future note.

If one studies a circular, cylindrical, co-axial, braided-~shield cable,
and one makes the assumption that all wavelengths of interest are long compared
to the diameter of the shield, it is possible to set up integro-differential
or integral equations for the electric and magnetic potentials in a single
aperture by invoking a set of doubly-periodic Green's functions. Such an
approach to the problem, 1f carried through to the numerical computation stage,
would necessitate no further approximations fn the study of the model. But it
would be difficult to—develop a feeling for the effect of varying one of the
many parameters of the problem by studying the many pages of curves that would
be the inevitable result of such a basic, sledgehammer approach. Furthermore,
the machine time necessary would be not inconsiderable, and new models would

have to be set up to study shielded cables that are not of the simple co-axial

type.




The approach taken in this note, and alsc taken in reference 1, 1s to
try to calculate the effect of a single hole accurately, and then to superpose
the effects of all the holes. Of course, this is a rigorous procedure 1f the
effect of each hole were calculated exactly, including its interactions with
all the other holesg; the approximations enter when the single-hole effect is
being calculated. This note extends the work of reference 1 by making possible
more accurate estimates of the effect of each hole, although the basic assumption
that all wavelengths of interest are much longer than a cable diameter will still
be made.

The first step in determining the effect of a single hole In the shield
iz to derive equivalent voltage and current sources for the hole; these equivalent
sources are to be used in conjunction with the transmission-line equations
describing cable shielding. It turms out that the equivalent voltage source
is proportional to the magnetic dipole moment induced in the hole and that the
equivalent current source is proportional to the electric dipole moment Induced
in the hole. Precise definitions of these induced dipole momenta are given in
sections II and I1I. The strength of the magnetic dipole is proporticnal to
the local surface current flowing along the shield, and the strength of the
electric dipole is proportional to the local surface charge density on the
gshield. These are interesting, but intermediate, results. The real problem
has been shifted to the computation of the induced dipole moments or, equiva-—
lently, the constants of proporticonality between the current, linear charge
density, and the dipole strengths.

The proportionality constants determining the dipole moments Induced in
the hole depend on four major factors: (1) the hole shape; (2) the presence
of nearby conductors, in particular the proximity cof the inner cables;

(3) the curvature of the surface at the position of the hole; and (4) the

presence of other nearby holes, An estimate of the effect of each of these
factors 1s made in this note, based on accurate solutions to model problems.
These mcdel problems are further idealizations of the hole—~in—-a-shell model.
They have been chosen to isolate, as much as possible, one parameter of the
overall problem. Frem a study of these i1dealized problems, it is hoped that
it will become possible to develop some intuition concerning the effects of

the various parameters of the real problem, since there are very few parameters




left in each idealized problem. The solutions tec the first three idealized
problems could also be of Interest in the study of nonbraided shields with
small isclated holes.

In Section II, a derivation of the equivalent voltage source of an
isclated hole in a cable shield is presented. Similar results have been
obtained before [2], but the derivation here seems at the same time to be
simpler and more general. An example of-the general result is given.

In Section III, a derivation of the egquivalent current source of an
isolated shield hole is presented. Previous results on this type of source [2]
don't take quite the same form as they do here, but this fs due to differences
in the intended use of the expressions. The previous forms of the results
were useful for studying the coupling between co-axial cables, while the forms
derived in this note are more useful for studying the shielding of cables
from external fields. Again the derivation here 1is rather simple.

Section IV is a brief discussion of the combined effect of the two
types of source (voltage and current) when a cable shield with one hole isa
used to shield a cable from an incident plane wave.

Section V 1is a detailed discussion of the braided shield model that is
used in this note. In partfcular, the way in which the present work fits inteo
an exact approach described previcusly [3] is made explicit.

Sections VI through IX are concerned with the detailed solutions and
presentations of results of the four ideallzed problems that have been chosen
to study the four factors determining the hole polarizabilities in the braided-
shield model. These four factors (hole shape, nearby conductors, surface
curvature, and nearby holes) have been mentioned above. Detailed descriptions
of the idealized problems chesen to study these factors may be found in the

appropriate sections.
Finally, in gection X, another look 1s given to the braided shield model

in the light of the results arrived at in Sections VI through IX.




I1. Voltage Source of One Little Hole in a Cable Shield

Figure 1 is a schematic diagram of the situation to be studied. Both the
cable and its shield are infinite cylinders, but it is not necessary to assume
that they are circular cylinders. In this note it will be assumed that there is
only one cable inside the outer shield, although the d;rivations of the equivalent
sources of the hole can readily be generalized if there are several cables inside
one shield.

The strength of the equivalent voltage socurce of the hole 1s given by iw
multiplied by the total clockwlse difference flux through any infinite strip
connecting the inner cable to the shield when a net d.c. current IE flows along
the shield and a net d.c. current I flowe along the inner conductor. This
follows from previous results [ 3] if ome assumes initially that the shield has
a periodic structure with period A, and then lets A go to Infinity. By
"difference flux" in the above definition we mean the total flux minus the
flux through the same infinite strip if the hole were closed. We will also
speak of "difference field" in the following work; this field 1s the real
field minus the field that would exist if the hole were closed. 1In this
section, the boundary-value problem' implicit in the above definition of the
voltage source will be called the main problem.

We can arrive at an alternative way of calculating the strength of the
equivalent voltage source by considering first an auxiliary boundary-value
problem — the one where the hole is closed and a current I0 fiows along the
inmner conductor and a current —Io flows along the shield. These total currents
digtribute themselves, on the surface of the inner conductor and on the surface
of the shield, in such a manner that the normal magnetic field vanishes at
both surfaces. This current distributfon will give rise to a magnetic field
only in the space between the cable and the shield. Of course the field
digtribution we are talking about is Independent of z and, In any plane
perpendicular to z, it is just the transverse magnetic fleld distributlion of
the TEM mode of propagation within the cable-shield structure. Now let this
auxiliary magnetic field distribution, Eb’ be equal to the gradient of a
magnetic potential, ﬂo. Since there is a current Io flowing on the inner
conductor, we will have to define an infinite surface joining the inner
conductor to the ghield across which 90 jumps by a value Io' Let this jump

surface be the same one through which we desire to calculate the difference
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Figure 1. Infinitely long shielded cable with a little hole.

Figure 2. Cross-section of a particular example of figure 1.




flux in the wmain problem.

Now let us return tc the main problem where a net current Is flows in
the shield with a hole and a net current I flows on the inner conductor. Here
one can say that the difference magnetic field in the space between the cable
and the shield, H, can be derived from another magnetic potential, 2, and that
there is no jump surface joining the inner conductor to the shield; 2 is
continuous throughout the region.

Both @ and @ satisfy Laplace's equation, therefore ([5], p. 54, eq. &)

Jnﬁds-Jn 24 45 (2.1)
an o 3n :
where n is the outward normal from the field region and the integrals are over
the inner surface of the shield, the outer surface of the Inner conductor, and
both sides of the jump surface. The integrand of the left hand side of equation
(2.1) vanishes over all surfaces, and the integrand of the right hand side
vanishes over all surfaces except A, the aperture region of the shield, and

J, the jump surface. Thus,

J o ?ds+[ Q g—ndS-—JQo-g—ndS
Jon Jon A n

Now, because of the difference in the direction of the normals,

(), - (), -

+
and so we have

ds--Jn 28 s,
A

o 3n

+ ~, ol
L @, - 8) 3

But the clockwise difference flux through J is just

a8l
b=y JJ 3n 3,




while —
ot . Q = -1,
o o o

Thus, an alterpative expressiocn for the total difference flux is

U
$ = - EE'J Q %Q-ds,
o Ja © 9n
and the equivalent voltage source of the hole, Veq, is just
Qo
Veq = {6d = —imuo JA(E;)HndS (2.2)

where Hn is the outward normal component- of the magnetic field in the hole and
a harmonic time dependence of the form exp(-iwt) has been assumed and suppregsed.
Equation (2.2) is rigorous, under the low frequency assumption, for any size of
aperture. We will now make the assumption that the hole is small and expand ﬁo
in a Taylor series in s, the counterclockwlse arc length along a shield cross=-
section, about some point, Sy, chosen.as the center of the hole. Keeping ohly
two terms 1in the expansion, we have

2,(s ) an

veq B _imuo JA I0 * a8

(s~sh)
. I Hn(s,z)ds. (2.3)

Sh Q

But, applying equatien (2.1), with a replaced by a constant, 1t is clear that
H (8,z)ds = 0,
J

while

a2
P = K, ()

*h
where KO(Bh) is the surface current density at—s, in the auxili- v problem.

Thus equation (2.3) may be written as

K (s

)
v = iwy o _h’ J sH (s,z)ds (2.4)
eq o Io A 0
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Let us define a dimensionless, positive, density function, di(s), through

I
K (e) = ~ 3> d,(8)

P
where P ig the perimeter of the cross-section of the shleld. The density
function, di(s), is the ratio of the surface current of the auxiliary problem at
point 8 to the average surface current of the auxiliiary problem. Using this
definition, one can write equation (2.4) as

iwuodi(sh) J
8

VEq 5 an(s,z)dS (2.5

The effective magnetic dipole moment of the hole is defined by the
integral remaining in equation (2.53). This corresponds to the usual definiticon
of the effective induced dipole moment in a hole in an infinite conducting
plane, as may be seen by using an appropriate half-space Green's function to

write the magnetic potential of the field penetrating the hole in the plane as
L
B (")

- L '
"w -5 [ T e

where the integral is over the hole. Far from the hole in the plane, one may

write
g(r) = - |u (r')ds’ + J-JEL-- r'H (r*)ds’
— -2%r n— 2w r3 ~ n=
L T lesf
¥
211r3
where

- ' ! r

moce JE.Hn(E.)dS .
Thus, by analogy, the integral in equation (2.5) is the tramnsverse component

of the effective magnetic dipole induced in the hole. Since we will only be

concerned with this transverse component of the effective magnetic dipole, and

the holeswe will be concerned with have a plane of symmetry perpendicular to the

cable axia, we will treat the dipole as a scalar quantity and write

11




JABHH(S’Z)dS = Moepe

If the hole is small, the value of n will be made up of two main parts.

One part 1s proporticonal to the external sSiEace current at the position of the
center of the hole when the hole is closed and the other part 1s proportional
tc the internal surface current at the position of the center of the hole when
the hole is closed. Of course, one could speak of tangential magnetic fields
in place of surface currents. Now 1f Kext(s) ig the exterior surface current,

one can define an exterilor depnsity function, de(s), through

T

Kext’is) B -.'E;_ de(S)

where IT is the total current flowing on the shielded cable. Based on our basic

assumption that all wavelengths of interest are much longer than a cable dimeter,

it is not difficult to see that de(s) ig independent of the excitation of the

exterlor_current; a given current, I, will distribute jitself over the surface

T
in the same manner for any excitation field of low frequency. The interior

surface current with the hole closed 'is just
K, (s) =-<d,(s)
int ? i
Now, adding the two contributions to m,ege ODE obtains

m =P

—l[ ext int
eff am

2 Irdelsy) - op Id, (s, )]

] ext int .
where the proportionality constants, a and a s are the exterior and Iinterior
"polarizabilities'" of the hole. One can use an equation like (2.1} to show that

as long as the hole is small encugh for equation (2.5) to be valid, then

ext int
o =q Z o,
m m m
and so
=1
moeg = @ P [ITde(sh) - Idi(sh)] (2.6)

12




Previous work in this area has approximated o by defining an elliptical
hole "equivalent" to the real hole and placing the elliptical hole in an infinite
plane. In Sections VI through IX of this note, we will discuss four factors
that it i1s necessary to consider if a more accurate estimate of the hole polariz-
ability is to be made.

Now, using equation (2.6), equaticn (2.5) may be rewrltten as

imu @ u (s,)
1*%h -
Ve ™ - P2 [de(sh)IT - di(sh)lj. (2.7)

If one has in mind arn analysis of fairly good shields, then I will be much

smaller than IT and the density functions will be approximately equal, so one

can quite accurately write

di(sh)d (s )
v = ~ fpy o I (2.8)
eq om P2 8

This is our final form for the equivalent voltage source of a single small
hole in a cable shield. We now turn to some simple specific examples of the
application of equation (2.8).

The simplest possible application 1Is to a cable and shield making up a
circular c¢ylindrical ccaxial system. If the radius of the shield cylinder is
b, equation (2.8) reduces to

iwuoumIB

eq ) (2.9)
since, for the structure in question, di(s) = de(s) =1,

4 slightly more complicated example occurs if the cable and shield arvre
again circular cylinders, but the axis of the Inner conductor is shifted a
distance & from the axis of the shield. Such a situation is shown In cross-
section in figure 2, where a is the radiug of the inner conductor and b is the
radius of the shield. In such a case de(s) is still unity but di(s) i no
longer unity. If the 8 of figure 2 1s used as the parameter of arc length, 1t
can be shown by conformal transformation techniques (e.g. by a s8light reshuffling
of the results in [5], §4.13) that

13
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%1—32

4©) = TFcos ® (2.10)

where
25b
B =2 ———7F-.
b2~a2+62

Thus, in this case,

L 1wuoumdi(8h)-1

eq (2nb)? 8

where Bh is determined by the position of the center of the hole.

This concludes our preliminary discussion of the equivalent voltage sources

of little holes. Now we turn to a derivation of thelr equivalent current sources.

14




III. Current Scurce of One Little Hole in a Cable Shield

The geometrical configuration of the problem to be gtudied Is the same
asg in the previous section. Figure 1 is agaln the relevant diagram.

The strength of the equivalent current scurce of the hole 1s given by iw
multiplied by the difference charge on the inner conductor when a static linear
charge density Qs exists on the shield far from the hole and a static linear
charge density Q exists on the inner conductor far from the hole. Again this
follows from appropriate limits of previous results [3]. By "difference charge"
in the above definition, we mean the total charge minus the charge that would
exist on the inner cable if the hole were closed. The boundary-value problem
implied by the above definftion will be called the main problem of this sectiocn.

As in the previous section, we can arrive at an alternative way of
calculating the strength of the equivalent current source by considering an
auxiliary boundary-value problem — the one where the hole is closed and a
linear charge density Qo exists on the cable and a linear charge density —Q0
exists on the shield. These linear charge densities distribute themselves,
over thelir respective surfaces, in such a manner that the tangential electric
field vanishes at both surfaces. Tﬁe field between the cable and the shield
is just the transverse elecéric field dist-*bution of the TEM mode of propagation
within the cable-shield structure. This electric field distribution may he
set equal to the negative gradient of an electrostatic potential, LI Without
any loss of generality we can set ¢O equal to zero on the surface of the shield
and equal to QQICO on the surface of the cable, where CO is the capacitance per
unit length of the TEM atructure of the auxiliary problem. The auxiliary
boundary-~value problems of the previous section and of this section are, of
course, quite closely related. They are both really two-dimensional problems,
and their potentials are the real and imaginary parts of a single analytic
function. Thus the two problems can actually be solved simultaneously.

Noew let us return to the main problem and set the difference electric
field equal to the negative gradient of another electrostati- potential, 3, iIn
the whole region between the cable and the ahield. Without any loss of generality
we can set ¢ equal to zerc on both the metallic portion of the shield surface and
the entire surface of the inner conductor. For simplicity of presentation , in

this note we will asgsume that the permittivity is equal to that of free space




throughout the entire region of interest.
Both ¢ and ¢0 satisfyv Laplace's equation, therefore (L5], p. 54, eq. 4)

3o
3% - )
Jqso == ds J}: s ds, 3.1

where n 1s the outward normal from the fileld region and the integrals are over

the shield surface and the surface of the inner conductor.
The integrand of the left-hand side of equation (3.1) vanishes over the

shield while the integrand of the right-hand side vanishes everywhere except

over the aperture in the shield. Therefore,

a¢
J( 4>0-Ea]—‘r%ds=J¢fa—n—°—ds.
c A

But the difference charge on the inner cable in the main problem is Just

€ jg-‘?ids.
Ocn

Thus an alternative expression for the difference charge is

EOCO B¢0
Q = J ] dS|
)] Qo A an

and the eguivalent current source of the hole, qu, is just

1 - ( 1 3¢0
= 1wQ = lwe C_ J =245 (3.2)

eq A

By considering the auxiliary electrostatic problem a little more closely
it becomes clear that, on the inner surface of the shield,

di(s)

Pe
o

(3.3)

1%
Qo an
where di(s) is the same innexr density function Introduced in the previous section.
This function can be computed by solving either the electrostatic or the magneto-
static auxiliary problems since, as i5 well known, the surface charge density

of the electrostatic problem is propertional to the surface current density of




the magnetostatic problem.
By substituting equation (3.3) into equation (3.2), one obtains

1C

Q
eq 5 JAfb(s,Z)diCS)dS (3.4)

This equation is valid for any size of hole. By speclalizing to smz2ll holes
it 1s possible to bring the density function outside the Integral and thus
to write 7
iwd, (s, )C
I =-—> B0 J ¢ (8,z)dS (3.5)
eq P A
For reasons similar to those given in the previous section in the discussion
of the effective magnetic dipole of the heole, the remaining integral in equation
(3.5) is proportional to the effective electric dipole of the aperture. More

precisely, we have

-1
Pesr = %pf LQpda(sy) = Qdy(sp) ], -G-8

where @, is the electric polarizability of the hole. Four of the f[actors that
determine the magnitude of @, will be discussed in Sections VI through IX.

By making use of equation (3.86), equation (3.5) may now be rewritten as

uedi(sh)

2

qu - im(Coh:(:\) P

[QTde(sh) - Qd, (s, )] (3.7)

and, as in the previocus section, for the purposes of studying shielding by small

holes it is quite accurate to write

a d, (s )d (s)
e I "h" e h
qu = im(CO/eo) PZ Qs' {3.8)

This is cur final form for the equivalent current source of a single small hole
in a cable shield. -

The simplest application of equation (3.8) is to a cable and shield that
are coaxial circular cylinders. In that case, if a is the radfus of the cable

and b is the radius of the shield, we have

L7




and thus it follows easily that

iwueQS
I, ™ 5 (3.9)
@ 21b“ 1n(b/a)

For the "off-center coax" whose cross-section is shown in figure 2, we
have ([5], 54.13)

2ne
o

Cy = — 7
cosh ~(y)

o}

where
b2+a2—r52

Y < T2ap
Thus, for a small hole in this off-center cylindrical shield,
1waedi(ﬁh)qs

= . : (3.10)
eq 2ﬂb2 cosh_l(Y)

where di(Bh) is given by equation (2.10%.
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IV. The Two Sources Combined

In order to see how the results of Sections II and IIT can be used to solve
shielding problems, and also to understand a little about the combined effect of
the two types of source, let us look at the relatively simple problem of an
infinitely long cable within an infinitely long, circular cylindrical shield,
of radius b, containing a single small hole. We will suppose that this cable
and shield are {mmersed in an external, time-harmonic, plane wave whose propaga-
tion vector makes an angle Bi with the axis of the shielded cable (the z-axis)
and whose magnetic field is perpendicular to the axis of the cable. This situation
is shown schematically in figure 3. It is assumed that the wavelength of the
incident wave 1s much larger than a cable diameter.

The procedure tc be used i3 to solve the external scattering problem with
the hole closed, and then to determine, from this solution, the total current
and the linear charge density at the position of the hole. This current and
charge will determine the equivalent voltage and current sources of the hole
through equations (Z.8) and (3.8) because, with the hole closed, the total
current and charge will be equal to the shield current and charge. These
equivalent voltage and current sources are to be used in conjunction with the
equivalent transmission-line circult shown in figure 4. The transmission~line
current of the equivalent circuit is the total current on the inner cable. The
transmission-line voltage of the equivalent circuilt is the voltage between the
cable and its shield. The justification of this procedure can be based on
arguments quite similar to those presented in reference 3.

If the incident magnetic Field is given by

1nc ik{z cos Bi+x sin Bi)
H = — g He »
-

the solution of the scattering problem ({61, chaps. Il and 2} leads to a total
current given by '
ikz cos ei La

I (z) =1 (z) = e . (4.1)
T & k sin eiﬁgl)(kb sin 6,)

We also have available the relaticn, valid for plane-wave scattering from

19
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Figure 3. A plane wave incident on an infinitely
long shielded cable with a small hole.
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Figure 4. Transmission-line equivalent circuit
for shielded cable with a small hole.
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infinitely long shielded cables,

cos BiIT(z)

Q(2) = Quz) = ————— . (4.2)

Relation (4.2) between the total current and the linear charge density is true
for any shape of shield cross-—section since, for the scattering problem under
conslderation, all quantities vary with z according to exp(ikz cos Bi), and a

substitution of this type of variation into the rigorocus equatien
.___._.=i
z LIJQT

leads directly to equation (4.2).

We have called our shield an infinite circular cylinder, and given the
explicit equation for IT(z), (4.1), merely as an example of a calculation of
IT(z). In the rest of this section it will only be necessary to invoke the
general relation for infinite cables, (4.2). Of course, for shielded cables

of finite length the z—dependence of I, would be more complex than that given

T
by equation (4.1), and equation (&4.2) would no longer hold.

Now let us turn to the calculation of the transmission-line currents and
voltages gemerated by the two sources of figure 4. With these two sources
present the transmission-line equations take the form

dv

E; = iwLoI 4 Veqﬁ(z)

dl

= +

iz imCoV qué(z)

where LO and Co are the inductance and capacitance per unit length as computed
from the auxiliary problems of sections I1 and III. The geparated, second-order

equations for voltage and current are

2
av . 1
7 + 12y fuL T, 60z = z) + ¥, 8'(z ~ ) (4.3)
dz
dzl 2
E. - r e
dzz + kT imCoVeqé(z zh) + qu5 (z zh) (4.4)
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where the relation

has been used.
The first source term of equation (4.3) gives rise to a voltage wave
given by (L7], chap. 7) ) _
eiklz—zh[ .

Vp = Wl Ty TTIR (4.5
while the second source term in equation (4.3) gives rise to a second voltage
wave given by (this can be obtained by differentiation of the voltage wave for
a delta-function source)

'ik|z—zh|

v, = Veq[U(z - zh) - Eﬂe . (4.6)

where U(z) 1s the unit step function of z. Thus, by superposition, the total

transmission-line voltage is

ik|z—zh|
; e
Vv = {CLoqu + Veq[:!U(z - zh) - 1]} —5 - (4.7)
Similarly, one can show that
iklz—zhl
o t
1= {ccoveq + quEZU(z - zh) - l]} 3 (4.8)

Substituting equations (2.8) and (3.8) into equations (4.7) and (4.8)

we have
iklz—z ]
d,(s.)d (s5.) ¢ cL C qQ (z.) h
. 1""h" e "h e 00 'S zh e
V = juw 5 ; . = - umuols(zh)EZU(z -z} - 1] 5
P Q
ik|z—z 1
d, (s )d (s,) a CqQ (z.) h
_ i "h’"e"h e o's h . e B
I = 1w p2 }—amcCOUOIB(zh) + Eo L2u(z - z . ljs — -

By invoking equation (4.2), and by defining

—imdi(sh)de(ﬁh)IT(Zh)
v = 2 o ]
o
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the equations for V and 1 simplify to

ik[z—zhl
V= -Vo{o.e cos Bi - amEZU(z - zh) - 1]}&——2——— (4.9
1k|z-zh|
a
I VoYo{qam + a, cos Gi[ZU(z - zh) - 1]}J~——?rﬂ——-, (4.10)
[ 4
where
Y = vC /L
o o' o

An interesting special case arises if the hole is a long, narrow slit
whose length is still much less than a wavelength and whose lenger dimensicn
is parallel to the z-axis. For such a slit it can be shown [ 2] that e and
x, are equal, and so we have

1 iklz-z |
V = E-Van[zu(z - zh) - (1 + cos Bi)]e < (4.11)

ik]z—zhs

1
2 VoYoaeEZ cos BiU(z - zh) - (1 + cos ei)je (4.12)

T =

From these equaticns one can see that at broad-side incidence (Bi = n/2)
half the energy penetrating the hole travels in the positive z-directlon inside
the shield and the other half travels in the negative z-direction. As the
angle of incidence becomes larger, more and more of the penetrating energy
travels in the positive z direction until finally, as Gi approaches m, all of
the penetrating energy goes in the positlve z direction. A study of equations
(4.9) and (4.10) reveals that a similar kind of thing happens for an arbitrarily
shaped hole, but the penetrating energy never quite goes completely in one
direction since o is greater than «, except for narrow axial slits.

In the general case the ratioc of the amount of energy traveling in the

more favored direction to the amount traveling in the less iavored direction is

given by the expression,

2
amfae]cos Bi[
am—aéTEbs ei[ :
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In this section we have seen how the direction of propagation of the
greater portion of the energy within the shield depends on the combined effect

of the two equivalent sources of the hole.
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V. A Brailded Shield Model

In sections II and III we found expressions for the equivalent voltage
and current sources for a single small hole in terms of the polarizabilities
of the hole. We tock the basic definitions of the voltage and current sources
in terms of flux and charge from some previous work on periodic shieids [31.
In thig section we wish to return the spatial pericdicity to the shielded cable
and thus eventually to arrive at a model for z braided shield. The results we
will arrive at here could also have been obtained directly, but it was decided
that the results for a single hole might be of more gemeral interest than the
results for an array of holes,and so the single-hole results have been presented
first.

As a preliminary we note that, from previous work on periodic shields

(C3], eq. 7)

dav
gz = Lwil + imLsIT (5.1)

where, by definition, L& is the flux in one period of length A that liles within
the shield and circulates the ceble when one ampere flows on the cable and
returns through the shield. Also by definition, LSA is the flux in one period
of length A that lies within the shield and circulates the cable when one ampere
flows on the ghield and no net current flows on the cable inside.

Now let us consider an Infinite row of identical small holes in the shield
as shown In figure 5. The holes are a distance A apart. Suppose a current I

flows on the cable and a current Is flows on the shield, and let I, be thelr

T

sum. Let us write the difference field (defined in Section II) due to the mth

hole, when these currents flow, as

ﬁD(x,y,z - ma).

Now let us calculate ¢${A), the clockwise flux that lies within the shield and
circulates the cable in one period of length A, This flux is the integral of a
field that is made up of ﬁo(x,y,z), the field of the auxiliary problem of
Section II (i.e. the Field with all the holes closed and a current ID on the
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surface S1

cable shield
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A shield with a row of—small heles.

Figure 5.
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inner cable), and the sum of the difference fields of 311 the holes. Thus

o
I
eLa) = u I—J B +dS + [ Z Hy(x,y,2 — m4)-dS
o ‘S8 S1 m=—x
where 54 is a surface such as that shown in figure 5. But, by recalling the

definition of Lo from Section IV,and by interchanging the summation and integration,

2(8) = LA + u_ m;m Js B (x,y,z - mb)-dS
1

= LOAI + g Js ED(x,y,z)-¢§ (5.2)

where S_ is the infinite surface made up of the surfaces in each period that are

equivalent to § We have already considered the integral of equation (5.2) in

1
Section IT and hence, from equation (2.7) divided by iw, we can write the following

equivalent expression for ®(A):

2
v oa d; (s ) uad (s )d (s )
oy =L +-2mif A {,, ‘omi he b , (5.3)
o} PZA P2 T

Now suppose there are X rows of identical holes spaced arocund the periphery

of the shield at points 8.5 32,----, Bipttt Sy By superposing the effects of

J
the Individual rows, it is easy to see that we now have
L+ B
_ o m 2 o m -
$(A) = Lb + 5 }g: di(sj) al — di(sj)de(sj) IT (53.4)
AP j:]_ P =

Thus it follows from the definitions of the terms in equation (5.1) that L,

the Inductance per unit length, is given by

L =L +u°m“‘ic‘t2 ) (5.5)
o p2 1 i(sj , .
j- .

and that LB, the inductive coupling ceoefficient per unit length, is given by

L, =- APZ 2 di(sj)de(sj)- , (5.6)
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The number of holes per unit length, v, is given by
v = N/a,

therefore, 1f we define some average density Ffunctions through

N
2, _ 1 2
(a3) = § 2 45y
j=1
L&
(d;d) =% 2 di(sj)de(sj).
]=

we can rewrite equations (5.5} and (5.6) as

IJodam 2 o
L =1L +__._<d> (5.7)
o 2 i
P
Ve
LS = - -'-'";'i— (dide) (5.8)

If the shield is a circuiar cylinder we know that de(sj) is equal to unity,

and so, 1f N is large and the holes are uniformly spaced around the shield's

periphery,
Koo
_ "o m
“Lg T Ty
TRVl P TRV
o 02“‘ %Jdi(s.) =—°——mf (5.9)
P J (2mb)

This equation is an agreement with other results. The sum In the equation for

L doesn't reduce as nicely as that in the equation for LS unless the cable is
a circular cylinder coaxial with the shield cylinder.
We turn now to the other transmission-line equation from 33,
dl

az - iwCv - imCSSQT (5.10)
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where, by definition, 4/C is the vcltage between the shield and the cable when
there is a charge of one coulomb per cable period on the cable and minus one
coulomb per cable period on the shield. Also by definition, —CSS, the capacitive
coupling coefficient per unit length, 1is equal to the proportion of the charge
on the cable when the cable and shield are at the same potential and their
combination carries a charge QT per unit length.

By arguments completely analogous to those presented above in the flux
calculation, one can use the results of Section III to say that the charge on

the cable per period is given by

C o
- o e _ 2
Qs = VC 4 + = (Q{d,d ) - ady)
e P
o
i.e. ) 2
VCO QT(Coae/AEOP )(dide}
Q= 2 5 +- 2 5 (5.11)
l+(Coae/ﬂaoP )(di) 1+(C0me/&£oP )<di>
Thus, from the definitions of C and CSS,
C = 2 T (5.12)
1+(Coae/AsoP )(di>
and ae
S = - (d.d > (5.13)
8 e P2 ie
o
or, in terms of v, the number of holes per unit length,
- _ Vo 2
¢l ¢+ & @S (5.14)
o 2 i
€ P
o
va
-SS = 3 <dide>' {5.15)
eoP

For circular cylindrical shields and large N, equation (5.15) reduced to




We note that—from equations (5.7) and (5.14) it 1s easy to show that

Z +Z va (d?)/Pz
0 ¢ mt il
LC = Loco 2 2
+
Zo chue(di)/P
where
Z = VL /c
0 o o
- Zc = Uozeo’

thus we see that for thin axial slots (am - ae) the propagation constant within
the shield is equal to the free-space or TEM propagation comnstant.

It is also interesting to calculate the characteristic impedance of the
line. This reducesa to

2 2,2 2
, via ae(di) z, v(di)
z=#L/c=z°1+-——m————+—

(o +a )
P4 Zo P2 m e

We note in passing that the two other quantities defined in reference 3,

LC and Sc’ are given by

L =L+L
c 5
TR
- 0 m 2, _
= L, +——— 4]y - (4,40
P
and
s =ctis
c s
-1 Ve 2
= Co + m——i-((di) - (dide))
e P
o
and thus, clearly, for the case where the cable and shield are coaxial cylinders
-1 .
(di(sj) = de(sj) = 1), we have Lc - L0 and Sc = Co . This result has been

mentioned previously [3]. We have given the above equations for L, and S just
to tie more closely together the work here with the previous work. We will make

no further use of them Iin this note.
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Let us now write our transmission-line equations In terms of the parameters
usually used to describe braided shields [1]. Our model of the braided shield
is a shield with a regular array of diamond-shaped holes, as shown iIn figure 6.
The diamonds have intermal angle 2 at the ends of their diagonals parailel to
the cable axis. The centers of the holes lie along lines parallel to the cable
axis and also along lines that could be drawn on the shield surface with piteh ¢.
From a look at the real braided shield that we are modelling, it is apparent
that the number of holes per cable period is equal to the number of belts of
wire in the braid. We denote this number by N (note that N is the number of

belts going in both directions). It is easy to see that the cable period 1s

given by
2P
4= ¥ tan v (5.16)
and thus 2
v-§,£_;%&1 (5.17)

If the length of the diamonds along the cable axis is denoted by §, the optical

coverage, ¢, Is given by
2
c=1- (8/a)7, (5.18)

If the width of a belt of wire is denoted by w (this is equal to the number of
wires in a belt times the wire diameter under our assumption that the field
leakage occurs mainly at the intersectlons between the belts), we have the

relation
w= (A - 8)sin ¥

or, by making use of equation (5.16)

cos ¢ _ A
N 2P(1-8/A) ° {(5.19)
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shield = 0 o
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Flgure 6. A model for a braided-shield cable.  §
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We need one further definition. It will be seen in the next section that
the electric polarizability of an isclated hole is almost proportional to A2/Ph,
where A ig the area of the hole and Ph is the perimeter of the hole. We will
normalize the electric polarizabilities of the holes with this factor and, in
an attempt to be consistant, we will also normalize the magnetic polarizabilities
with this factor. Although it will be found that the normalized magnetic
polarizabilities depend quite strongly on the shape of the hole, the normalized
electric polarizabilities are almost the same for any shape of hole. Imn any
case, we now define Eﬁ(w) and E;(w), the normalized polarizabilities for the

diamond-shaped holes we are particularly interested in, through

3 2, _

op = @ Z2LT W) (5.20)
_ .8 3 sin2¢ —

a, = ) cos U a, (W) (5.21)

Now from equaticon (5.8) for L5 and the above set of parameters for a braid,

it can easily be shown that
Po¥  (1-¢)3/?

L = - o (W){d.d ). (5.22)
s P 1—(1—c)1/2 m ie

If we approximate Eﬁ(w) by defining an equivalent ellipse, assume the shield is
a circular cylinder, set the number of wires In a belt equal to one, and assume
N is large, then equation (5.22) reduces to a previous result f17.

The equaticons for the other quantities of interest, L, Ss’ and C, In terms

of the braided shield parameters are also easily shown to be

(ah
L = LO - LS (d—d) (5.23)
ie
3/2
(1-¢c) -

S = - = o (p){d,d ) (5.24)

5 EOP 1—(1—c)%/2 e i"e
-1 _ -1 S
T Yo s <dide>

{5.25)
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This completes cur translation of the results of Sections II and III
into the language of braided shields. Of all the equaticns in this section,
the most relevant to braided shield calculations are equations (5.22) through
(5.25) in conjunction with the transmission-line equations, (5.1) and (5.10).
It will be seen that all_-we have really done is to reduce the problem to the
calculation of E;(w) and E;(w). Although we héve_only indicated explicitly
the variation of these quantities with ¢, they alse depend on several other
parameters. The study of some of these other factors will occupy us for the
next four sections. We will see in the next section that if Eﬁ(w} had the value
it would have for an isclated hole in a plane 1t - would be a monotonically
increasing function of {, but we will see In Section IX that 1if one takes into
account the interactlons among the holes, then Eﬁ(w) sometimes can have a minimum
for some value of ? other than zero. We will discuss more about this topic, and

others, in Section X.
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VI. Effect of Hole Shape on Hole Polarizabilities

In the second and third sections of this note, we have cast the problem
of determining the effect of a small hole in a cable shield into the form of
determining the hole polarizabilities, o and a,- There are many factors that
influence these quantities — the hole size and shape, the curvature of the
surface in which 1t is located, etc. In this section we will discuss ways of
determining what might be called the "basic™ polarizabilities of holes. The
basic polarizability of a hole will be defined as the polarizability of the
hole when all factors except the hole size and shape are neglected, i.e. the
polarizability of the hole when it 1s located in an infinite plane that is
remote from all other conductors. The other factors Influencing ti - hole
polarizability will be treated as factors perturbing the basic polarizability.
In some cases these "perturbations” will not be small, but the concept of basic
polarizability is nevertheless useful as a tool for thinking about hole polar-
izability. 1In fact, that is the approximation to the exact polarizability that
is usually used in discugsing small hole effects. In the three sections following
this one, we will discuss three types of perturbation of the basic polarizability.
The perturbation discussed in Seétion IX can be quite strong in cases of
practical interest. |

The diamond-shaped holes of the braided shield model discussed in the
previous section have a line of symmetry (actually they have two, but one is
enaugh to make obvicus the principal axes of the 2x2 polarizability tensor;
this ig really the simplification we want). The discussion of the present
section will be restricted to holes with such symmetry for the sake of simplicity
of notation in discussing . The generalizations necessary for discussing
unsymmetric holes will be apparent. We will assume a Carteslan coerdinate
system, locate the infinite plane in the x-y plane, and assume the line of
symmetry of the hole to be along the x axis. This geometry Is shown In figure
7, which is relevant to the determination of @ for an arbitrary symmetric hole.

From Section TI, and our definition of basic magnetic polarizability, one
can see that that gquantity can be determined by solving the magnetestatic

boundary-value problem associated with figure 7:
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N <
v o2
o H

Q{x,y,0} = (x/2) in hole A

g +0
as z + o

cutside
hole

Figure 7.

Boundary-value problem for determination of E;.
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v QT =
QT'*}C, z + ®
Qp + 0, Z > -
anT
3z " a, z = 0, outside the hole

QT and (BQT)/(BZ) are continuous through the hole, and then calculating the

integral over the aperture, A,

aQT
Cf.m"Jxa—-dS (6.1)
A 2%
Now by writing
QT =x - 0(x,v,z) z >0 (6.2)

= Q(x,7,-¢) z <0 (6.3)

one sees that all conditions on QT are satlsfied if

va =0, z >0
Q + 0, z +
%% {x,y,0) = 0, outside the heole
Qlx,v,0) = (x/2), in the hole

Now, since { approaches zero sufficiently fast at infinity, 1t follows

from Green's theorem that, for z > 0

Qlx,y,z) = J {n 86 _ g8 }ds' (6.4)
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where the integral is over the x-y plane, and G is an appropriate Green's function.

Choosing (3G/3z) to be zero on the x-y plane, we see that

. 1 30 ; \ )
Qx) = 2y JA “E;ETT'EET (x',y',0)ds (6.5)

Thus, 2llowing the fleld point to approach the hole and invoking the

boundary condition on f in the hole, one arrives at the integral egquation

x =% J’ 1 __g_g___r (xy'yl,o)]dst
A ) 2 z
Y (x-x") +(y-y")
Now, by defining
£(x,y) = - -g—g' (x,y,0) (6.6)

and using the normalization of the previcus section,

P

ol

o (6.7

o =
m

g

our problem reduces to the determination of f by solving the integral equation

1 J £(x",y") dx'dy' = x, (6.8)
T Ja 2 2
Y (x=x") "+ (y-y")

and the subsequent calculation of o by performing the integral

E; = E% J fxf(x,y)dxdy {6.9)
AT ‘A

These calculations have been carried out numerically for both rectangular
apertures and the diamond-shaped apertures that are of particular interest for
our braided shield model. The calculations were carried cut by dividing the
aperture over which the integrations are to be performed into manv small
rectangular zones on which the unknown function, f, Is assumed to be constant.
The error in this procedure, once a definite perscription for the size and

position of the rectangular zones as a function of N (the maximum number of zones
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in a line parallel to the x—-axis) 1s given, was assumed to be given implicitly,
for large N, by the formula
C 62

— 1
C!m(N) = Ctm(‘”) + I_(-_ + NZ

where C, and C, are constants. The value of E;TN) was calculated for three

values of N, and the above formula was used to get a good approximation of

the value of Eﬁ(w) (=§ﬁ). The results are presented in table 1 and figure 8.
The polarlzability per unit length of a long uniform slot perpendicular

to the magnetic field is well known to be given by the formula

[¢]

m_r 2

L X

where w is the width of the slot. From this fact It seems reasconable to assume
that the normalized polarizability of a narrow slot whose width varies slowly
along its length is given by

(x/8)2 J wl (y)dy
T s ° (6.10)

OLm A 2
[J W(y)d?]
o

This formula was used to obtain the limiting forms of Eﬁ for thin

rectangles and diamonds perpendicular to the magnetic field (given by r/8
and w/6 respectively) that are included in table 1. For rectangles, an approximate
emplrical formula for the case where the longer side of the rectangle is

perpendicular to the magnetic field is

(1 + .55r) (6.11)

o m T
m 8
where r is the width to length ratio of the rectangle. Equation (6.1l) is
accurate to 3% for r less thamn 1/2.
We pow turn to the calculation of ae for an arbitrar(l shaped hole in a
plane. ¥rom Section ITI and our definition of basic electric polarizability,
one can see that that quantity can be determined by solving the electrestatic

boundary-value problem associated with figure 9,
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Table la

o for rectangles

width to—length ratio @ {long side H te field) Eﬁ (long side 1 to field)

.00 ® /8 = .393
.05 41,274
.10 14.239 447
.15 7.984
.20 5.430 504
.25 4.091
.30 3.283 . 564
.35 2.752
40 2.377 626
45 2.096
.30 1.883 .689
.55 1.717
.60 1.588 .755
.65 1.473
.70 1.378 824
.75 1.297
.80 1.232 .893
.85 1.174
.90 1.124 .965
.95 1.078

1.00 1.041 1.041
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Table 1b

o for diamonds

¥, ¥ angle of vertices on x—axis (degrees)

o

m

0 o

5 35.256
10 10.773
15 5.509
20 3.467
25 2.444
30 1.854
35 1.478
40 1.225
45 1.041
50 . 907
55 .805
60 725
65 .665
70 .619
75 .582
80 .352
85 .533
80 w/6 = .524
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Figure 8a. Eﬁ for rectangles.
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Figure 8b. Eﬁ for diamonds.
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7505 = 0
¢T + z, z + @
¢p *+ o, z -+ -
¢p =0 z = 0, outside the hole

¢T and (8¢T/32)continuous through the hole, and then calculating the integral

over the aperture, A,

a, =~ JA¢TdS. (6.12)

Now, by writing
¢p = 2 — p(x,y,2) z> 0 (6.13)
= = $(x,¥,-2) z <0 (6.14)

one sees that all the conditions on ¢T are gatisfied 1if

9o =0 z >0
4 + 0 Z + =
p{x,vy,0) =0 cutside the hole

%%-(x,y,O) in hole.

]
N~

Since ¢ + 0 as z + =, one can again Invoke Green's theorem with an

appropriate Green's functlon and write, anywhere above tuc x-y plamne,

1 3 1 Y ] T
¢(ny,z) = '5'_' JAFET—I"#(X ' ,O)ds . (6.15)

TT
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e = %-in hole A

¢(x,y,0) =0

ocutside
hole

o = J p{x,y,0)ds
€ A

Figure 9. Boundary-value problem for determination of E;.
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Thus, from the condition om (3¢/3z) in the hole,

3 1 3 1
I = Lim -—-*-J —F — ¢ (x',y',0)ds’ {(6.16)
az az' |r—r'| 7
z+0 A rr

This is not a real integral equation for ¢ in the aperture since, if one
tries to take the derivative inside the integral, divergent integrals would
arise. Nevertheless, equation (6.16) can be used as 1t stands if one is
interested in a pumerical solution. The unknown function, ¢, is assumed constant
on several small rectangular zones making up the aperture A, and the reguired
integral, derivative, and limit can be performed analytically for a rectangular
zone. One thus arrives at a matrix equation that i{s quite well conditioned,
even though equation (6.16) may appear not very promising for numerical work.
Once ¢ has been determined in the aperture, the nermalized basic polarizability

can be found by numerically evaluating the expression

E; = E% J J $(x,y,0)dxdy (6.17)

A A

The above procedure was used to.determine the E; for rectangles and
diamonds, and the results are given in table 2 and figure 10. In addition, a
procedure to extrapclate the numerical results to an infinite number of zones
in the aperture was used. We have already discussed thls procedure in connection
with the determinaticn of E;.

An dinteresting mathematical puzzle arose during this work on basic electric
polarizabilities. 3Because equation (6.16) looks a little sick for numerical work,
it was decided to use the method described above for the simplest possible
aperture, the infinite s8lit, as a test cagse. It is not difficult to show that,
for zones of equal width, the matrix ecuation for the N-zone approximacion to

equation (6.16) for the slit problem is just

N N¢
% — 3 i=1,2, ... N (6.18)

2
j::]_ 1-4 (i—j)
and the N-zone approximation to E; is given by

N
(6.19)

2|
-
~

Ee(N) =
j=1
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Table 2a

E; for rectangles

width to length ratio E;
.00 /8 = .393
.05 402
.10 410
.15 2417
-20 2423
.25 L428
.30 .433
.35 437
.40 440
.45 443
.50 LAh6
.55 A48
.60 450
.65 451
.70 452
.75 w453
.80 454
.85 L454
.90 . L455
.95 455
1.00 .455
Table 2b

E; for diamonds

¥, % angle of pointier vertices (degrees) o,

0 T/6 = 524

5 .516
10 . 504
15 492
20 . 481
25 AT72
30 AT
35 459
40 .456
45 455




2|

- 540

I [ ]

-4 .6 .8 I.
width to length ratio

Figure I0a. E; for rectangles.

15 n 30 45

Figure 10b. o for diamonds.




the ij being determined by solving equations (6.18). Now, from the analytical

solution of the slit problem, E;(m) i3 just 7/8, so defining
x., = (8/n)¢,
3 ( )¢J,

equations (6.18) and (6.19) can be rewritten as

N x.
{1 1-4Gi-5)
and
a_ (N) N
- -2
e E x, (6.21)
Cl.e J=1

The interesting thing is that—the numerical result is just

r = ML (6.22)
N
This is true to 12 figure accuracy for any N between one and twenty. Therefore
an analytical proof of equation (6.22) was attempted. However, up to nowsno
satisfactory procf has been found, and so the analytical proof of equation (6.22)
from equations (6.20) and (6.21) is a puzzie left to the interested reader.

From the tables and curves of this section it is apparent that, with the
normalization we have chosen, E; is roughly the same for almost any reasonably
shaped hole, namely around .4 or .5. This, of course, 1s the reason we chese
this normalization in the first place. A further example i3 the elliptical

hole, for which

- 4
o, 37 = 424

independent of the eccentricity of the ellipse.




VII. Effect of a Nearby Conductor on Hole Polarizabilities

In Section VI we presented ways to calculate the basic polarizabilities
of a hole, i.e., the polarizabilities of a hole of the same shape that is all
by itself in an infinite plane with no other conducters to look at. In this
section we wish to study how a hole'’s polarizabilities get altered by the
presence of a nearby conductoer.

To study the effect of a nearby conducter, we will solve exactly a particular
boundary-value problem where the proximity of a nearby conductor tc the hole is
the single parameter of Interest. A sketch of the problem to be solved is given
as figure 11. An infinite plane contains a circular hole of radius a. &
parallel infinite plane 1s a distance h away. Far away from the plane with a
hole there exists a uniform electric field, Eo’ pointing In the negative z
direction. With the two planes at zero potential, the normalized electric

polarizability of the hole is given by

— Ph J
e = ¢ (x,y,h)ds
e gala
fo)
(7.1)
2
= N 3 J ¢‘(K:Y:h)ds
Eowa A

where ¢ is the electrostatic potential of the field and the integral is over
the circular hole, A.

There are several reasons for our choice of this particular configuraticn

to study the eaffect of nearby conductors. 5Some of these reasons are:

I. There is basfcally only one parameter of the problem; E; is a function
of a/h only.

2. It is possible that the geometrical configuration to be studied could
have a practical application as an electric field sensor in a ground
plane.

3. ' As will be shown shortly, E; and EE are simply related. This fact
reduces the amount of calculaticn and data presentation to a minimum.

4. The two asymptotic forms of E; as a function of a/h are simply determined

from physical arguments. These asymptotic forms are of interest in
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Figure I1. A circular hcle in a plane above another plane.
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themselves and also as a check on the numerical work.

5. Perhaps most important, the problem can be reduced by well known
techniques to the solution of a well behaved, one-dimensional,
integral equation, just what is needed from the numerical computation
point of view.

There is nothing further to say about the first point above. We will
discuss the second, third, and fourth points in order before we turn to the
exact solution of the problem.

If one looks at the configuration of figure 1l as an electric fileld sensor,
the electrostatic quantities to be calculated are the equivalent area (the charge
induced on the bottom plate divided by EoEo when the two plates are at the same
potential) and the difference in the capacity between the two plates when the
hole is closed and the capaclty between the two plates when the hole 1s open.

By applications of Green's theorem similar te that in Section III, it can readily

be shown that the normalized equivalent area, A, Is given by
2= qQ/(ra’e E) = (a/2m)a
oo e

and that the change Iin capacitance iz given by

(Cclosed - Copen) 2 (E/Zh)ae = A.
£,T8

In order to determine the relation between E; and E; for the configuration
of figure 11, let us consider the solution of the electrostatic problem through
the use of the electric vector potential, éf. The symmetry of the problem tells

us that we need only the A; component of vector potential, i.e.,

3A
E =- 2

0 oz

Thus we have

51




21
]

a
4
— J ¢ (pJpdp
a [»]

r& ra
= E (p')dp'pdo
E az ‘o’p p

e
_ rara 04, (p ")
= 4 _?L_.__ dp'pdp

J 8z
0" p

4 (2 BA:(O') p'

i 1

J 3z dp J pdp
E a o o]

34%(p)
az

a
-2 2
5 [ p dp (7.2)
an Jo

while Ag is determined from the sclution of the boundary value problem:

vag —(Agjez}eco in regions I and II
e
3A :
SEQ-F 0 (z="h, p > a; and z = Q)
E_p
N

Now if one calculates E; by using the magnetic scalar potential &, and
writes Q@ = cos ¢£(p,z), the boundary value problem determining £{p,z) Is easily

seen to be (the external field is agsumed to be Qo = Hox = Hop cos ¢)

vV°E - = 0 In regions I and II
&
af
3 0 {(z="h, p>»a; and z = Q)
f+Hop z + ®

By comparing the two boundary-value problems, it is clear that
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£ = - —2 5% (7.3)
E b
o
Now, by definition,
P
e = hz J x %E-cos $dS
moogatly °Z
o
a
2 2 af
= 2Jp E;dp. (7.4)
Hod c

Thus, by substituting equation (7.3) into equation (7.4) and comparing with

equation (7.2), it becomes obvious that
o = Zo (7.3)

This relation is well known for a circular hole in an isolated plane. The fact
that it is still rigorously true if there ig a nearby parallel plane 1s perhaps
not so well known, but it is one reason for our choice of this particular
boundary-value problem; the data presentation is minimized. We will make no
further use of AS or Q in this section. They have been Invoked solely as =z
way of provimg equation (7.5).

The asymptotic form of E; as h/a approaches zero is easlly determined from
the basic formula, (7.1). 4s h/a approaches zero, the potential over most of
the hole will be just hED since the potential is zero at the bottom plate and
the field will be equal to the external fileld over most of the region p < a.
Thus

* hE A = — (7.6)

or, for our circular hole,
a, + 2h/a (7.7

The determination of the asymptotlc form of E; as h/a gets large requires
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a little more algebra, but it is still strajightforward. The effective dipole
moment induced in the hole approaches the effective dipole moment Induced in a
hole in an isclated plane by a modified electric field. This modified electric
field 1s the difference between the external electric field and the electric

field on the bottom of the upper plane with the hole closed but with all the

image dipoles present. These image dipoles are due to the presence of the second
plane, and they are at positions p = 0; z = * 2nh, all positive n. If one removes
the second plane the strengths of the image dipoles must be set equal to ZPeff'
where Paff is the effective electric dipole moment in the hole. This is because
Poss is the dipole moment to be used in conjunction with the exact Green's
function for region I; if we wish to calculate the field of the image dipoles
we really have to include a pair of effective dipoles at each image pesition.

Thus, i1f the polarizability of the isclated hole is egual to ao, we have

o0

2 1
P =g a «E - 2(2p K
eff o o{ o aff 4ne° ~ (2nh)3

e o E
00 0o

1+(a /bth%) Y (1/n)

n=1L

peff

This gives a normalized electric polarizability of

2
(P. /A )a
; = h3 & (7 -8)
e 1+(a /b Y (£ (3)/4m)

where £(z) i1s the Riemann-Zeta function [8]. Equation (7.6) and (7.8) are the
agymptotic forms for any hole shape. For our circular hole, o, = (2/3)&3, and

thus equation (7.8) can be reduced to

3 = 4/3w : - (7.9)

© e (a/h) (2 (3)/6m)

Let us nmow turn to the exact solution of our boundary-va.ue problem, i.e.

to the formulation of a well behaved, one-dimensional, integral equation whose

numerical solution will give us the quantity we want to know, o,-
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Above the z = h plane of figure ll we can write the electrostatic potential,

$, as
" |z-h|
¢ = (z - WE_+ J f(a)JO(ap)e‘“ 270l 4q,
0
while between z = 0 and z = h we can write

- sinh az
b= ,Ef(“) ainh oh Jo(@e)de.

Thus, from the facts that ¢ = 0 on (z = h, p > a) and 3¢/5z is continuous on

(z = h, p < a) we have

£{a}J (ap)da = O p > a
and
r@
af(a)icoth(ah) + I}Jofap)dm = Eo’ p < a
‘o

or, using a as the unit of length by setting ca = u, p/a = p', and h/a = d,

wa(u)Jo(up')du = 0 p' > 1
o
2
E a
Jmuf(u){l + Eg;bﬁ&il;l}.: (up")du = -2 p' < L.
o 2 o 2

But from reference 9 (pp. 108-109, equations 4.6.17 and 4.6.18), the solution of

the above pair of dual integral equations is

1
f(u) = _Z J hl(x)sin(ux)dx (7.10)
Vr o
where hl(x) ig the solution of
1
hl(x) + J K(x,u)hl(u)du = H(x}. (7.11)
o

In equation (7.11) K(x,u) is given by
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K(x,u) = %‘J feos([x = ult) - cos(ix + ult)} COth(E?) -1,
o]
" i o) B Gete” (7.12)
2md ol 2nd) 24w 2] ol (2nd) %4 ) 23

and H(x) is given by

Jx u(an2/2>

(7.13)

2/

From equations (7.11) through (7.13) the integral equatiom for h(x)

3/2

{defined as anzhl(x)lzw ) may be written

1 2~ 2
h(x) - === j > Gy h(uau = x (7.14)
-1 5=1 n[(2nd) “+{(x~u) "]

From equation (7.1) the quantity we wish to calculate 1is

. 4 a
@ = 3 J ¢ {p)pdp
an o

a & (7
- = 3 J 0 J f(a)Jo(ap)dudp. (7.15)
an (o] o)

But by substituting from equation (7.10), interchanging orders of integration,

and performing the two Inner integrals, equation (7.l15) reduces to

- 4 1
a, = J xh{x)dx (7.16)
o

The boundary-value problem has now been reduced to the determination of
hi(x} from equation (7.14) and the subsequent calculation of _; from equation
(7.16). Such operations are ideally suited to numerical methods. The results

of the numerical work are presented in table 3 and figure 12.
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Table 3

E; for hole of figure 11

h/a o BNQE/Q (7.18) a/h @, 3nae/4 ea. (7.18)
.00 0 0 0 L00 | .4244 | 1.0000 L2448
.05 | .0840 | .1979 .0802 .05 | 4244} 1.0000 244
L10 | L1490 | (3511 1439 L0} L4244 ) 1.0000 244
L1511 .1997 | L4705 .1846 151 .4243 . 9997 L4243
.20 | .2381 | .5610 .2350 L20 | L4262 . 9595 L2482
.25 | .2689 | .6336 L2673 L25 ] J4240 .9990 4240
.30 ] 2943 | .6934 .2934 .30 | .4237 .9983 L4237
.35 7 L3151 | L7424 .3145. L35 1 L4233 9974 4233
401 03320 7823 .3317 A0} L4228 . 9962 L4228
45 | 3459 | .8150 L3457 A5 4222 .94948 L4222
.50 | 3574 | 8421 .3573 50 | L4214 9929 4214
.55 { .3669 | .8645 .3669 .55 | .4205 . 9908 4205
.60 | .3749 | .8833 3749 .60 | .4195 .9884 L4195
.65 ] .3815 | .8989 .3815 .65 1 4184 .9858 4184
.70 1 .3871 1] .9121 .3871 704 4171 .9828 ALTL
.75 | .3919 | .9234 .391¢9 .75 .4157 .9795 L4157
.80 | .3959 | .8328 .3959 .80 | .4141 L9757 4141
.85 .3993 | .9408 .3993 .85 ] .4125 L9719 L4128
.90 | 4022} .9477 L4022 90 | L4107 .5677 L4107
.95 | 4047 | .9536 JL047 .95 | .4088 L9632 .4088
1.00 | .4069 | .9587 4069 1.00 ] .4089 .9587 L4069
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Figure 12. Normalized electric polarizability of the hole-of flgure 11.
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Also drawn on figure 12 is the value of E; derived from the variational

expression based on equations (7.14) and (7.16),

_ =2 1 2
@, =-§E# J_lxh(x)d%]

by substituting h(x) = x. This substitution allows the required integrations to

-1

1
2 h(t)(x t) h(x)
h™ (x)dx - J dxdt (7.17)
J_l Zﬁd -1 Eg; n[ (2nd) +(x-t) ]

be performed and reduces the variational estimate of E; to

5, ~ 4/3n (7.18)
1+(2/7) Z F(nd)

n=1

where
-1.1 3 3x 1
F(x} = tan (;) + x - {x~ + T)ln (1 + ;f)

The trial function, x, is the exact solutfon of (7.14) as d approaches «, so
of course equation (6.18) reduces to equation (7.9) as d gets large.

We note that as d approaches zero the variational expression for E;

approaches

— 2d 16d
a =

3 J F(x)dx
o

which differs from the true asymptotic value, equation (7.7), by only l1%.
Since this is a worst case for our trial function, the variational value never
differs from the correct value by more than I1%. For d > .5, the variational

value differs from the correct walue by less than ,037%.

From the table or curve we can see that E; differs from its asymptotic
value by less than 5% as long as h is greater than a. This allows one to say
with some confidence that the effect of nearby conductors (i.e., the cables
that are being shielded) on the polarizabilities of holzs Is negligible for
most cable shlielding applications.

39




ViI. Effect of Surface Curvature on Hole Polarizabilities

We will study the effect-of surface curvature on the polarizabilities of
a hole by calculating the normalized polarizabilities of a long 8lit in a hollow,
circular, cylindrical shell, as shown in figure 13, and comparing these polar-

izabilities with those of a slit of the same width located in an infinite plane.

The difference will give us an indication of the error introduced by using the
basic polarizabilities of Section VI even though the hole 15 located in a curved
surface. The reasons for picking this particular problem for sclution are:
l. There is only one parameter of the problem; E; and Eﬁ are functions of
d/a only. Since d/a is a measure of the hole size relative to the
radiugs of curvature of the surface, the curvature effect seems to be
fairly well isolated.
2. As will be shown, E; and E& are equal. The necessary data presentation
is therefore quite small.
3. Assuming the slit to be infinitely long, the boundary-value problem
can be solved exactly.
There is nothing further to be said about the first point above. We will
give a brief proof of the equality of the two polarizabilities, mentioned in

the second statement, before going on to the explicit calculation of Ee'
Consider a perfectly conducting, hollow, slit cylinder of some arbitrary

cross~gsection, such as is shown in figure l4. Define a lipe t, of length d,

that makes the cross-section a closed loop. Tbe normalized electric polarigzability

of a length Rk of the strip is given, from the basiec definition, by

_ Ph 2d
o= - J J p(s,z)dsdz
e 2

£ A o‘o

o
where the origin of the s coordinate is indicated in figure 14. Thus, since ¥
is independent of =z,

22

d
o = - —== E-J. p(s)ds
€ Eo(ﬁd)z o

d
=_2_,J 2(s) 44 (8.1)
2 E
d 4] o]

6C
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o
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d-Zsa \j/
Figure 13. Cross-section of circular cylinder
with a slit of angular width 2e.
¥
4
s = 0
\/E
M closing line t
h Y
«
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Figure l4. Cross~section of arbitrary cylinder with a slit.
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where EQ 1s the normal E field that would exist at the middle of t If t were
closed by perfect conductor and the cylinder bore a charge density Qo per unit
length, and ¢ is the actual potential along t (¢ is zero on the conducting
portion of the cro ss-section) when the cylinder bears a charge density Q0 per
unit length.

Similarly, the normalized magnetic polarizability is given by

d
- g dit
o 2 J' H E ds (8.2)

o
where H0 is the tangential H field that would exist at the middle of t if t were
closed and the cylinder carried a total current IO, and §1 1s the actwal magnetic
potential when the cylinder carries a total current_lo. From the definition of
the static problems it can be seen that (¢/E0) and (Q/Ho) are the real and
Imaginary parts of a single complex potential function. Therefore, from the

Cauchy-Riemann relation,

as an
o
Thus 4
" _Q_J $(8) 4
= s
e 2 E
d o] o]
d
d
- - 2_sils) + z 8 2 ¢(s) ds
2 E 2 8 E
d o d o e}

=g (8.3)

In passing we note that, even for wide slits, the propcri.onality constant
between equivalent voltage and shield current that can be calculated from equation
(2.2) is equal to (uoeolco) times the proportionality constant between equivalent

current and shield charge that can be calculated from equation (3.2). This
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follows from a slight generalization of the above argument demonstrating the

equality of E; and Eﬁ.

Now let us consider the circular cylinder of figure 13 in more detail.
If the total charge per unit length on the cylinder is Qo’ the value of Eo to
be used in conjunction with equation (8.1) is just

Q

- =i _
Eo T 2me d (8.4)

M o}

By a logarithmic conformal transformation, followed by a transformation
given by Smythe ((41, 54.22, eq. 7), it can be shown that the rigorous complex

potential of our problem is just

sin[(i/Z)ln(a/z)j)) (8.5)

Q, -l
¢ = ¢ + ip = ;—— (Infa/z) - 21 sin sin(a/2)
o]

where

z=x + iy

Inz = p + 18,

But $(x,y), being a sclution of Laplace's equation, is equal to its
average value over a circle with the point (x,y) as ceater, as long as the circle
encloses no charge. Therefore ¢(0,0) is equal to the average value of ¢ over
the inner surface of the cylinder, and since ¢ is zero on the conducting portion

of the cylinder,
d
J $(s)ds = 2nd¢{(0,0) (8.6)
o

Thue, from (8.1), (B.&4) and (8.5)

~ 2n . -1 ginhl % Ip(a/p)]
o, = - % lim {ln(a/p) - 2 sinh sin(a’/3)
4" p~0
- — 4 in cos(dé&a) ) (8.7)
(d/a)
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We can write equation {(8.7) as

¢, = aeoFc(d/a) {8.8)
where
_ ln(cos x)
E‘C(x) = - 32——-:-2!"—*- .

In equation (8.8), E;o is the limit of E; when d approaches zero (=ﬁf8), i.e.
it is equal te the normalized polarizability of a slit in an infinite plane,
what we have called the basic polarizability of the hole. Fc(d/a} is thus a
measure of the change in the normalized polarizability of a hole as a function
of the ratio of the hole size to the radius of curvature of the surface. The
percentage difference of Ec(x) from unity is plotted im fipure }5 and given in

table 4. For small x it is easy to show that

9

-

F () 1+ ;‘—6 : (8.9)
Thus the error in hole polarizability due to using the infinite plane
polarizability for a small hole in a.curved surface is proportional to the square

of the ratio of the hole sizé Lo the_radius of curvature of the surface. It
also seems that the proportionality constant is quite small.

We conclude this section by noting that a transformation quite similar to
{8.5) can be used to determine the inductive coﬁpling coefficient per unit length
for a circular cylindrical shell with N slits of the same width spaced uniformly
around 1ts circumference. This quantity, Ls’ has been defined for a general

cable shield [3]. If ¢ is the optical coverage of the H—slit'shield, it turns

out that

U
o TC
Ls i 1n{sin 2). (8.10%

Furthermore, from the same transformation it follows that

LS (8.11)

S = 5

1
s 2rNe
o

I1n(sin
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Figure 15. Percent error in E; introduced by surface curvature.
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Table 4

x 100(F _(x)~1] 100(x2/96)
.00 .000 .000
.05 .003 .003
.10 .010 .010
.15 .023 023
.20 042 .042
.25 .065 065
.30 .094 .094
.35 .128 -128
.40 167 .167
45 L212 211
.50 .262 .260
.55 .317 .315
.60 .377 .375
.65 .443 J440
.70 .515 .510
.75 .591 586
.80 674 667
.85 .762 .753
.30 .855 844
.95 .954 .940
1.00 1.059 1.042
1.05 1.170 1.148
1.10 1.286 1.260
1.15 1.409 1.378
1.20 1.537 1.500
1.25 1.671 1.628
1.30 1.812 1.760
1.35 1.958 1.898
1.40 2.111 2,042
1.45 2.270 2.190
1.50 2.436 2.344
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IX. Eiffect of Nearby Holes on Hole Pelarizabilities

We will study the effect of nearby holes on hole polarizabilities .by
examining a particular case of hole interaction that will be directly applicable
to our braided shield model. The particular case we will look at is the interaction
among the holes forming an infinite diamond lattice in a plane plate as shown in
figure 16. This lattice represents an idealization of the lattice of holes in a
shield braid. If the hole spacing on the actual shield braid is significantly
smaller than the shield diameter, the planar model should give a good approximation
of the interaction effect.

The approximations we will make when calculating the peolarizability of a
hole of the lattice of figure 16 is that we will consider only dipole interactions
among the holes and we will assume the dipole fields of all the other holes are
uniform over the particular hole we are concentrating on (the hole at the origin).

The polarizabllities of holes, calculated by some method such as that given
in Sectien VI, are proportionalitv constants between the effective dipole moment
induced in the hole and the field (actually the difference in the field omn the
two sides of the conductor in which the hole 1s located) that would exist at the
position of the hole if the hole were closed. When several holes are present,
the field that would exist at the position of a particular hele if that hole
were closed must include the fields due toc the presence of all the other holes.
For easy application to our braided shield model, we would like the proportiomality
constant between the effective dipole moment induced in a hole and the extermnal
field (not fincluding the flelds of the other holes}. This is the type of
proportionality constant one has in mind in the discussions of Section V. The
polarizabilities In equations (5.5) and (5.6), for example, are this type of

proportionality constant.
To obtain the propoertionality constant between the effective magnetic dipole

moment and the external field in the x direction, one can make use of the polar-
izability calculated in Section VI to write, if the holes have lines of symmetry
parallel to the x and y axes,

meff = am(Hext + Hint) (9.1
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Figure 16. Lattice for dipole interaction sums




where Hex is the exterpal field and H the jump, through the plate, of the

£ int
interaction field due to the presence of all the other holes. If we are dealing
with an infinfte lattice of holes, as in figure 16, all effective dipole moments
are the same and we may write, for the hole at the origin,

o 2

Ix
1 D S & |
Hine ™ 72 © 37 - Uagr , jz: 3 "3 (9.2)
y#0 1f im0 o 1]

where the factor of 2 arises from the fact that equal and opposite fields are
induced on the two sides of the plate by each of the other dipocles. 1In equatiocn
(9.2) we have

Xy, =4 - T)sin y = (G - 1)6¢/2)

Yij =d{(j + i)cos ¢y = (J + i)@;/Z)cot P
and
rij = xij + yii = d2 (j - 1)2 sinzw + (3 + 1)2 coszw

- dz(i2 + j2 + 215 cos 2¢)

W 2
= (é_~5_——) (12 + j2 + 21j cos 2y)

sin ¥

Let ug define (wi/n) times the sum in equation (9.2) as Ey Then from equations

{9.1) and (5.2) we have

111e.ff
Paff ™ %y Hext - w3 Eh) (5-3)

x

i.e. a
m
m Y. R (9.4)
eff 3 ext
1+(am/wx)£h

Thus the polarization constant we desire, between the effective dipole
moment of the hole and the external field, which we will dencte by &m, is given,

under our assumptions, by
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o
m

3
l+(um/wx)2h

[+33
L}

(9.5)

ol

where e is the polarizability of an isolated hole that can be calculated by the
method of Section VI. Since o and w _depend on the particular hole shape and
lattice spacing, the significant quantity to tabulate in order to be able to use

equation (9.5) is Zﬁ. This quantity is a function of ¢ only and may be written:

. 16 sin7y -3 sin y (i 417 )(1 3 Bin_ig)-k 14 (1+sin w)
z ——"—'Z + Z WY 373 (5.6)
1 j=—w (1"+j"+213 cos 2¢)

In a precisely analogous manner, one can show that &E, the proportionality
constant between the effective electric dipole moment of a hole and the extermal

electric field is given, for our diamond lattice, by
o

o
e

3
l+(ae/wx)ze

£
u

(9.7)

where o, 16 the electric polarizability of an isolated hole such as would be

calculated by the method of Section VI, and

lé6 sin = - 1
L, = ———“iz{ > s 37—2} (9.8)

i= §m—so (17+1 4213 cos 2¢)

Table 5 gives values of Zh and 8 as functions of . We also give, in
the table, a column for each of the functlons (cos VI, ) and (coa vT, Y. These
auxiliary functions are well behaved and so may be more suitable for inter—
polation than Eh and Ee themselves. These auxiliary functiona are also plotted
in figure 17.

The practical application of the data calculated in this section may be
found in the summarizing discussion of our braided shield model to be presented

in the following, final, section.
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Table 5

Interaction sums for diamond lattice

y{degrees) Zh c033¢2h L, cos3¢2e
0 -1.531 -(4/m)g(3)=-1.531 (2/m)5(3)=.765 .765
5 -1.528 ~1.511 .829 .820
10 -1.525 -1.456 1.026 .980
15 -1.521 -1.370 1.367 1.232
20 -1.523 -1.264 1.874 1.555
25 -1.566 -1.166 2.578 1.919
30 -1.729 -1.123 3.512 2.281
35 -2.123 -1.167 4,715 2.591
40 -2.861 -1.286 6.232 2.801
&5 -4.016 -1.420 8.133 2.875
50 -5.573 -1.480 10.548 2.801
55 -7.378 -1.392 13.733 2.591
60 -9.043 -1.130 18.250 2.281
65 -9.678 - .731 25.424 1.919
70 -6.856 . - 274 38.869 1.555
75 8.671 .150 71.042 1.232
80 92.270 483 187.100 .980
85 1047.330 .693 1238.502 .820
90 @ .765 ® .765
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Figure 17. Auxiliary functions of interaction sums.




X. Another Look at the Braided Shield Model

Now that we have looked at some of the factors that influence the polar-
izabilities of small holes, we can continue the discussion begun in Section V,
and arrive at some quantitativé estimates of the shielding parameters of braided
shields. Before we do this, however, it might be helpful to mentlon explicitly
some of the effects that are not taken into account by the braided shield model
of this note. This 1s done sc that the reader can have a better basis for
Jjudging the overall accuracy and usefulness of the numerical data to follow.

Seven kinds of effects that are not taken into account by the present
braided shield model, in approximate order of increasing difficulty with which
they may be incorporated into the model, are:

1. Interfor dielectric effects

If there 1s a dielectric Insulator between the inmer conducting

cable and the braided shield, the formulas developed in Section III
would require glight and obvious revisions. 1In additiomn, It 1is simple
to show that the electric polarizability of a hole, calculated by the
method of Section VI, should be multiplied by 2(1 + Er)_l, where €,
1g the relative permittivity of the interior dielectric. All in all,
this 18 a very simple effect to take into account; we have not done
so in this note, mainly in an attempt to simplify and condense the
material presented.

2. Exterior dielectric effects

If the shielded cable is embedded in a conducting dielectric
there will, of course, be further complications in several of the
formulas of this note.

3. Effect of shield curvature on hole Interaction

The interaction sums we have computed in the previous section
were over a planar array of holes. If the transverse hole spacing of
the braid is not small compared to the shield diameter, 1t may be
necessary to take account of the actual shape of the cylindrical
surface in which the holes are located. This weould present no great
numerical difficulty, but it would introduce an additional parameter

into the study —— the ratio of the transverse hole spacing to the

73




shield's radius of curvature near the position of the hole. We have
tried, in this note; to keep the number.of. parameters to a minimum.

First order shield thickness effect

The finite thickness of the braid, which is neglected in the
present model, may be partially taken into account by modifying the
hole polarizability calculation. It would not be much more trouble,
numerically, to medify the procedure of Section VI to calculate the
polarizabilities of a hole in an infinite plate of finite thickness.
One formulation of such a calculation would be to derive coupled
integral equations for the potentials (or their derivatives) over
the surfaces defined by the intersections of the top and bottom of
the plate with the cylinder defining the hole. This formulation could
be carried out for those hole shapes for which the Green's function for
the interior region of the hole (the region within the hole and between
the top and bottom plane surfaces of the plate) is known. Elliptical
and rectangular holes are examples of such hole shapes. There 15, of
course, in additien to this simple kind of modification of hole polar-
izabilities, a more complex shield thickness effect involving the
peculiar woven fabrication of the braid; we will discuss this as
effect (6), below.

Shield conductivity effects

The effect of shield conductivity mayv be taken into account, to
first order, by adding ancother term to the transmission-line equation
(5.1). Such terms have been discussed in references [1] and [2], for-
example. At low frequency this source term reduces to (IT ~ I)R, where
R is the d.c. resistance per unit length of the shield. The finirte
resistance of the shield wires would also have an effect on the L5 and
Ss parameters that we have discussed in the present note. The under-
standing and calculation of the modiffcation of-LS and Ss by the
presence of regsistance should be the subject of a future study.

Braid weave effects

The particular construction of bralded shields gives rise to
effects depending on the thickness of the braid wires that are distinct

from the first order thickness effect discussed as number (4) above.
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What we have in mind is that, because of the woven fabrication of the
braid, the holes between braid bands are actually larger than they
appear when looking at a sheet of the braid material along a normal to
the sheet. Thus, a braid with "95%" optical coverage can have the

sum of 1ts hole areas make up more than 5% of the surface of the braid,
if one loocks at each hole in the direction from which it looks its
largest. The algebra to go with these elementary observations is not
at all elementary, and is beyond the scope of the present note.

7. Imperfect contact effects

If the wires of the braid have imperfect or irregular surfaces,
sc that there is some impedance between the individval wires, the
model that we have developed will not be applicable without some
modification. One form this modification might take would involve
the sheet impedance concept; the shield surface In which the hcles
are located would be allowed to have a sheet Impedance. This could
partially account for the tendency of current to flow along the
direction of the wires, rather than between the wires, if the wire
surfaces are in imperfect contact. A more precise statement and
treatment of tﬁe imperfect contact problem must be left to future
work.

Now let us return to our object of obtaining some numerical estimates of
the shielding parameters of a bralded shield. Referring to Section V, the
parameters of particular interest, L8 and SB, are gilven by ecquations (5.22) and

(5.24). For convenience, we repeat these formulas here.

BV (1_C)3/2 _
L = - a (P){d.d ) (10.1)
5 P 1_(1_c)1/2 m ie
3/2
§ = - _{-c) o (){d d ) (16.2)
8 e P 1_(1_c)1}2 a ie

We wish to study, in particular, the variation of these parameters with
the weave angle of the braid, the optical coverage of the braid being kept

constant. With this in mind let us rewrite the above equations as
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_— o—
LS = Lsum(w)
and
o—
S8 = Saae(w)

where the definitions of Lg and SZ are obvious. These quantities, Lz and Sz,
are almoatr independent of -the weave angle (there is a sglight and unimportant
dependence of the averaged density functions on the weave angle; we will forget
about this), and so the quantities we are Interested in calculating are just
Eﬁ(¢) and E;(¢). From the discussion in Section V it is clear that these
polarizabilities are the ratios between effective dipole moments and external
field, the type of thing discussed Iin the previous section, and so a more

informative notation might be

=
I

= 1% (10.3)

w
t

= szég(¢) ' (10.4)

Of the four factors we have examined that—influence the values of the
polarizabilities, it can be seen, from the prewious four sections, that the
most important, for most of the cases we are Interested in, are the effects of
hole shape and hole-hcle interactions. Taking account of only these two effects,

the quantities of Interest may be written as

_ Ph am
6 () = 5 — ———
™ A2 1+(am/wi}£h
o ()
- - m_ 5 (10.5)
L+(A%/P ) (@ (YW )T,
and
_ P
a () = _g_ ____oifé_?__.
A 1+(ae/‘wx)2e
o ()
= = (10.6)

1+ a2/, G, W WD,
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where E;(w) and E;(w) are the normalized polarizabilities calculated by the
method of Section VI, and Zh and Ee are the interactions sums calculated in
Section IX. It is not difficult to show, for diamond-shaped holes in a diamond
lattice representing a braid of optical coverage c¢ and weave angle ¥, equations
(10.5) and (10.6) reduce to

- _ 1-0)¥2 5 wreosy |

am(w) = am(w) 1+ % sin 20 Eh (10.7)
and _ N (1—c)3/2 E;(¢)6033¢ -1

a W) = o (24l + Z sin 20 Z, (10.8)

The above aexpressions have been evaluated numerically by employing tables
lb, 2b, and 5. The resulta of this evaluatlion, for values of y given by 50(50)450,
are presented in table 6 and figure 18, for various values of ¢. Because of the
approximate nature of equations (10.7) and (10.8), we have presented only two
significant figures in the table.

From the table and curves we see that our approximation to 5;(¢), the
normalized value of LS, has a minimum as a function of ¢ which, for most values
of ¢, occurs between 10° and 20°. A mipnimum in this quantity has also been
observed experimentally. We have not extended our table to values of ¢ higher
than 450, since these values are not very interesting. We note that, for higher
values of ¢, the value of P at which the minimum occurs gets smaller. But we
must always keep Iin mind effect {6} of this section; the higher values of ¢
give rise to bigger holes than would be predicted by a geometrical optical
coverage argument. It is believed that, if this effect could be properly taken
into account, the position cof the minimum would be more insensitive to c.

We also note from the tables and curves that E;(w) has a slight maximum,
as a function of Y, again for | somewhere between 10o and 200. It would be

interesting to have some experimental data on this quantity.
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Table 6

Effect of weave angle on normalized shielding parameters

a. um(w)
c 0 1 2 3 A 5 6 7 8 9
-1 ¥
5 51.60 3.12 1.66 1.15 .90 .75 .66 .59 .35
10 1.34 1.11 .95 .84 76 .70 .65 .61 .58 .56
15 .97 .88 .81 .76 .71 .68 .65 .62 . B0 .59
20 .89 .84 .79 .75 .72 .69 .67 .65 .64 .63
25 .89 .85 .81 .78 75 .73 J1 .69 .68 .67
30 .85 .91 .87 84 .81 .79 JT7 .75 Té .73
35 1.07 1.02 .98 .94 .91 .88 .86 .84 .82 .81
40 1.29 1.21 1.15 1.10 1.05 1.01 .98 .95 .93 .92
45 1.65 1.52 1.42 1.33 1.20 1.10 1.15 1.11 1.08 1.05
b. uE(U)
c o 1 2 3 -4 5 6 7 8 9

0

5 .37 .39 .40 A Y %) AT .48 .50 .51
16 .43 -1 b .46 A A7 .48 .49 .50 .50
15 A 45 45 A6 &7 L7 .48 .48 49 59
20 A A5 45 A6 A6 AT ¥ 47 .48 .48
25 b4 LAk 45 45 .46 A6 46 47 47 AT
30 a4 LAl Gb 45 45 <45 N .46 A6 46
35 43 -7 44 A .45 45 LG5 45 46 A6
40 A3 A Ak 44 45 45 45 45 A5 A6
45 A3 LA 44 LAg b .45 45 .45 45 .45
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