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Abstract

Geometrical optics, physical optics, the geometrical theory
of diffraction and eigenfunction solutions are- used to compute the
surface charge and surface current densities induced on aircraft-
like structures by high frequency incident plane waves. Recent ad-
vances in diffraction theory, which are applicable to the problem
at hand, are also discussed.

The applicability of these techniques to aircraft-l1ke
geometries is demonstrated by comparing calculated with measured
results. The use of physical optics alone to calculate the surface
charge densities is investigated.




SURFACE CURRENT AND SURFACE CHARGE DENSITY
INDUCED ON AIRCRAFT MODELS

I. INTRODUCTION

The purpose of this report is to review some of the recent
work done at the ElectroScience Laboratory concerning radiation
pattern calculations of antennas mounted on aircraft-like structures,
with a view towards using these approaches to find the surface
current and charge density induced on an aircraft 11luminated by
an incident electromagnetic wave, for frequencies above those for
which integral equation solutions are applicable. In particular, this
work deals with the problem of determining the fields on the surface
of perfectly conducting structures such as finite or infirnite Tength
cylinders of convex cross sections, convex curved surfaces, finite
wedge geometries, and finite plates, since one can model an aircraft
approximately by a suitable combination of finite cylinders, cones,
plates, etc. Electromagnetic boundary value problems do not lend them-
selves to exact analytical solutions except in a few cases wherein the
geometrical configuration of the problem conforms to one of the six
coordinate systems in which the vector wave equation is separable, or
for a very limited number of special geometries which can be treated
by function theoretic methods. Furthermore, accurate numerical results
can be obtained from the numerical soTution of the pertinent integral
equation if the radiating structure 1s sufficiently small in terws
of wavelength; therefore it is often necessary to employ approximate
analytical techniques for aircraft-like geometries at higher frequencies.
Some of the well known approximate analytical techniques a2re those of
geometrical optics, geometrical theory of diffraction {GiD}, physical
optics, variational procedures and perturbation procedures. The GTD
is a relatively recent development by Keller and his co-workers[iZ.
Geometrical optics, when used in conjunction with GTD, constitutes the



ray optical technique; this technique has been found extremely valuable
for analyzing many electromagnetic radiation and diffraction problems
involving practical structures which are sufficiently large in terms
of a wavelength[2,3,4,5]. The ray optical technique allows one to
"build-up” a solution to the problem of computing patterns of antennas
located on aircraft, using the known solutions to the individual parts
of the model approximating the aircraft structure. Furthermore, the
ray optical technique complements the modal or numerical techniques

of analysis which are useful for geometries sufficiently small in terms
of a wavelength. This report concerns itself primarily with the ray
optical technique which is chosen for the theoretical analysis
involved. Section II of this report summarizes the ray-optical
technique and its applications to certain problems of importance to

the radiation pattern calculations for on-aircraft antennas.

Section III deals with the analysis for calculating the fields
on the surface of aircraft models, and presents calculated results
along with the measured patterns for comparison. The measured results
are seen to agree well with the calculated results. Section IV indi-
cates some of the latest analytical techniques which constitute
extensions to the GTD. These techniques although applicable to the
probTem discussed in Section III are not incorporated therein, as
these Tatest methods were not available until after the computations
and measurements discussed in Section III were completed. In Section
III, chiefly the ray-optical procedure and modal analysis are used;
however, in at least one instance, the physical optics approximation
is applied in conjunction with the ray-optical technique to expedite

the analysis.

Since the problem of interest is the determination of surface
current and charge density induced on an aircraft illuminated by an
incident electromagnetic wave, it is interesting to see the manner
in which this probiem is related to the radiation pattern calculation
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of antennas mounted on the same aircraft. Frequently these patterns
are available, and they may be used to deduce the current distribution.
The Reciprocity Theorem{6] in electromagnetic theory serves to relate
these two problems in the following manner. As a consequence of the
reciprocity principle, the electric surface current density induced

on the aircraft surface {assumed to be perfectly conducting) may be
determined from the radiation patterns of two mutually orthogonal
{spatially) infinitesimal magnetic current moments, located tangentially
on the aircraft surface, at the point where the induced current density
is desired. The field point in the radiation problem is associated
with the direction of the given incident electromagnetic wave which
i1luminates the afrcraft {the infinitesimal current moments radiate

at the same freguency as that of the incident wave). Employing the
reciprocity argument, the electric charge density induced at any

point on the aircraft surface is similarly obtained from the radi-
ation pattern of an infinitesimal electric current moment Tocated at
the point where the induced charge density is desired; the electric
current moment being oriented along the normal to the surface at

that point. In practice, such infinitesimal electric and magnetic
current moments may be approximated in the following way. The
equivalent source for a thin slot whose dimensions are negligibie
{(infinitesimally small) compared to a wavelength and to the dimensions
of the structure which contains the slot, is an infinftesimal magnetic
current moment oriented along the slot axis. The equivalent source

is assumed to be located at the geometric center of the small, thin
slot. SimiTlarly, a short monopole on a conducting surface may be
replaced by an equivalent source consisting nf an infinitesimal
electric current moment normal to the surface at the same Tocation.*

*Alternately, any of the probes described elsewhere in the interaction
notes would represent either electric or magnetic current moments which
are designeqd for the explicit purpose of monitoring the surface charge
or current density respectively.




Hence, the type of on-aircraft antennas that we will be concerned
with are primarily the thin slot of a sufficiently small size, and
the short monopole.

Furthermore experience has shown that the value of the electric
current density in the illuminated region for a plane wave normally
incident on a cylinder is approximately 2n x H4 to a high degree of
accuracy for the range of radii for which optical approximations are
appTicable {§-> 1). The magnitude of the ripple present in the pattern
is indfcative of the magnitude of the error in the physical optics
assumption. A thin longitudinal sTot responds to the longitudinal
component of the magnetic field intensity and the corresponding surface
current density J is given by J = n x A* where At is the total magnetic
field intensity. Thus given the pattern of such a slot on tbe surface,
the value at the pattern maximum is approximately J = 27 x H' and the
value for any other angle of incidence is directly proportional to the
pattern level of that slot. The approximation improves as frequency
increases. Similarly the axial slot pattern can be used to obtain
the Tongitudinal' component of current density. A similar, assertion
can be made relating the “physical optics response" (p=250ﬁ»E1) to

the surface charge density.

II. A SUMMARY OF THE RAY-QPTICAL METHOD

The ray optical technique for analyzing antenna and scattering
problems consists of describing the radiated or scattered fields in
terms of the conventional geometrical optics rays together with the
diffracted rays predicted by the Geometrical Theory of Diffraction
{GTD). GTD was introduced by Keller[1] as a systematic extension
of classical geometrical optics to describe the diffraction phenomenon
in terms of rays. GTD postulatas the existence of diffracted rays
to describe the diffracted fields in a manner similar tp that of
classical geometrical optics, in which the geometrical optics rays
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are utilized to describe the incident, reflectied, and refracted
fields. The ray optical technique is valid at high frequencies[7],

so that the radiated and scattered fields at sufficiently high
frequencies can be adequately described in terms of rays. However,

in a number of cases the ray optical solution is surprisingly accurate
even for lower freguencies. The main advantages of the ray-optical
technique are that:

a) it s simple to use, and yields accurate resuits;

b} it provides some physical insight into the radiation
and scattering mechanisms involved; and

c) it can be used to treat problems for which exact
analiytical solutions are not available.

The discussion to follow outlines the methods of geometrical
optics, and the geometrical theory of diffraction. These are aiso
referred to as asymptotic high-frequency methods. Kouyoumjian[7]
reviews these ray techniques in the context of asymptotic high fre-
quency approximations. In this report, Reference [7] serves as a
guideline for describing the geometrical optics and GTD techniques.

A. Geometrical QOptics

In the geometrical optics description of electromagnetic wave
propagation, the energy travels along paths defined by rays. The
ray paths obey Fermat's Principle which states that the energy flux
propagates from point A to point B along a ray, in a medium of
refractive index, n such that

B
l nds {ds = incremental path length}

is an extremum. In variational notation, Fermat's Principle is stated
as




B
(1) & J n{s) ds = 0.
A

Thus, in a lossless, homogeneous, isotropic medium the energy travels
along ray paths which are straight Tines. The field intensity along
the ray is governed by the conservation of energy flux in an astigmatic

ray bundle indicated in Fig. 1. A2 and A02 respectively represent
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Fig. 1. Ray tube geometry.

the field intensity at S and 0; ds and dcO are the cross sectional

areas of the ray bundle at S and O respectively. Conservation of

energy in the ray bundle requires that A2 do = AO2 dao, so that,
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F(s) is viewed as an energy spreading factor associated with the ray
path from 0 to S.

According to the geometrical optics description, the electric
field intensity along the ray path may be expressed as




-jke -Jks
(3) E(S) ~ E(0) e Fis) e ,

-Jke
where E(0) e

is the field intensity at the reference plane at 0, F(s) is the
spatial attenuation of the field along the ray path from 0 to S as
indicated earlier, and e’jks is the phase variation along the ray

path {for an ej‘“t time dependence), where k is the wave number of

the medium. E(S) is polarfzed normal to the ray path in the ray optics
approximation. Reference [7] indicates that Eq. (3) corresponds to

the wave equation, thereby directly implying the high frequency nature

of the geometrical optics approximation. When s = ~ py Or's = - p,,
the electric field becomes infinite and the geometrical optics des-
cription breaks down; these positions s = - P1» and s = - pp are the

caustic locations. The caustics are shown by lines 1-2 and 3-4 re
spectively; these caustics occur whenever a congruence of rays is
present. Upon propagating through a caustic the sign of (pts)
changes and a phase Jump of ej"r‘/2 results.

1 1 +jn/2
(4) = e
Yp+ Ypts

The geometrical optics description is valid on efther side of the
caustic, and the field at the caustic may be deduced from separate
considerations[8,9].

When a ray is incident on a boundary surface, it is trans-
formed into refiected and transmitted (refracted) rays, and the
reflected and transmitted rays may be found according to Taws of
reflection and refraction . For a perfectly conducting boundary




there is no transmission involved, and only reflected rays are present,
Consider a point source at P' near a smooth, perfectly conducting
obstacle as shown in Fig. 2. An incident ray from P' reaches a point

OBSERVATION POINT

PI
POINT SMOOTH PERFECTLY
SOURCE CONDUCTING SURFACE

Fig. 2. Reflection from a smooth perfectly conducting surface.

0 on the cobstacle wherafrom it ts reflected. The reflected ray reaches
an observation point P along the path P'OP. Let i be a unit normal

vector to the surface at 0, and let I and S represent the jncident




ray direction along P'0, and the direction of the refiected ray along
0P, respectively. The path P'OP is governed by Fermat's principie
which implies that the following condition is true

{5) -n+f=n-.8 (law of reflection).

Next, one may define the plane of 1nc1dence as one which contains
the unit vectors I and n. Let 51 and ¢ be unit vectors shown in
Fig. 3 which 1ie in the plane of 1nc1dence and perpendicular to the

Fig. 3. Unit vectors for scattering by perfectly
conducting body.

plane of incidence, respectively. Tnese unit vectors satisfy the
following relationships

~

(6) By ° I1=0 , and 45 = I x8; .

One may similarly define the plane of reflection as one which con-

~

tains n and S". The planes of incidence and refiection are the same
(also. a consequence of Fermat's principle). Thus,

(7) B; = I x éi = 5" x 8",

where é" is a unit vector in the plane of reflecticn such that



(8) gn . é" - O.

The unit vector é" is identical to £i defined in Eq. (6). In
particular,

(9) ¢" = S" x 8" (= ¢;).

A1l of the unit vectors discussed above are indicated in Fig. 3.
The rays at P may be projected backwards till they intersect; this
results in the formation of the virtual caustics indicated by the
1ines 1-2 and 3-4 in Fig. 2. Thus, the field at P appears to
emanate from the virtual caustics at 1-2, and 3-4; this description
provides the familiar astigmatic ray bundle whose geometry was
indicated in Fig. 1. Following Eq. (3), the geometrical optics
representation for E'(P) which is the reflected at P is,

(10) E'(P) ~ ET(0) - R F(s) e 3KS

where EV(0) is the reflected field at 0 (corresponding to E(0) ejk¢ of
Eq. (3)) and equals B (0) - E, where E*(o) is the field incident at

0 from the source at P', and ﬁ is the dyadic reflection coefficient
which serves as a transfer function relating the refiected field to
the incident field. One may decompose E*(o) into components along

g. and 51 (since E' -+ I =0 in the ray optical approximation). Hence,

i
(1) E(0) = (&g 8; + 45 9;) - T (0).

Similariy, one may decompose the reflected field along 8" and &".
Therefore,

"oy ;n &u) . ET(P)_

i
T
el
L
H

o
™ »
™ >

(12)
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It follows from Eq. (11) and Eq. (12) that the dyadic reflection
coefficient may be written as

el ]

{13) = Ry By B" + Ry 85 9" + Ry o5 B" + Ry 65 6",

'II 21
proper boundary condition on (E' + E') at 0. For a perfectly con-

ducting scatterer, n x (E"i + Er)’at 0= 0 so that R2 =0, R3 =0,
and Ry = 1, whereas Ry = -1. The reflected field ET(P) can thus be
explicitly written in terms of the field incident on the perfectly
conducting surface at 0 as

The compgnents R., R R3 and Rg are determined by enforcing the

~ J P18 -3ks

= i . [n

i8¢
The distances py and o, in the expression for F(S) are given by

the following relations

1 2 L
{15) o " By K, cosuy + sign for convex surfaces
(16) 1. plﬁ-i 2 Co%% - sign for concave surfaces.

P2 Ry

(cosw0 =-n " 1)

R] and R, are the radii of curvatures of the surface at 0. The

above formulas are valid only 1n the principal planes. R.| is the
radius of curvature in the plane of incidence (or reflection), whereas
R2 is the radius of curvature in the plane orthogonal to the plane of
incidence {or refiection). Let us define the following quantities:

(17) éi - tho) = EXO)
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(18) ey - EN(0) 2 E1(0)
(19) g" - ET(P) = EY(P)
(20) p" + ET(P) = EJ(P)

With the help of the guantities defined above, Eq. (14) may be
expressed in a convenient matrix form as:

o) £ (P) 110 E1(0) J 51 Pp ~jks
e TR EE VI BEET D S e
£ (P) 0 !-1 £ (0) || (or*s)leg*s)

The above representation for the geometrical optics reflected field

is valid at all angles of incidence except near grazing incidence.

At grazing incidence the incident ray becomes tangent to the surface

of the scatterer, and phenomenon of surface diffraction occurs. The .
geometrical optics reflected field contributes to the scattered field

only in the specular direction. The techniques of geometrical optics
discussed above are next extended to account for the phenomenon of
diffraction.

B. Geometrical Theory of Diffraction

The Geometrical Theory of Diffraction {(GTD) was introduced by
KeTlerf1] as a systematic extension of geometrical optics to describe
the diffraction phenomenon in terms of rays. The regions which form
the geometrical shadow constitute the regions for which the geometrical
optics fields are zero. The field in the shadow region is due to
diffraction and cannot be accounted for by ordinary geometrical ootics.
Thus, GTD postulates the existence of diffracted rays to describe the
diffracted fields in a manner analogous to that of the geometrical
optics rays which successfully describe high freguency incident, re-
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flacted and transmitted (refracted) fields outside the shkadow regions.

Diffracted rays are produced whenever an incident ray strikes a

smooth surface at grazing incidence, or strikes an edge, corner, or

a tip of a scattering object. Figures 4(a), 4(b), 4(c) and 4(d) show
ILLUMIRATED
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Fig. 4. Examples of diffracted rays.
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some examples of diffracted rays; the regions of geometrical shadow
(shadow regfons) are also indicated in Figs. 4(a) and 4(b). Although
di ffracted rays primarily account for the fields in the shadow region,
they are also generally present in the illuminated reglfon. Thus,
according to geometrical optics, the region of space surrounding a
scatterer is divided into the f1Tuminated and shadow regions. The
shadow boundary delineates these two regions. The illuminated region
contains the {incident field and generally the diffracted field (which,
depending on the particular situation involved, may or may not
constitute a significant contribution to the total field); a portion
of the illuminated region may also contain the reflected field.
According to geometrical optics, the reflection boundary bounds the
domain of the reflected fleld. Fig. 4(b) ilTustrates the shadow and
reflection boundaries. The shadow region, more precisely the shadow
region associated with the incident field, contains only the diffracted
field. The shadow region associated with reflected field is not shown
in Fig. 4(b) for clarity but it would exist from the reflection boundary .
to the back surface of the wedge. Fig. 4(a) indicates that a ray

from the source which strikes the surface at grazing incidence {i.e.,
at the shadow boundary) produces fields diffracted into the shadow
region. According to GTD, the diffraction mechanism consists of a
tangential shedding of surface rays which creep around the smooth
convex scatterer as shown in Fig. 4(a). In Figs. 4{(b) and 4{c), the
diffracted rays are produced when the incident rays from the source
strike the sharp edge of a wedge. In Fig. 4(d), the diffracted rays
are produced when the incident ray strikes the cone tip. Diffraction
and reflection are local phenomenon at sufficiently high frequencies
so that—in the ray optical description, the total scattered field is
made up of contributions from certain localized portions of the
scatterer such as the points of reflection and diffraction. The

total field at the observation point is obtained via a superposition
of the contributions from all the different rays (incident, reflected
and diffracted rays; whichever are present) which pass through the
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observation point. In the GTD representation, the diffracted field
Ed may be written in the ray optic form of Eq. (3) as

. _ -jk
(22) d(p) m{‘a“ @) - B}F(s) e

P and Q are points of observation and diffraction, respectively.

Ed{Q) represents the field incident at the point of diffraction.

E, the dyadic diffraction coefficient may be viewed as a transfer
function which relates the diffracted field to the field incident

at the point of diffraction. b depends on the local properties of

the scatterer in the jmmediate vicinity of the point of diffraction.
The explicit form of E is generally deduced from an asymptotic high
frequency solution te a pertinent canonical problem; the asymptotic
solution must be cast in the form of Eq. (22) before D is identifiable.

The geometrical optics reflected ray obeys Fermat's principle
with a constraint. Ia particular, the path from P' to P (Fig. 2) is
an extremum subject to the constraint that a point (point of reflection)
on the ray path touches the surface for the reflected ray {if the con-
straint is not incorporated, the straight line path P'P corresponding
to the incident or direct ray from the source is obtained). Such a
generalization of Fermat's principle which works for reflected rays
may be systematicaliy extended to define the ray paths for the class
of diffracted rays[1]. The diffraction phenomenon associated with
an edge structure is discussed next, and is followed by a discussion
on the diffraction by curved surfaces. The wedge and the curved
surface form two very basic and important geometries in the study of
diffraction theory. Fig. 5{a) illustrates a point source at P’
i1luminating a perfectly conducting wedge of internal angle (2-n)r.
The observation point is at P, and Q is the point of edge diffraction.
For 2 agiven set of points P and P' there is a unique point of dif-
fraction, Q'. The path P'QP 1s an extremum as a consequence of
extending Fermat's principle for edge diffracted rays. Thus, if the
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Fig. 5. Diffraction by a wedge.

incident ray P'Q makes an angle By with the edge, the diffracted rays
must 1ie on a cone of half angle By @S indicated in Fig. 4(c). If the
rays at P are extended backwards, an astigmatic ray bundle emerges

as shown in Fig. 5(b). The caustic 3-4 is an edge caustic. According
to the geometry in Fig. 5(b), the diffracted field at P may be written
in terms of the reference field at 0 as

-Jjks
(23) td(p) ~ T(0) &1%‘;32”) e
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It is convenient to move the reference poini O to the edge at Q, so
that p1+0. The value of the fieid at Q is unbounded since 3-4 is a
caustic , however, Ed(s) is independent of the location of the
reference point 0 so that

lim  E90) /oy
D'|""0
(0+Q)

exists and is denoted by-fi(Q) . EE’ where Ei(Q} is the field from
P' incident on the edge at Q. BE is the "dyadic wedge diffraction
coefficient.” Llet Py T P> then

: = -Jjk
(24) td(p) o Q) - Dg |5 z°+s e >
[of

Note that the distance s now corresponds to the length QP , and

p
- [
F(S) ‘JS pC+S

The form of EE simplifies considerabiy if one expresses the fields
Ed(P} and E'(Q) in their respective ray coordinate systems[10]
instead of the edge-fixed coordinate system at Q{11].

Let the plane containing the incident ray and the edge be the
p1aneﬂof incidence. Let us define unit vectors éo'hand ;O'Asuch
that 8,' lies in the plane of ingidenee wﬁt? so' . I0 = 9 (I0 being
the direction of incidence) and I0 = BO' X ¢0', so that ¢0' lies
normal to the plane of incidence. Similarly, we define the unit
Yectors §0 and ; such that 50 Ties in the plane of diffraction, and
¢ lies normal to the plane of diffraction. The plane of diffraction
is the plane containing the diffracted ray and the edge. If S is tne
direction of diffraction, then éo and & sgtisfy éo - $ =0 and
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S = éo X &. Fig. 6 indicates the wedge diffraction geometry, and the
unit vectors. It can be shown[10] that in terms of the unit vectors
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Fig. 6. Wedge diffraction geometry.
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of the coordinate systems fixed in the incident and diffracted rays,

DE is given by

on

(252) E~ "8 PoDs
The specific functional form of D in terms of D, and D, is obtained
from an asymptotic solution to the canonical problem of electro-
magnetic scattering by a perfectly conducting wedge[10]. DS and Dh
correspond to the scaler wedge diffraction coefficients for the
acoustic soft (homogeneous Dirichlet boundary condition on the wedge)
case and the acoustic hard (homogeneous Neuman boundary condition on
the wedge) case, respectively.

1

(25b) % = 3w, [{d"(&™.n)FLxa (27)] + d™(a7.n)FLxa” (87) 13

7 {d (g7 ,n)Flca  (g7)] +

+ 47 (8" .n)Fxa (87111,

where
-j % ,

* = -8 - ues:3 = gt = Ty
(26) d”(g,n) o 5 cot 5=, In which 8 = &% = (¢"¢')
and

+ m 2
N jKa_(B) -jf dT

@) Flea®(e)] = 23| {e(@) | e .

| zai(s)\
The parameters which appear in F[xa®(8)] are defined below
(28) a={g) = 1 + cos(-8 + 2nN*z)
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in which N® is the positive or negative fnteger or zero, which most
neariy satisfies the equations

2naN- -8 = - m,
(29) 2n'n-N+ -8 = T.
k = kL is the Targeness parameter in the asymptotic evaluation of
the pertinent integrals involved in the formulation of the dyadic
diffraction coefffcient. The quantity L (appearing in « = kL} may

be viewed as a distance parameter which depends upon the type of
edge i1lumination; it fs given by

-

. 2
s sin Bo for plane waves,

(30) L =< E;ET- for cylindrical waves,
s's sinzﬁ
ST for conical and spherical waves.
.

The distances s, s§', ps p' and the angles ¢, ¢' are indicated in

Fig. 6. For grazing incidence {¢' = 0, nu), D, is multiplied by %
whereas Ds = 0. It is worth emphasizing that if an edge-fixed
coordinate-system at @ was used instead of the ray-fixed coordinate
system, BE would contain a sum of seven dyads instead of the sum of
only two dyads as indicated in Eq. (24). The function F[ka=(g)] s
referred to as the Transition Function; it ensures that the total
field surrounding the wedge is everywhere finite and continuous. In
Fig. 4(b) it is seen that, in the geometrical optics description,

the reflected and incident fields vanish abruptly beyond the reflection
and shadow boundaries, respectively. The Transition Function for the
diffracted field properly compensates for the discontinuities in the
geometrical optics field to yield a total field which is smooth every-
place. The regions adjacent to the shadow and reflection boundaries
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MAGNITUDE

are called the transition regions and hence F[nai(a)] is referred to as

the transition function. Away from the transition regfon, F[Kai(BJ} + 1,

and Dg reduce to the ordinary wedge diffraction coefficient obtained

by Keller[1]. The wedge diffraction coefficient given in Reference

[1] is not valid in the transition regions of the shadow and reflection
boundaries. A plot of Flxa*(8)] as a function of xai(s) = kLa is shown

in Fig. 7. The vesult in Eq. (24) when used in conjunction with Eq. (25)

1.0 50
?
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% —1 35
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F{KLa} = 2j/KLo e”"—"f e dr —175

04— ko —120
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0,001 0.0! 0.1 1.0 10.0

Kla

Fig. 7. Transition function.

yields a diffracted field which matches the reflected field and
incident field discontinuities at the reflection and shadow boundaries,
respectively, in amplfitude as well as polarization. The form for the
wedge diffracted field Ed in Eq. (24) reduces to the less general VB
representation used in some of the ElectroScience Laboratory technical
reports which will be alluded to later in our discussions. The
radiation patterns of sliots or monopoles on perfectly condusting wedges
can be easily obtained via the results cutlined above. MNote that in
these cases, ¢' = 0, or nr, so that Dh is replaced by Dh/2

and DS = 0,
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If 8,' - F1(Q) = E(Q), 4" - T (Q) = £1(Q) and similarly, if
B - Ed(P) Eﬁ(P) and @ . Ed(P) E Ef(P) then we may rewrite Ed(P) as:

n o

eqe)] ot o [Eh@) ks
(31) e [ || e | FUs) e
EQ(p) 0 -0, ||€'(0)

where
F - c .
(s) = JS(pc+55 ?

and the caustic distance Pe is identical to s' for the configuration
in Fig. 5.

We next consider the diffraction by a smooth, perfectly con-
ducting curved surface. Figure 8{a) indicates a ray from the source
at P' incident at Q' on the curved surface. P'Q’ is a tangent to the
surface at-Q'; hence the field at-Q' is incident at the grazing
angle so that a shadow boundary is formed as shown by the dotted
line. In the 11luminated region, the fields may be described in terms
of the geometrical optics components which propagate along the
incident and reflected rays, whereas, the diffracted field in the shadow
region may be expressed in terms of the surface ray modes of Keller
(GTD). The incident field at Q' launches an infinite set of surface
ray modes which traverse a geodesic path on the surface. The field of
the surface ray modes attenuates along the geodesic path via a tangential
shedding of rays, so that the diffracted ray arriving at P is shed
tangentially from Q. The path from P' to P is an extremum subject
to the constraint that a portion of it 1ies on the curved surface in
accordance with the generalized Fermat's principle for rays diffracted
by a curved impenetrable surface. Consequently, Q'Q is a geodesic and,
P'Q' and PQ are tangents to Q' and Q, respectively. In addition to
the attenuation due to a tangentfal shedding of rays, the field also
attenuates due to a spreading of the rays along Q'Q resulting from
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Fig. 8. Surface wave diffraction ray geometry.
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the effects of curvature 1n the plane transverse to the path Q'Q. This
spreading is responsible for producing a caustic off the surface as
shown in Fig. B8(a). The caustic distance p is obtained by projecting
the rays from Q to P backwards until they intersect (see Fig. 8(b)).
The unit vectors t, n and b in Fig. 8{(a) denote the tangent, normal,
and binormal directions to the ray path at Q, respectively. Similarly,
E'. n' and b’ represent the correspond1ng triad of unit vectors at Q'.
In particular, b = t xnand b’ = t' xn' The field of the incident
ray is assumed to be polarized transverse to the ray path in the ray
optic approximation so that the 1nc1dent e]ectr1c field at Q' may be
decomposed into components along b* and n' , respectively. Let E1(Q )
represent the incident electric field intensity at Q'. Then

(32) Fl@Q)=( n +b ) - Ei(g")

The diffracted field at P can be expressed as

= -Jjks
(33) rd(p) ~ E(Q) - 0, )|S_(§TST o

where E(Q) - EP(Q) is the value of the reference field at Q which

is a 1ine caustic on the surface. E(Q) is the field incident at Q

along the path P'Q'Q, and EP(Q) is the dyadic curved surface diffraction
coefficient at Q which relates the diffracted field at P due to a

field incident at Q.

(34) D.(Q) = b 6 05(Q) + n n D(Q).

p P p
D; and Dg are the acoustic soft and acoustic hard diffraction coef-
ficients for a smooth, convex Impenetrable surface. More specifically,
the field E{Q) may be expressed in terms of the field incident at

Q' as:
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ds = incremental arc length along Q'Q. The arc lTength Q'Q = t.

a; and ah are the acoustic soft and acoustic hard attenuation con-
stants, respectively; they describe the rate at which energy is shed
tangentially along the path Q'Q. The factor

dn(Q*)
an{Q)

yields the attenuation due to a spreading of rays on the surface, along
the path Q'Q. Each surface ray mode has it's own attenuation and
diffraction coefficient as is evidenced by the mode index p used as a
subscript on DE and ﬁ. In Eq. (3%) it is assumed that the surface

ray is a curve of zero torsion. However, it should be possible to
remove this restriction and obtain a more general resuit. The result
of Eg. (34) is used in Eq. (33) to give the complete result for Fd(P).
Reciprocity requires that DE(Q) and DE(Q') have the same functional

forms. The values of (DE)E, (D:)Z, and ah &> are given in Tables A

P’ 7P

and B from Voltmer[12,13]. The values of DE and D; may be obtained

by-taking the principal branch of the square root of the product of

colum A and column B. The summation on p is rapidly convergent in

the shadow and usually only a few modes suffice. In case the curved

surface is a closed surface, the surface rays undergo multiple

encirclements around the closed convex body. However, for large objects,
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these rays are sufficiently attenuated so that one may neglect the
contribution due to a shedding from the multiply encircling surface
rays. For such closéd convex surfaces, a caustic of the diffracted
rays may be formed along a particular direction of observation. The
GTD solution breaks down at and near the caustics of diffracted rays.
However, the GTD representation may be used indirectly to correct the
fields through the caustic region{12,13].

c. Applications of Ray Optics

In this section the results of the application of diffraction
theory to certain basic problems which have some bearing on the
alrcraft surface current and charge density problem will be reviewed,
The first of these is the source located on a 90° wedge as shown in
Fig. 9. The radiated field is calculated using GTD and compared with
the solution obtained by an eigenfunction expansion. The pattern may
be successfully computed using GTD as long as the source and 90° edge .
are separated by a quarter of a wavelength or more. This shows that
the diffraction effects are localized. The pattern of Fig. 9 can be
interpreted as the current density at the position of the slot and
perpendicular to it by use of the following procedure. The slot
can he represented by a magnetic 1ine source and the reciprocity
theorem gives

2 2

(36) <M. H s

> = <M

where ﬁq is the magnetic current density representing
the slot density of the source and is set equal

to unity.

B is its far field magnetic field intensity.

W

is a magnetic current density of a distant
source far removed from the slot and the =dge
of the wedge. )
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Fig. 9. Radiation pattern of an infinitesimal slot
on a perfectly conducting right-angle wedge.
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H2 is the magnetic field intensity at the slot and is parailel to

M. For line sources, the reaction of Eq. (36) gives
(37) - H
or

A2 = w2H!

where M2 is a constant. Thus 1if the second magnetic 1ine source

M2 is moved on a radius about the wedge, the magnetic field intensity
induced by it at the position of the slot is proportional to the
pattern of the slot-wedge gecmetry. Furthermore, physical optics
predicts the current deqsity J = Eﬁ x ' and for an incident field
from ¢ = 90°, |J| = |2H'|. This is a good approximation for large
smooth conducting bodies. For example, the physical optics current
density on an infinitely Tong perfectly conducting cylinder is about
30% in error for a cylinder whose radius is as small as 0.159x, and
Tess than 10% in error for end on incidence of 1.5A long rod with a
spherical cap whose vadius 1s 0.2)x. This approximation is further
substantiated in the next section where actual calculations of the
magnetic field intensity are given for plane wave incidence.

Thus Eq. (37} can be calibrated to give the magnetic field
intensity at the slot position of Fig. 9 from a plane wave whose in-
cident magnetic fleld intensity is H' or

(38) = a, 2 gl Lie

~

where a, is untt-vector parallel to the slot.

F(4) is the antenna radiation pattern of the slot on the con-
ducting body. Finally the electric current density for plane wave
incidence on this slot wedge geometry is
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.0 1 Fls
(39) J = ag 2H g
where QT is unit vector on the surface perpendicular
to the slot.

The ripple on the pattern F(¢) is caused by the edge diffraction
effect and its magnitude represents a measure of the inaccuracy of
the assumption that J = 2n x ﬁi. However a smooth curve through the
actual pattern should reduce this error to a fraction of a dB. A
second calibration point is available in this case. For incidence
at ¢ = 0, the magnetic field intensity is p{H'+H) where Hé = i/
thus giving

(40) T=a; i {:{8—} i

A similar approximate evaluation can be made of the electric current
density for any thin Tinear slot on a conducting surface. Usually
the calibration should be taken near the pattern maximum. A similar
analysis will be made of a stub or monopole antenna mounted on a
conducting surface. In this case, the calibration will be movre
difficult to obtain but it still appears to be practical.

The preceding discussion involves only infinitesimal antenna
elements. There is a vast body of data avaflable for finite antennas.
This data can be calibrated in the manner discussed above to obtain
a2 crude estimate of the surface current density and charge, the
principle source of error being the directivity of the antenna. These
results are also useful for the introduction of the techniques to be
used. Later, a comparison is to be made of the actual surface current
and charge density and values obtained with the finite antenna.

Tha probiem of a source on a strip has been examined by
Burnside[14]. The pattern is calculated by summing the direct ray

3]




from the source for aspects where the source is vislble with the
diffracted rays from the two edges. The computed results are shown
in Fig. 10.

Fig. 10. Radiation pattern of a slot mounted on a
finite ground plane.




Using diffraction theory Balanis and Peters[15] have calculated
the radiation patterns of axial and circumferential slots in cylinders.
One is tempted to relate these results to the surface current density
merely by setting the pattern value at ¢ = 0° to 2n x A as discussed
previously. However, these are thick slots in terms of wavelength
and this would be a crude approximation. These results are to be
discussed, however, to demonstrate the techniques which can be apptied
to other geometries. Note that the coordinate system has now been
selected sp that ¢ = 0 corresponds to the angle of maximum radiation.
The geometry for the TEM excited axial siot is shown in Fig. 11. In

LIT REGION

OBSERVATION
POINT

e — W -
E-FIELD

-

SHADOW REGI__QE_:..
{a) {b)

OBSERVATION
POINT

Fig. 11. Axial slot in a circular cylinder.

the 11t region, 90<¢>~-90°, the total radiated field is obtained by
combining the waves diffracted from the wedges (Q1 and 02) with the
creeping waves which encircle the cylinder; while in the shadow
region only the creeping waves launched at Q1 and Qz conitribute to
the radiated field. The results for circular cylinders are compared
with the exact solution in Figs. 12 and 13. The advantage of the GTD
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Fig. 12. Radiation patterns of axial infinite siot on circular
' conducting cylinder (TEM-mode).




Giffracted-tizld (multizle diifractans!
== == ———= Biffracted-firld (single-douhle difiracnansi
— === BRIy e

s el R

i
i
1o

Fig. 13. Radiation patterns of axial infinite slot on circular
conducting cylinder (TEM-mode).
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solution is that as the body becomes larger the computation time
using GTD is far shorter than that required for the exact solution
and the GTD solution may be.extended to shapes for which no exact
solution is available. The approximation used by Balanis and Peters
give good results except near the shadow boundary where the solution
which includes only the first and second order diffracted fields has
a discontinuity. Even when the multiple diffractions (wedge-wedge
interactions) are accounted for, there is still some error near the
shadow boundary but the fields are continuous. A recent advance by
Pathak and Kouyoumjian to be discussed later eliminates this small
region of descrepancy. In addition to slots on circular cylinders,
Balanis and Peters have also investigated axial slots in eliptical
cylinders, Fig. 14, using methods very similar to the analysis for

Plr.e) LIT REGIOX

1t

Fig. 14, (a) Elliptical cylinder geometry.
{b) Creeping-wave radiation mechanism.
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the circular cylinders. The main difference is that the creeping
wave components are harder to evaluate since the propagation constant
varies with position on the body and hence an integration is required
over the arclength of the creeping wave paths, such as the paths

Qj, P], P and QZ’ Pos P shown in Fig. 14(b). The results of the
analysis are shown in Figs. 15 and 16 along with measured data.

m—— L4 - e —— D !frpcled-Loet2 i~ulliffa €. Mractions) .
-~ == == Do Ll gl deab £ eiftzacla- sl ,,/- T .
- B —— Y T -

Fig. 15. Radiation patterns of axial slot on eliiptical
conducting cylinder (TEM mode).
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Fig. 16. Comparison of radiation patterns for smaller size
elliptical cylinders (TEM mode).

Overall agreement fs good especially when the cylinder is large in
terms of wavelengths but near the shadow boundaries, ~ +90, the

fields differ by about 3 dB.
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Balanis[16] and Balanis and Peters[17] have also investigated
circumferential slots on cylinders of finite length using a two
dimensional model as shown in Fig. 17. This is called the "square

"2 % —LCL‘- ETield -I}: 3

7

" ___“__._|

Fig. 17. Diffraction mechanism geumetry for finite
width and length ground plane.

cylinder approximation."
90° wedges formed by the guide wall and the surface of the block.
Wedges 1, 2, 3 and 4 are the strongest scatterers while 5 and 6 have
a2 very minor effect on the radiated field if the length and width of
the body are greater than a few wavelengths. The multiple inter-
actions between the wedges can be accounted for but once again are
nagligible {f the body is large 1n terms of wavelengths.

A TEM wave in the guide impinges upon the

The measurements were made on a slotted finite width ground
plane which is the cross section of a slotted cylinder. Fig. 18
shows the calcuiated and measured patterns for several different
guide widths. Hote that when the guide is one wavelength wide
{a/» = 1.0) the pattern has very low backlobes and is ripple free in
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Fig. 18. Radiation patterns of axially slotted
ground plane (TEM mode).

the forward direction since the fields diffracted from wedges 1 and
2 (Fig. 17) cancel in the g = x90° directions so that wedges 3, &
are not illuminated




Ryan[18] has extended the analysis of Balanis and Peters[17]
by considering a true circular cylinder instead of a "square cylinder”
and allowing arbitrary location of either monopoles or slots. The
curved edges of the cylinder ends contribute to the radiated field
in the following way: A creeping wave is launched from the source
along a geodesic path (helical for cylinders) to a point on the
edge, where it is diffracted into a cone of rays. Fig. 19 illus-
trates such a path and cone. When an observer 1ies on the surface
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Fig. 19. Biffraction of a creeping wave by the end of
a finite circular cylinder.

of one of these cones then Fermat’s principle is satisfied and the
contribution of that edge diffracted ray must be computed. For an
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observer in the XZ-plane (far-field) and at an angle & > 0 only two
noints {one on each end of the cylinder) contribute to the diffracted
field. For 5 < 0 it is possible that a continum of points on the
edge satisfy Fermat's principle as illustrated in Fig. 20. For a

ya
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B=—30° 6 = _30e
il
= -35° ¢ = O PLANE Gx-35°
=4.195 A
93—400 ‘2 8=-—40°
8=—ase°

8= _a5°

Fig. 20, Points on the end of a finite cylinder
which satisfy Fermat's principle.

cylinder of radius 1.75x, this continum of points occurs for angles
ad>09-> 8. = -26°, when such a continum of points occurs it is

necessary to use an equivalent current concept to calculate the dif-
fracted field.
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Ryan[18] approximated the value of the creeping wave field as

(41) H = KoY
where H¥ is the creeping wave amplitude and phase
H0 is the source strength
YZ = (jk cos.t;)2 + (jk + a)z sinzg
o = 0.84 g 2/3 3"1/3 3n/6
a = radius of the cylinder
S = arclength from source to diffracting point

on edge

and the square root of Y2 Is taken to 1ie in the first quadrant of
the complex plane, when only discrete points on the edge contribute
the diffraction from the curved edge may be computed using Reference
[197. When a continum of points contribute to the diffracted field
the equivalent current concept[18] is used. Figs. 21 and 22 show

the calculated and measured radiation patterns for a A/4 monopole
mounted on a finite cylinder using the "square cylinder" approach and
the equivalent current method. If the source is visible to the
observer either method is satisfactory but when the source is not
visible to the observer, and hence the radiated field is due entirely
to the diffracted fields, the equivalent current method is more
accurate. Unfortunately, the computation times for the equivalent
current formulation are considerably longer due to the integration
which the method requires.

Ryan[18] also calculated the radiation patterns of antennas
mounted on conically capped cylinders using the equivalent 1ine current
on the cylinder base edge and the cone-cylinder junction. Ryan found
that the diffraction due to the cone tip could be approximated (in
the elevation plane) by the diffraction from a wedge having the same
incliuded angle as the cone. Figures 23 and 24 show the measured
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Fig. 21. Calculated and measured patterns for a 1/4 wave
monopole at the midpoint of a clircular cylinder.
(Square cylinder approximation.)
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pattern of a slot on a conically tipped cylinder and the computed
patterns both with and without the tip diffraction component of the
radiated field. Improved agreement occurs in the aspect range 330°-
360° where the tip diffraction is most important and not swamped out
by other strong contributors.

Kouyoumjian and Burnside[20] have recently refined the analysis
of another problem of interest, the cylinder tipped half-plane, by
including the additional rays shown in Fig. 25(b). Using the attenu-
ation constants and diffraction coefficients given by Voltmer[12] to
calculate the contributions of the four ray paths shown in Fig. 25,

(a) )

Fig. 25. Cross section of a half-plane tipped with a cylinder
of radius a upon which a plane wave is normally
incident. (a) Keller's two diffracted ray terms.
(b) Our additional diffracted ray terms.

it was found that the ray paths shown in Fig. 25(b) are significant
contributors to the diffracted field. The improvement over Keller's
solutfon[21] can be seen in Fig. 26 where the two approximate solutions
are plotted along with the exact solution. Having considered the
elements of Ray Optical Theory and its application to canonical
problems, in the next section we turn to computations involving air-
craft Tike structures.

48




[k )

S = o3[
. EXACT RESULT
'E'\ 04 }_ saausese PRESENT RESULTS [T0.2})
ol o— === KELLER'G RESULTS
0.1
a2

- — - — o —

," . SOFT SURFACE
\H e,
ot

-
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ITI. SURFACE CURRENT AND CHARGE BENSITIES
INDUCED ON AIRCRAFT-LIKE BODIES

Most of the results shown in this section are obtained from
calculated values of the normal electric and tangential magnetic fields
intensities computed at the observation point for plane wave i1lumination.
The surface current density and charge (J=n x Hand s = ¢ (n - E)
can readily be obtained from these fields. The patterns to follow
have been obtained from these field quantities by forming

E - T(e) de

Or—-

or
W
fﬁ- M(w) do
0

where I{%) and M{wj are the source distribution of the antenna. This
Tast step now makes comparison between theory and experiment practical
but makes the interpretation as surface charge and current density
approximate. Computations have also been made that do not fnclude

this last step to give the surface current and charge density but

these results cannot be compared with experiment. The results in
general show that accurate evaluation of the surface charge and surface
current density computations are possible using the GTD approach.

Yu and Burnside[22] and Marhefka[23] have made measurements of
the signal levels received by antennas mounted on an alrcraft fuselage
in the plane of symmetry containing the vertical stabilizer and
compared these measurements with the predictions obtained using dif-
fraction theory combined with modal analyses of References [24] and
[25]. The simplified model of the aircraft is shown in Fig. 27 and
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Fig. 27. Simplified atrcraft model.

is made up of hemispheres, truncated cones, circular cylinders and
planar conductors. The receiving patterns have been confined to the
principal planes and the computations made using diffraction methods
presume that the structure is large in terms of electrical wavelength.
In the following sections, the computational methods used will be
discussed and compared to measurements. The measurements are of the
antenna patterns for slots and monopoles at the observation point.
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A, Roi1l Plane Analysis

The solution for the pattern in the roll plane of the
simplified atrcraft model shown in Fig. 28 was obtained using the

OBSERVYATION

o
RgFLEC _ _-.POINT @51\0;}{
~ OUN rjo - — —~_ EF oh
TNQaaY -~ At ~ Nl

N

|
™ Wow

(a)

ORIGINAL OBSERVATION

A POINT

IMAGE OBSERVATION
— POINT
(b)

Fig. 28, Roll plane aircraft model.

modal solutions for the scattered flelds from infinite cylinders

given in Reference [26] and the geometrical theory of diffraction.

For roll plane aircraft geometry all aspects out to the reflection
boundary {Fig. 28(a)) imaga theory {s used to calculate the received
flelds. The fields incident upon the observation point and its image
are calculated using the appropriate modal solution from Reference [26].
The fields diffracted from the wingtips to the observation point on

the surface are also inciuded for these aspect angies (between the
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reflection boundaries) even though they are relatively small. The
computations for the wingtip diffracted rays proceed as follows:
the geometry of Fig. 28 is replaced by that of Fig. 29. The amplitude

2 PLANE WAVES
INCIDENT UPON
CYLINDER

Fig. 29. Wing tip diffracted rays.

and phase of the incident plane waves are taken to be that predicted by
diffraction theory at the points of tangency to the cylinder (marked

A and B in Fig. 29). Once the amplitude and phase of the incident
piane waves are known the modal solutions of Reference [26] are used

to calculate the field at the observation point.

For aspects outside the reflection boundaries the major con-
tributors to the received field strength come from a direct ray
(when such a path exists) and two wingtip diffracted rays as shown
in Fig. 30. The calculated and measured patterns for the three types
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Fig. 30, Receiving mechanisms for various aspects.

of antennas are displayed in Figs. 31-33. The monopole is A/4 long
and the slots are standard X-band guide.
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The effect of the engines on the roll plane pattern was analyzed
using the model of Fig. 34. For all aspects out to the reflection

OBSERVATION

-..E P{_ < \0“/
oc=8cy, e E2 TN
TR gFLT TR
Pars ' 0 < oo’

Fig. 34. Aircraft with engtnes.

boundaries the received fields are computed using image theory, edge

di ffraction from the wingtips and the modal solution for the scattering
from the cylinders which represent the engines. As before, beyond the
reflection boundaries anly the direct ray (where it exists) and the
wingtip diffractions are considered. The measured and the computed
results agree very well as shown in Figs. 35-37.

The effect of a three dimensional wing, as shown on the inset
of Fig. 38, was accounted for by using the geometrical theory of
diffraction. As explained in Section II, a ray obliquely incident on
an edge is diffracted Into a cone of rays with the edge as the cone
axis and the point of incidence as the apex of the cone. The
point(s) on the edge{s) of the wing(s) contributing to the roll plane
received field are found by iteration along the edges of the wings
until the geometry is such that a ray is diffracted in the direction
of the observation point. In order to determine the position of these
points {if any exist) a creeping wave geometry is considered as shown
in Fig. 39. When a point is located which satisfies the geometrical
considerations then the incident field at the point of tangency is
computed using edge diffraction theory. The creeping wave visualization
of the problem, while satisfying Fermat's principle, is not used for

57



%]
o

0 —————— MEASURED
————— CALCULATED

Ag =2.425)
Wy = 12,125

R™(dB)

RELATVE PQWE

MONOPOLE

Fig. 35. Roll plane pattem.




~
MEASURED

N ~—~———=— CALCULATED
-~ -
,,/ N
('-.-— —
hY
) 10
o
=z
~ (20
=
Q
[+
m - Ty
v (\ S w Af =2.425\ S =
N\ F / Wy = 12.125X p
N N 30 Ap = 0.97 X ¢
C x W, =6.0625X 3
/

AXTAL SLOT
Fig. 36. Roll plane pattern.




—
4) — MEASURED
O met——— CALCULATED

T -
e
,/
2
)
©
Ag =2.425 )

120 f

Wl T W, = 12,125
. “ o Ap=0.97)
3 . ul W, =6.0625)

=

[ o

<

~l

iy

1

CIRCUMFERENTIAL SLOT
Fig. 37. Roll plane pattem.




o
— MEASURED

————— CALCULATED

Er POWER (dB)

RELATI

"- v\

AN L=

y
yA
OBSERVATION
POINT DIRECTICN
45% /

r% ~ ~ ~ f -~ ~ ~
Z g 5. y - i¢ g

¥y o | LN 74, o

_J “-MONOPOLE
6"
152" X

Y

x = 1.035"

Fig. 38. Es radiation pattern for our three
dimensicnal roll plane model.

61




OBSERVATION

/ POINT

T—— GEODESIC PATH ALONG CYLINDER SURFACE

CONE OF

DIFFRACTED ¥~ _POINT OF TANGENCY
RAYS ~wa
/ I,
// INCIDENT
PLANE
WAVE

APPROXIMATE
EQUIVALENT
INCIDENT PLANE WAVE

Fig. 39. Ray paths for finite wing.

computation because of the non planar geodesic path for which no
theoretical results are presently available. Instead, the modal
solution for the scattered fields from an infinite cylinder with an
obliquely incident plane wave is used to approximate the effect of
the wing edge scattered ray. The direction of incidence of the plane
wave is taken as that of the line connecting the apex of the dif-
fraction cone to the tangent point on the cylinder and amplitude and
phase reference for the plane wave is taken as that predicted by edge
di ffraction theory at the point of tangency to the cylinder. The
field at the observation point generated by the wing diffracted ray
is added to the field at the observation point due to the direct ray
which is calculated using the modal solutions of Reference [26]. The
reasured and calculated fields are plotted in Fig. 38.

Figures 40-47, showing the induced surface current and surface
charge density which have been calculated from the surface fields
generated by an incident plane wave for the roll plane using some of
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the aircraft-like geometries, were shown previously. The success of
these programs, when compared to experiment {using, of course, finite
antennas), lend credibility to the programs using infinitesimal
antennas since the finite antennas are calculated using a superposition
of infinftesimal antennas. The physical optics results for the surface
current and surface charge density are also shown in each of the
figures. The incident field has been taken to be unity. The analysis
used for the azimuth and elevation plane could also be done for
infinitesimal antennas. We proceed to §1lustrate the success of

these analyses for finite antennas.

B. Azimuth Plane Analysis

The fuselage portion of the ajrcraft structure has the dominant
effect upon the radiation pattern In this plane. Using the modal
solutions similar to those of Reference [26] the fields at the surface
of an infinite circular cylinder have been calculated. The engines
have a secondary effect on the pattern which can be calculated by
modeling the engines as finite circular cylinders with closed ends.
The near zone scattering from finite cylinders was analyzed using
physicaT optics, modal solutions, and wedge diffraction. The physical
optics solution was used when the observation point was near the
specular region of end cap. Whereas, wedge diffraction was used out-
side that specular region to account for the diffractions from the
edges of the Ffinite cylinder. Finally, the modal solution was used
to determine the field in the specular region of the long cylinder
portion.

Some calculated and measured patterns for the model with and
without engines are shown in Figs. 48-50. 1In the azimuth plane
the distant source is always "visible" at the observation point and
is not blocked from view by the aircraft structure as in the roll
plane pattern where, for instance, the fuselage may block the direct
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ray from the distant source to the observer; hence, the pattern for

the normal component of the electric field is fairly uniform in this
nlane.

C. Elevation Plane Analysis

The solution for the elevation plane patterns were based on
1 two dimensional analysis which, as shown by Ryan[27], is valid
for the three dimensional elevation plane patterns. Fig, 51 illustrates
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Fig. 51. Diffraction mechanisms for the elevation plane.
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the dominant scattering mechanisms used in the calculation of surface
fields on a hemispherically capped finite cylinder and a conically
capped finite cylinder. The effect of the cone tip, as was found

by Ryan[27], can be accurately modeled in this principle plane by a
two dimensional wedge. Tip diffraction is unimportant except when the
source is not visible to the observer.

Burnside's analysis of the transmitted fields in this plane is
divided into two cases depending upon whether or not the observer
has a direct ray path to the source. For aspects that permit
such a direct ray path. the direct ray contribution to the observed
field is computed using an infinite perfectly conducting plane as a
mode1 for the cylinder while the diffracted field contributions are
computed on the basis of a three dimensional body as shown in the
upper two sketches of Fig. 51. The diffraction from the curved edges
are computed using the diffraction coefficient of a curved edge but
the cone tip must be included using the two dimensional wedge .
approximation. For aspects where there is no direct ray from the

source to the observer the "square" cylinder approximation is used
instead of the more accurate equivalent edge currents since the edge
current formulation requires lengthy computations without an equiva-
Tent improvement (see previous section, Figs. 21 and 22}. The results
are shown in Figs. 52-54.

More general two dimensional outlines have been examined using
a point description of the elevation plane cross-section of a convex
fuselage. In this analysis only the direct ray and creeping wave
contributions to the radiated field are computed. The creeping wave
propagation and di ffraction coefficients are computed using the locai
radius of curvature of the bedy. This is termed section matching.

A fuselage cross-section consisting of two back to back ellipses
has been studied using the geometrical theory of diffraction. The
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computed patterns using the geometrical theory of diffraction with and
without the section matching technique (wherein the outline s
described by a set of points) are compared in Figs. 55-57 for varying
locations of the observation point. '

‘ GTD SOLUTION
L SECTION MATCHING

RELATIVE POWER (dB)

(a)

Fig. 55. Elevation plane pattern of a c¢ircumferential slot
mounted on a composite-ellipse model.
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(b)

Fig. 56. Elevation plane pattern of a ¢ircumferantial
slot mounted on a composite ellipse model.

81



GTD SCLUTION
————— SECTION MATCHING

RELATIVE POWER (dB)

{c)

Fig. 57. Elevation plane pattern of a circumferential
slot mounted on a composite ellipse.




D. Comparison_of GTD and Physical
Uptics Results

In the preceding sections, the physical optics surface charge
and current densities

(42) T=o2n xH
and
(43) o =2 n - £

have been suggested for calibration of conventional thin slot and

short monopole antenna patterns to obtain J, p at the pattern maximum.
Use of reciprocity would then give the J, p for any angle of incidence.
The purpose of this section is to demonstrate that these simple formulas
can be used to reasonably approximate J, p when the observation point

is in the "1it" region and the scattering body is large enough in

terms of wavelengths. Consequently some typical results obtained in

the preceding sections are compared with those computed from Eqgs. (42}
and (43).

In Figs. 58-65 the physical optics result is plotted along
with computed and measured data Tor several different bodies. The
physical optics results do not predict any currents in the shadowed
regions of a body. One criterion then for the applicability of
physical optics is a very low level of surface current in the non-
illuminated region of a body. The sphere gives another useful
criterion for the app11cabi]ity'of physical optics. The physical
optics approach fails for backscattering for spheres of radius one
wavelength or less. One can go further and say, as a rule of thumb,
that when a body has scattering centers with radii of curvature iess
than one wavelength then physical optics will fail tc predict the
scattering and the surface currents. This can be seen in Fig. 66
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where the radius of curvature at the slot Tocation (observation
point) is Tess than one wavelength. Note that physical optics would
predict zero current for an incoming planewave from ¢ = 180°, vet

the more accurate computations indicate that the current is down only
5 dB from the maximum (¢ = 0°). On the other hand note that in

Fig. 65 where the radius of curvature is greater than one wavelength
the fields are down by ~20 dB when the olservation point is in the
shadow region. This also means that the calibration of the calcu-
lated curves by physical optics, as suggested earlier, would fail

for the slot position of Fig. 66.

The surface charge and current density decay rapidly as the
observation point moves further intc the shadow region. Since the
spectrum of the EMP is also Tow at frequencies where optical calcu-
lations are valid, it would appear that inclusion of current and
charge densities in the deep shadow may be of academic jnterest. This
is fortunate since this is the region where the GTD computations will
be Teast accurate.

In summary, for each of the principle patterns studied, a model
was chosen which was representative of a wide variety of modern air-
craft structures. The analysis of these models allow, within limits,
for arbitrary locations and size of the various structural components.
The location of the observation point is confined to or near the plane
of symmetry which inciudes the verticail stabilizer. Whenever possible
the solutions have been verified by measurements. It should be clear
that the methods used to calculate the effects of the wings can be
used to calculate the effects of the tail section.
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IV.  RECENT THEORETICAL DEVELOPMENTS

This section deals with a brief review of some recent analytical
results which serve to further extend the applicability of the GTD.
These extensions are relevant to some of the problems discussed in
Section I1I; however, these results were not incorporated therein as
they were available after the measurements and anaiyses discussed in
Section III were completed. Some other work extending the applicability
of GTD may be found in References [28] and [29].

First, we shall briefly discuss some extensions to the wedge
diffraction results presented earlier in Section II.B. A useful
feature of the form of Ds of Eq. (25b) which appears in the expression
of the dyadic wedge diffraction coefficient, BE of Eq. {25a), is that
it offers clues for readily obtaining a dyadic diffraction coefficient
for a curved conducting surface bounded by a curved edge. This ex-
tension 1s of course based on the fact that diffraction at high
frequencies is a local phenomenon, and the curved edge is locally wedge
shaped at the point of diffraction. It is motivated by the fact that
most junctions in vehicles occur between curved surfaces. The useful-
ness of this extension results from the fact that the total field
can be made continuous at the shadow and reflection boundaries {just
as for the perfectly conducting wedge, as discussed in Section II)
even though the radii of curvatures of the incident, reflected,
and diffracted wavefronts are markedly different for the curved
edge on an otherwise smooth curved surface. The continuity in the total
field is made possible by a proper choice of the Jistance parameter, L
(L for the wedge is given in Eq. (30)) appearing n the arguments of
the transition function, F(Kai(s)) of Eq. {27). For the sake of brevity
the details involved in deducing the correct form of the parameter L
will not be dealt with in this report; these details form the subject
of a paper which is currently in preparation[30]. We shall briefly
discuss a specific application of this new result. Consider the geometry
of Fig, 67(a) which depicts an infinitesimal electric current moment
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illuminating a perfectly conducting hemisphere. The current-moment is
i~directed. and the analysis is restricted to the X-Y plane for con-
venience. The point Q on the edge is a point of diffraction. One may
form an effective right angle wedge at Q with the faces ¢ = 0 and

4 = nn as indicated. (n = 3/2); the face ¢ = 0 1s a plane tangent to
the hemisphere at Q {where Q lies in the X-Y plane). P and P' are the
observation and source points, respectively. The direction of obser-
vation is indicated by the angle measured clockwise from the ¢ = 0
face. For aspects near the shadow and reflection boundaries, ¢ > 4'.
The reflection boundary occurs when ¢ + ¢' = 7 whereas the shadow
boundary occurs at ¢ - ¢' = w. Referring to Eq. (25) it is seen that
the transitions functions Flxa (8*)] and Flka {87 )] serve to keep

the dfffracted field finite at the reflection and shadow boundaries,
respectively (since d'(s+) and d (8" ) are unbounded at the reflection
and shadow boundaries, respectively). However, to ensure a continuity
of the total field across the transition boundaries for the geometry
in Fig. 67(a), one must extend the results of Eq. (30) to incorporate
a proper distance parameter, L in the arguments of F[na‘(ai)]. {Note
that-« = kL, k being the free space wave number.) 1t can be shown[30]
that for the gaometry in Fig. 67(a), and for field points in the far
zone of the target,

P1 P2 S
(44) L= S =, for the F[kLa {g )] term,
C
and
gs'[2 -
(45) L = ol for the F[kiLa (87 )] term (5" = P'Q),
c

in which P, is different in Egs. (44) and (45) (see Eq. (46) below).
Explicit forms for the L parameters appearing in Flcat(s”)] and
Flca®(8*)] terms can also be determined easily; however, for the
present problem these transition functions are approximately equal
to one (as their arguments na+(B_) and ra+(s+) exceed the value
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10.0; and F[xa] + 1 as xa— 10 according to Fig. 7). For the genaral
case, the L parameters for the F[na+(3i)] terms are chosen in a manner
consistent with the reciprocity principle. The cauvstic distances Bq

and Py are associated with the wavefront reflected from the hemis-
pherical surface, whereas the caustic distance 0 is associated with the
wavefront diffracted from Q. The caustic distance Py and pp are easily
determined via Egs. {15) and (16} respectively. (Note that P'0 of

Egs. (15) and {16) is identical to P'Q of Fig.67(a), and Ry = R, = a.)
The caustic distance o is given by Kouyoumjian{19]

] 1 ng ° (I -5)
(46) L
Pec P R sin230

where n. = unit vector normal to the edge at Q' and directed
away from the center of edge curvature.

= radius of curvature of the edge (= a, in Fig. (a})

= unit vector along the incident ray P'Q

= unit vector along the diffracted ray QP.

is illustrated in Fig. 5; Bo = n/2 in the above discussion.

W I X
O

The unit vector $ changes direction as one moves from the reflection
to the shadow boundary. Hence, P for Egs. (44) and (45) are dif-
ferent as is evident from Eq. (46). In particular, pe in Eq. (44)

is calculated at the reflection boundary whereas, for Eq. {45), it is
calculated at the shadow boundary. The field of the ray incident at
Q may be taken as

ik (P'Q)
an - A

according to the geometrical optics representation. The reflected
field may be found from geometrical optics via Eq. (14). The total
field consists of the sum of the geometrical optics field and the
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di ffracted field. (Note that for y > 0, the reflected field vanishes
when ¢ > » - ¢' and the incident field vanishes when ¢ > n + ¢'.)

If instead of the 3-D geometry of Fig. 67(a} one considers the 2-D
geometry of Fig. 67(b) which involves a half cylinder (of the same
radius as the hemisphere in Fig. 67(a)) excited by a uniform electric
current line source, the L parameters are given by

(48) L =o, , for Flkla (g)] term,
and
(49) L =

st = p'g, for Flkla"(s")] term.

{Note that P = s' and is the same at the reflection and shadow
boundaries. Also oo + @ in the 2-D problem of Fig. 59(b).}) The
F[kLa+(B+)] and F[kLa+(B")] terms are approximately one. The

problem of Fig. 67(b) is easier to analyse than the one in Fig. 67(a)
since a caustic of the diffracted rays can occur behind the hemisphere,
and the field near the caustic must be treated via the method of
equivalent—currents (discussed in Section II.C). We have employed

the ray-optic procedure for calculating the total fields surrounding
the half-cylinder of Fig. 67(b) for the dimensions indicated in

Fig. 68. The results indicate an excellent agreement with the
numerical solution of the integral equation for the same configuration,
thereby indicating the accuracy of the new results which have been
described.

We shall next consider some extensions to the GTD results
for curved conducting surfaces. Consider the case when the point
source in Fig. 8(a), in Section II, moves from P' to the point Q' on
the smooth, curved, perfectly conducting surface. The point source
may be an infinitesimal tangential magnetic current moment, or an
infinitesimal electric current moment directed normal to the surface.
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For the sake of definiteness, let the source at Q' represent a
tangential magnetic current moment of strength dﬁﬁ {(Q'). The shadow
boundary divides the space surrounding the curved surface into the
i1luminated and shadow regions as indicated in Fig. 8(a). On either
side of the shadow boundary is the transition region.

Geometrical optics is used to describe the direct radiation
from the source at Q' {(via the direct ray from Q' to the observation
point) in the illuminated region, whereas the surface ray modes of
GTD describe the diffracted field in the shadow region. In the
transition region, the creeping wave solution invelving Fock type
functions is utilized. These solutions blend smoothly so that a
continuous total field +is obtained in the entire region of space
surrounding the curved surface. Let a point QO 1ie on the surface
between the points ' and Q as indicated in Fig. 63. The electric

s j ®

b b 4

Q

CONVEX CONDUCTING
SURFACE

TOP VIEW

Q'Q,=t,, Q'Q=t, QP =5

Fig. 69. Ray geometry for diffraction by convex conducting surface.
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field, E{P) at a point P in the shadow region may be written in terms
of a reference field at Qo in a manner similar to that of Eq. (35) as

F v o= dng J~ -~ n
(50) E(P) ~ P);] E(Q,) - "IEn_ noh D3(Q) e °

-l & dg

~ A -ijQ L4
5 0 . o] D -jks
+ bob Dp(Q) e e {S(o¥s e .

/ SR

The present analysis s restricted to geodesics Q'Q for which 6 = bo’
i.e., to geodesics without torsion. The guantities to, dwo, dw, d”o’
dn, and p are shown in Fig. 689.

If we let Qy approach Q' which is a caustic of the diffracted
ray system, then ETQO) becomes unbounded. However,

Tim E(Q ) vdn
Q0+QI Q ]

exists, since E{P) is independent of the Tocation of the reference
point Qo' dno = t0 dwo so that we may write

. |t dy du
(51) Tim  E(Q)) - n %{nw—° =c2 Jan—"

00"

t0+0

and
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Q"
t0+0
Thus, Q
- ah ds
= s d‘;”0 ~ _h P h
(53) E{(P) ~ X dn n Cp(Q') e Dp(Q)

p

S
-é oy ds
+bCiQ') e D (Q) RAICRY lstFsr e Jks,

5
CB(Q‘} represents the coupling from the source at Q' to the surface
ray modes of GTD and is therefore proportional to the strength of the
source; the constant of proportionality is defined as

# 5
T "p'
where LE is the "Launching Coefficient"[31]. Thus,

heary - =ik Jheary £ 0 = ra
(54) Co(@') = 35 174Q') b - dp,(Q'),

and

(65)  c(Q') = 3 L) ¢ - dpp(at).

h

The subscript and superscript on Lp have the same meaning as before.
LE may be viewed as a transfer function relating the actual surface
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field to the field of the surface ray modes (GTD representation).

Note that b - EIQO) is non-zero, 1.e., the tangentlal electric field
of the surface rays (GTD) is not the true surface field but represents
a boundary layer field; this indicates the importance of introducing
the Launch coefficients. Re-writing Eq. {53) more compactly for the
computation of the surface ray fields,

o _ n a “ - -jks
(56)  E(P) ~ € &5 (0") - IBn F(Q'Q) + £ B Q] {giegr e

where

- ag ds
dy o - t t
67) FQQ =g 1 L) o) e A, Qs
and
- 5 ds
By 2 s S0y o-3KQ'Q , Q' ke
68) S0 =yz2 ] @) s e -

The Launching coefficients are obtained via asymptotic solutions
to appropriate canonical problems. The Launching coefficients are glven
in terms of Airy Functions similar to those occuring in Dp as shown 1in
Tables A and B; they also depend on the local radius of curvature, and
it's derivatives ith respect to arc length {(at Q'). Explicit forms
for L§ and their determination form the subject of a paper currently
being prepared under another project; hence, the details are omitted
for the sake of brevity.

The series representations for F(Q'Q) and G(Q'Q) of Egs. (57)
and (58) are replaced by their equivalent integral representations as
P moves into the transition region. These integral representations
are rapidly convergent in the transition region and correspond to the
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RELATIVE AMPLITUDE

creeping waves of Fock. In the illuminated vregion, F and G are
replaced by 1 and cosé, respectively. (& = angle made by the normal
at Q' with the direction of observation in the far-zone.) Some
appiications of this new formulation are illustrated in Figs. 70-76.

o
o

o
o

EXACT SOLUTION

04—
® © & CREEPING WAVE
0.0 — O ©O O SURFACE RAY MODES )
0 I I I I I D B
0 20 40 60 80 100 120 140 |60 180

¢ = AZIMUTH ANGLE (DEGREES)

Fig. 70. Radiation Patterns of a thin axial slot in a perfectly
conducting circular cylinder.




CALCULATED
$ o* — = — — MEASURED

W -

b
a

Kow 21,336
Kb = 8.000
W/, = 0.339

18o= 150+

Fig. 71. Pattern of an axial slot on an
elliptic cylinder.
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AMPLITUDE

AMPLITUDE

2.0

EXACT
= smmeem = BELKINA

1.6 AAA A GEOMETRICAL OPTICS
®® ® ® CREEPING WAVE
O O O O SURFACE RAY MODES

L2f—

| I | |

0 20 40 G0 80 100 120 140 160 180
POLAR ANGLE & (DEGREES)

Fig. 72. Slide pattern of a radial electric dipole on a sphere.

2.04

EXACT
OH 5L A DL GEOMETRICAL OPTICS

GTD ®® ® & CREEPING WAVE

O O O O SURFACE RAY MODES

g
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> | | | |

0 20 40 &0 80 100 120 140 160 180
POLAR ANGLE & (DEGREES)

Ka=10

Fig. 73. Pattern of an Infinitesimal slot on a sphere in a piane
paraliel to the sTot.
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EXACT
= = BELKINA
16— < A DA L GEOMETRICAL OPTICS
N\ GTD< ®® ® @ CREEFING WAVE
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z
3
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< Q.8 f~—- )
04—
o | | | I | 1 | |
Q 20 40 60 g0 00 120 140 160 180
POLAR ANGLE & (DEGREES)
Fig. 74. Pattern of an infinitesimal slot on a sphere
in a plane perpendicular to the slot.
2.0 9
P PROLATE SPHEROID
Lel— ‘ Ka = 40
Kb =80
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[F1§
S L2|—
l—
=
(=18
z
0.8}—
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/
04— i
!
/
0 | | | | | ! = |
3] 20 40 &0 80 100 120 140 160 I80
POLAR ANGLE & (DEGREES)
Fig. 75. Pattern in plane parallel to the slot.
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AMPLITUDE

2.0

QBLATE SPHERCID
Ka=5
Kb =10

SPHERE , KA = 20

0.0 | | ] ] | l |
0 20 40 60 80 100 120 140 180 180
POLAR ANGLE & (DEGREES)

Fig. 76. Pattern in plane L to the slot.

Figure 70 indicates the radiation patterns of a thin axial slot on
perfectly conducting circular cylinders calculated via ray-optics
formulation just discussed, and the results are compared against the
exact solutions. It is remarkable that the ray-optical solution is
very good even for cylinders as small as three wavelengths in circum-
ference. Corrections to geometrical optics (via second and third terms
of the Luneberg-Kline series[32]) field would improve the accuracy of
the result for cylinders of even smaller sizes. Figure 71 il1lustrates
the radiation pattermn of an axfal slot on a perfectly conducting
elTiptic cylinder computed via ray-optics and compared with experimental
results. The descrepencies between the two halves (on either side of

4 = 0} of the measured patterns are approximately the same as the
descrepancies between measurements and calculations; hence, the overall
agreement appears to be very good. Figure 72 indicates the radiation
pattern of a vertical electric dipole on a perfectly conducting sphere.




Figures 73 and 74 indicate the radiation patterns of an infinitesi-
mal slot on a sphere-computed in the principal planes. Again, the
calculated results in Figs. 72, 73 and 74 compare very well with

the exact solutions as shown. Figures 75 and 76 indicate the
radiation patterns of infinitesimal slots on prolate and oblate
spheroids, respectively. These patterns are compared against patterns
for spheres of the same Tocal radii of curvatures as those of the
spheroids at the slot location. The fields surrounding the antennas on
cylinder, spheres and sphercids are everywhere continuous via the new
formulation which overcomes the discontinuity problem encountered

in a previous technique described in Section II.C.

V. SUMMARY AND CONCLUSIONS

Methods for computing the surface charge and curreni density
induced on the surface of afrcraft-like bodies have been presented
which are valid for frequencies above the resonance region. This
material has been presented from three points of view; 1) summary
of previous work, 2) method currently used for computation and
3) new extensions of GTD. Much of the material associated with the
previous work of computing radiation pattermns is directly applicable
and is used here as a vehicle for outlining the concepts in use.

The current computational techniques are of prime interest in that

they incorporate modal analysis and GTD techniques. This leads to a
model that {s applicable to hodies that are just beyond the sizes that
could be treated using integral equation techniques, i.e., fuselage
length and wing span in excess of a wavelength with a fuselage

diameter that is small in terms of wavelength. For such small diameter
fuselages, the previous creeping wave analysis of Keller would yield
questionable results. However, the second order terms developed by
Voltmer and Kouyoumjian should yield valid results for diameters as
small as 0.1x. Perhaps, the main problem may be the specular term
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for small diameter targets. The eigenfunction solution circumvents
this difficulty. The eigenfunction solution is, of course,

nat applicable to fuselages of general shape but the surface currents
and charge densities for observation points on the plane of symmetry
should not be significantly changed by minor changes in fuselage shape.

The techniques have all been developed for a symmetrically
located point on relatively simple aircraft-like shapes. There are
a number of extensions that can be incorporated in the computer
solution., These include a) use of improved creeping wave coefficients
b} computation of current and charge densities at points off the
plane of symmetry c) computation of effect of electrically small
perturbations to an electrically large aircraft such as short thin
wings. There are several theoretical problems that need to be solved
to -reduce the frequency at which the surface charge and current
densities can be computed. These are associated with the treatment
of the fields diffracted by bodies with both a small (wing width) and
a large dimension (wing length).

It can also be concluded for the high frequency range that the
surface charge density is highest at the specular point or at the point
at which normal incidence occurs and for principle radii greater than
several tenths of a wavelength is approximately 2n x ﬁq. The surface
charge density is quite approximately given by p = 250 gl n in the
visible region. This value may be off by the order of a factor
of two for tangential incidence if there is a discontinuity in the
surface along the ray path between the distant source and an cbserver
on the surface and the actual charge density in the visible region
will oscillate about the value given by the above equation.
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