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Abstract

Equations for voltage and current of a balanced transmission line are
derived from the viewpoint of wave scattering. It is shown that when such a
transmission line is immersed in a time varying external field, two source
terms appear in the equations: a longitudinal (series) distributed voltage
source and a transverse (shunt) distributed current source. The voltage
source is equal to the time rate of change of the total magnetic flux minus
the flux of the TEM mode resulting from the terminating impedances of the line.
The current source is proportional to the time rate of change of the charge
induced in one conductor of the line by the incident and scattered electric
fields. Alternatively, this induced charge can be thought of as being
proportional to the open—circuited voltage between the conductors caused by
the incident electric field. For uniform cylindrical lines, such as a two-
conductor line or a coaxial cable with long slits in its sheath, only one
two-dimensional static problem need be solved for adequately determining all
the coefficients and source terms in the transmission-line equations. Detailed
calculations are given for a two—cylinder line. An extension of the theory |
is also considered to cables that do not support a TEM mode,.- and to cables

that have small apertures in their sheaths.
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I. Introduction

The purpose of this mote is threefold: (1) to understand an old subject
-—- the transmission-line theory —-- from the viewpoint of a field theorist;

(2) to derive the transmission-line equationé as rigorously as‘bossible from
Maxwell's equations with all underlyiné assumptions ekplicitly stated when
the line is exposed to a plane wave; (3) to obtain some general and useful
results for certain commonly used transmission lines.

When a plane wave (for example, a nuélear EMPj is incident upon a
transmission line terminated at both ends by some impedances (Fig. 1), the
usual question arises as to what currents would be induced in these impedances.
According to the conventional transmission-line theory, one simply proceeds
with the usual set of first—-order differential equations for the line voltage
and current with a distributed voltage source,which is proportional to the
longitudinal component of the electric field of the incident wave (that is,
the component parallel to the direction of emexgy propagation along the
transmission line). 1If this distributed voltage source is looked at from
Faraday's law of induction, one would say that this source is due, rather, to
the time rate of change of magnetic flux linking the conductors of the line.
Then, naturally one would ask what role the transverse electric field plays.
(By transverse field we mean the component of the field perpendicular to the
transmission line.) This: transverse electric field will cause a potential
difference between the conductors, which is often referred to as the open-
circuited voltage in antenna theory; From the equivalence of Thévenin's and
Norton's theorems this voltage source can, of course, be thought of as a
short-circuited current source applied across the conductors of the line.

This current source is absent in the "o0ld" transmission-line theory and, only
recently, its existence has been conjectured and proved.[l]

Let us go back to Figure 1l and digest a little more what is really
happening in terms of wave scattering. In Figure 1 we have a two-parallel-
conductor transmission line terminated at both ends by some impedances and
exposed to a plane wave. We ask what kind of transmission-line equations will

describe the voltage and current on the line and, in particular, the voltage
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Figure la. A terminated transmission line in a plane wave.
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or current induced in the terminating impedances. Our following considerations
are not limited to a two-conductor line and can be applied to other kind of
transmission lines (for example, a coaxial cable with apertures in its sheath).
Considering the line in Figure 1 as a wave guiding struéture one can easily

see that the total field consists of three parts: (1) the incident field,

(2) the scattered field from an infinitely long line, and (3) the TEM, TE and
M modes resulting from the inhomogeneities in the line, such as the terminating
impedances Zl and 22 in Figure 1, For wavelengths larger than the cross-
sectional dimensions of the line (which is a necessary assumption for the
transmission-line theory to hold), these modes, except the TEM mode, decay
rapidly away from the inhomogeneities and become negligible at a distance of
the order of the separation of the conductors. Thus, in the region bounded

by two infinite planes perpeﬁdicular to the line and at distances of the order
of the separation or so away from Zl and ZZ’ we have essentially an incident
field, a scattered field, and a TEM mode. The total fields comprising these
three parts satisfy Maxwell's equations and the boundary conditions on the
surfaces of the conductors of the line. A(Note that the TEM mode alone satisfies
all these conditions.) At each end of the line the boundary condition is that
the ratio of the "line voltage' to the "line current" is z, or Z,.

As soon as lumped elements, like Zl and 22, are introduced into the picture
the circuit concepts, like voltage and current, will be involved. It has often
been said that at low frequencies the voltage and current ére respectively
related to the integrals of the electric and magnetic fields. We now see that
the boundary conditions for our problem posed in Figure 1 are of two different
types, namely, one involving directly the fields on the surfaces of the line's
conductors and the other involving instead the integrals of fields at the ends
of the line. Thus, it is clear that our problem can not be treated purely on
the basis of field theory. Since our primary interest is in the voltage and
current induced in the terminating impedances Zl and ZZ’ voltage and current
should then be treated as important variables from the outset, and equations
should be derived for them from Maxwell's field equations. But, what should
the appropriate definitions be for the voltage and current for a transmission

line in terms of the fields?
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Let us first deal with the definition of voltage, V, which always seems
to be less questionable. We define (see Fig. 1lb)

b
V(z) E—J E(»,y,2)d2 (1)

a
where E is the total electric field, df is a vector line element lying in the
transverse xy-plane, a and b are points belonging to conductors 1 and 2
respectively,‘and the integral is from a to b along any path in the xy-plane.
Throughout this note we will.always make the assumption that all wavelengths
of interest are larger than the cross-sectional dimensions of the line. Equation
(1) seems to be the voltage definition that best fits one's physical pi ture.

But the current definition in terms of the magnetic field is, as always, less
clear-cut. Do we want equal and oppositely directed currents in the two
conductors at every cross section of the line? Or, do we want in our trans—
mission—-line equations the current defined to be the line integral of the total
tangential magnetic field on only one of the conductors? Here, we will use the
former definition for at least two reasons. First, we warc a '"balanced” line
because at each end of the line the currents on ti . conductors must be equal
and oppositely directed. To state it in another way, the currents of the
"common mode" (i.e., the currents on the two conductors have the same magnitude
and direction) have no direct effect on a terminating impedance. Second, for

a "balanced" line the definition for the line's inductance is unambiguous.

We will elaborate the second point shortly. Combining the above considerations

we are naturally led to the following definit. .n for the transmission line

current I:

I(z)

b
1
L fa[g_zxgmcx,y,zu-gg_ )

where §?EM is the magnetic field intensity of the TEM mode whose total current
flowing on all the conductors at every cross section of the line is zero, and L
is the inductance of the line. Since th- longitudinal (the z-directed) dis~
placement current of a TEM mode is identically zero, the integral (2), just as

the integral (1), is independent of the path of integration. Thus, L is a true

®
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constant and, hence, is also the proportionality'constant between the magnetic
energy and the current squared of the line,

Section II contains the derivation of the equations for a balanced
transmission line from Maxwell's equations. It is shown in Section III that
for a uniform cylindrical transmission line immersed in a plane wave, only one
two~dimensional static problem needs to be solved for determining all the coeffi-
cients and source terms in the transmission-line equations. Detailed calculations'
are given in Section IV for a two-conductor line., Section V considers a possible
extension of the theory to cables that do not support a TEM mode (for example, h

coaxial cables with finitely conducting sheaths) and to cables that have small

apertures in their sheaths.
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CIL. Equations for a Balanced Line

With equations (1) and (2) for the definitions of voltage and current we
can now proceed to derive a coupled set of equations for them from Maxwell's
equations. The time-~harmonic factor e—iwt will be suppressed throughout.

Let us begin with the Maxwell equation

VXE = iwB

1

103" 4+ 103" } (3)

where we have split the total B into two parts in accord with our considerations

in the Introduction:

B =3B+ B (4)

Scalarly multiplying (3) by ndf%, which is equal to ggﬁgz (see Fig. 1b), and

noting that

d¢n:VxE = —-5%_@1“& F dan.(V_xE)

JE B

ne (V xE) = (o7 Y+E = (e *n).V E_ = ,\2“‘ -

- R [}

)

where V. = V -~ & — , we have
£ —Z 0Z - .
oE
-2 5dn = 1en-3™ dp + deneB'de - —Z dg
9z — — : 3%

Integrating this equation we get, with Ez = ( on the perfect conductors 1l and 2,

b b b
? —fgjg~g_g= iw fg-ng d + iw [E-E'dﬁ,
: a a a
which, according to (1) and (2), becomes
&-;L= iwlI + v (5)
b
v = iwd = duw J (e,xB")-d2 (6)

a
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Here, the distributed voltage source, v(z), is proportional to the magnetic

flux, @S, per unit length linking the conductors of the line.

< is the total

flux minus the flux of the TEM mode and can be calculaﬁedwquite accurately from

an appropriate magnetostatic boundary—value problem, which will be stated in

the next section.

Let us now turn to the other Maxwell equation

VXB = - iwueE
or
ng?EM = - fwpeE + iwpek'
where
E' = E - B

Scalarly multiplying (7) by df and noting that (see Fig. 1b)

a8 ™ = - dinfe xmxp ] = =T
we have
5%'EZE?EM d2 = - iwneE~dg + iwueE'-df
Integrating this equation we get
é% [égﬁ§?EM di = - iwpe Jég~§&_+ iwpe fé_
a a

which, by means of (1) and (2), becomes

é£-= i1wCV 4+ i
dz sc

b
i = ~_ iwCV = iwC J E'.dg
sc oc e

where the line capacitance, C, per unit length is related to the line inductance

L by LC = ye. 1In antenna theory the integral (10) of the transverse electric

field between two conductors is called the open-circuited voltage, VOC

By isolated we

between two isolated conductors by an incident electric field.
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mean that the static total charge induced on each conductor is zero. To Jﬁ
calculate VOC we will solve only an electrostatic boundary-value problem, which
will be stated in the next section. Conceptually, it may be easier for some
to visualize the induced charge on one conductor (say, conductor 1 im Figure 1),
rather than Voc, as the distributed current source across the line. To do so

we make use of the equivalence of Thévenin's and Norton's theorems:

i Y, Vv
sc in oc

which is exactly the first equation of (10) because the input admittance Yin
is equal to -iwC at low-frequency limit. This short-circuited current can,
in turn, be visualized as the induced charge flowing from, say, conductor 1
to conductor 2 (Fig. 1), or vice versa, along a thin wire connecting the two

conductors. From the continuity equation between currents and charges we

immediately have

isc = iwa (11) A.

Figure 2 shows the direction of this distributed short-circuited current source

together with the v, L and C for a section of the line. Thus, instead of
calculating Voc one can calculate 4 from an electrostatic problem with the

two conductors at the same potential, which may as well be set equal to zero.
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III. Calculations of the Line Parameters and Two Source Terms

Referring to the transmission-line equations (5) and (9) we see that there
are three quantities needed té be calculated: (a) the capacitance C (or the
inductance L) per unit length, (b) the distributed current source isc per unit
length across the line, and (c) the distributed voltage source v per unit
length along the line. TFor a uniform cylindrical transmission line such as
a two-parallel-wire line or a coaxial cable with infinitely long slits in its
sheath, one needs to solve only one electrostatic problem for these three

quantities. We will now prove this assertion for two different kinds of

external fields.

A. Uniform external fields

By uniform external fields we mean that the static (electric or magnetic)
field at infinity is uniform. Mathematically, it means that conditions (ii)

and (iii) are satisfied in Problem (b) defined beliow.

(a) The capacitance problem

Figure 3 shows the cross section of an arbitrary cylindrical transmission
line but uniform in the direction of energy propagation. To find the capacitance
C per unit length of this line, we will solve the following problem for the

electrostatic potential function ¢ (see Fig. 3):

(i) 9 @C = 0, exterior to S1 and 32
V, on §
G e =9 b *
' ¢ V, on 8§
2 2
(V1 and V2 are constants to be determined)

3%, 39,
(iid) I FrS ds = -~ J ‘é—n—" dS= —Qc/g
S S

2 1

(Qc/a can be set equal to unity)

10
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0(1/p), p >
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IEJ and p is a two-dimensional vector)

The capacitance C is then determined from the relation

C = —= (12)

One promising numerical method to solve the problem posed in (i)-(iv) is to

set up an integral equation for the charge density when (1) V2 = 1 and V1 = -1,
and when (2) Vz = 1 and Vl = 1. Then the integral equation is solved_by scme
appropriate algorithm for (1) and (2). By a proper linear superposition of

these two solutions one can then obtain the solution to the capacitance problem.

(b) Calculation of isc
As is evident from equation (10) isc is directly related to Voc which

can be obtained by solving the following boundary-value problem (Fig. 3):

(1) v = 0, exterior to S1 and S2

(i1) [ a—qb—ds=J 3% 4s = 0 o
S 5

an on
‘ 2 1
(1ii) o = o 7% + 0(l/p), p -+ =
ine -
97 = - Ep
o4
(iv) ¢ = {¢l e
¢2 on S2

\ = cbz - (bl (]—3)

12
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We will now show that Voc can be obtained directly from the solution of Problem

(a) alone. To show this let us start with the equation
2 2
6,V = ¢V =0 (14)

which is valid within V bounded by Sl’ S2 and §_ (a large cirecle). An application

of Guass' theorem gives

3¢ 09
39 _ 4 —S)4q0 9 _ 4 _‘Clagr = .
jS +S <¢c an' ¢ 3n'>ds + JS Gc an' ¢ an')ds 0 (15)
172 ®

where n' is the inward unit normal into V. Now, it is easy to see that

j | ( ¢y %C)d (4 )q / (16)
b 22— o —%)ds' = (4, - 0,)Q /€
S 43 c 2 17>¢

an an

and

3 inc . 3¢
J P ) P f T i —4$>ds'
g c on Jg c on on

- ?ﬁnc - inc aic_ 4ds’!
S +S (bc 1 d) anV

= ~ éj ¢inc oCdS' (17)
S,4+S

where we have used the fact that

ine
3
J *97 ds' =0
S

on
1755
and the definition that
8¢C
0C=—&:~BT—'~, onSlandS2
Using (16) and (17) in (15) and ¢1nc = - EO-Q_ we finally arrive at

13
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Voc N ¢2 - qbl - Eozh' (18)
where
f gpcds
Sl+82
h = (19)
f ccds
S2

Obviously, h can be interpreted as the mean distance between the total charges
QC and —Qc in the capacitance problem. That is to say, h is the low-frequency
limit of the effective height in antenna theory.[éj
(¢) Calculation of v =
The magnetic flux ®S, which gives rise to v, can be calculated by con-

sidering two magnetostatic problems defined by the vector potentials éL and A,
in complete analogy with the electrostatic problems defined »y ¢C and ¢
considered above. Since the problems under consideration are two-dimensional,
it is sufficient to choose A = e A and A = e A, Now, A is the solution of
the problem defined by (i)-(iv) below, while A is the solution of the problem

defined by (v)=-(viii) below. (See Figure 3),

X 2, _ s
(i) v AL = 0, exterior to S1 and 82

(1) A_ = constant on §, and S?
£ fra

L

an on

3A 3
(iii) J —Eds=—f ——A:L—ds=u1_
s, 5,

- (I is the total current flowing in one conductor)

(iv) A =0C/p),  p+e

) VZA = 0, exterior to S1 and S2

14
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(vi) | 22gs | Rys-o
S on S an
2 1
(vii) A=A+ 0(1/p), o+ e
inc _ . inc -
A =B +(e ¥p)  so that Vxe A B,
A on S
(viii) A= { 2 2
Al on Sl
The flux @s isrthgp determined from the relation
@S = A2 - Al (20)

in consistence with the sign of v in Figure 2. With AL substituted for ¢C and

A for ¢ in Problem (b) one immediately gets

EO.J (-e~zx'9'>KLdS
Sl+82
® = A ~ A, = - : (21>

s 2 1 j KLdS
Sy

where K. is the current density defined by

L
i’
1
KL = ;-35— on Sl and S2

A comparison between the problem defined for ¢ and that for AL reveals that

o and KL must have the same distribution on Sl and SZ' Hence, equation (20)

can be written as

@S = - éo'(gz%g) (22)

where h is given by (19). Clearly, EZXQ_can be interpreted as the vector

effective area per unit length.

Thus, we have proved our assertion that for uniform external fields,

15



all three quantities C, isc and v can be obtained by solving only one electro-

static problem, i.e., the capacitance problem.

B. DNonuniform external fields

By nonuniform external fields we mean that the sources of the electro-
static and magnetostatic fields are located on the conductors of the line.
These sources are of course charges and currents. In the case of a coaxial
cable with narrow slits or small holes in its sheath exposed to an incident
plane wave, the dominant fields that leak into the cable and eventually induce
currents in the load impedances may be the fields @ue to the sheath's charges
and currents induced by the incident wave as if the small apertures were absent,
In‘the case of a two-conductor transmission line of unequal size (for example,
an umbilical cable attached to a missileEz]), the longitudinal componént of
the electric field of the incident wave may induce unequal amount of charges
and currents on the two conductors. The difference of these induced charges
and currents would contribute, respectively, to the scurce terms isc and v
in addition to the contributions from the transverse components of the electric
and magnetic fields of the inci@ent wave ag discussed in A. To deal with this
kind of nonuniform external fields we proceed as follows, again restricting
our considerations to two-dimensional geometries.

In calculating :'LSC we will solve the problem as posed in Problem (b)

above except that conditions (ii) and (iii) are now replaced by (Fig. 3)

oy [ 36 .. _ _ .inc 3¢ 4o _ _ ainc
(4i4) Js € 5 ds Qs Jg € 5 as Q
2 1
(1id)! ¢ > 1In p, p >

Following the same procedﬁre as in Problem (b) we get
inc inc
7
Yoy V19

9 (23)

Voo =9~ 91 =
C

Using QC = (V2 - Vl)c,we get from (23)

16




(19

, Yy ine [ ‘1 inc
1Sc = - 1wCVOC = - (ﬁz:VZ)le2 - (Vz_vl)lel (24)

Here, V, and V, are obtained from the capacitance problem.

2 1
Let us turn to calculating v. Instead of conditions (vi) and (vii)

as stated in Problem (c) above we now have (Fig. 3)

oy 3A _ .inc 34 _ ..inc
(vi) | fs ™ ds uIz s < ™ ds uIl
2 1
(vii)' A > 1ln p, o+

Following exactly the procedure as in Problem (c) we get

v = 1w©s = 1w(A2 - Al)

V2 inc | ( Vl inc
<V2_Vl)le12 + K‘—!,T_'_—ﬁ‘)leIl (25)
Sd

Here, as before, the inductance L is related to C by LC = ue.
Thus, we have completed our proof that for nonuniform external fields,
all three quantities, C, isc and v, can be obtained by solving only one problem,

i.e., the capacitance problem.

In general, the source terms isc and v in the transmission-line equations

(9) and (5) consist of two parts, viz.,

P OO R ¢
sc sc sc
(26)
v = V(u) + V(n)
where i;z) and i én)are respectively given by (18) and (24), whereas v(u) and

v(n) are respectively given by (22) and (25). The superscripts u and n serve
to remind us of the uniform and nonuniform external fields. In the next section

we will calculate these source terms for a two-parallel-conductor transmission

line. .

17
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.IV. Two Parallel Cylinders .

In this section we will épply the theory set out in the previous two
sectiohs to a two-conductor transmission line immersed in a time-~harmonic plane
wave. This means that we will calculate the line's capacitance C, and the two
source terms v and isc' Our calculations apply to an incident plane wave of
arbitrary polarization and to two parallel cylinders of unequal size.

Let us first calculate the source terms v(u) and igz) due to uniform
external fields. Referring to Figure 4 we can write the incident electric
field E?nc as
ikXx ikyy ikz cos 80 ikz cos 9

e e e . = E e © 27)
, ot

Elnc - F e;gﬁz
- )

E
25

and the incident magnetic fieldgl_lnC as

inc iker - ikz cos eo
H =He——==H e (28)
- -0 -0t

where Eot*and Eot are functions of x and y and can be considered as constant

under the low-frequency assumption. Hence, the two source terms can be written &-

ikz cos 6
0

v(u) = v e
o
o) ikz cos 60 (29)
o =1 e

Here, v, and io will be calculated by the procedure described in Section IIIL.A,
The capacitance C per unit length of two infinite parallel cylinders whose

ficross sections are shown in Figure 5 is well known and given by (see, for

example, SmytheEB])
2 .2 2
2TT€ = cosh_.]'i[..]3_...-_?_};—_.}.{_2 (30)
C 2R1R2

.To calculate v, and io we need only to find h, the vector distance between
two mean line charges. - To do this we will use expressions given in Chapter IV

of Smythe and Figure 5. We begin with the complex potential W given by .
Vj

18
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W=U+ 4V =1n 258 (31)
z-ja
where z = x + jy. It is clear that equation (31) is the complex potential of
two line charges of charges 27e at y = a, and -27e at y = -a. On physical

grounds one would expect that

h = 2ae (32)
- -

We will now prove that equation (32) is indeed true, and we will express
a2 in terms of the two radii Rl and R2 and the separation D between the centers
of the cylinders. First, let us write down the equations of the two circles

in Figure 5:

x2‘+ (y ~ a coth U1>2 = a2 csch2 Ul
(33)
x2 + (v - a coth Uz)z = a2 csch2 U2
Obviously,
R, = alesch Ul} (34a)
R2'= a csch U2 (341b)
D = a[lcoth U}l + coth Uzj (34¢)
2 From (34a) and (34b) we have
coth Ull = »[+ (Rl/a)2
(35)
: v 2
coth UZ = y1 4 (Rz/a)

Substituting (35) into (34c) and solving for a we get
2 _ Jl _ R;*R, Z-Jl ] R;-R,\2 ] 36)
D D D ‘

20
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ééb . Next, we will find the charge density ¢ per unit length. From (31) we

have

daw
dz

2ae 2ace

2, 2
|2 +a /§2+(y+a)2 /§2+(y—a)2

2
On the circle with radius Rl,i.e., x2 = R% -~ (y - a coth Ul), we have

g = €

R - (y - acothU) + (y +a)°

]

x2 + (y2 + a2)
2
2_(_ 2 2)
Rl y Rl + a

o (AT 4 )

1

(AT

1

+ (y + a)2

[

X2 + (v = a)z

I'hus, the charge density g, on the cylinder wiih radius Rl divided by the total

charge Ql’ Ql = - 27we, is

o
AL  a
Ql 27TRl y]

Similarly, the char ge density 0, on the cylinder with radius R2 divided by the

(37)

total charge QZ’ Q2 = 2me, is

9 1

a
= o— (38)
Q2 27rR2 vy

(A%

It is interesting to note the simplicity of the expressions (37) and (38) for
the charge densities., If the origin O of the coordinate system (Fig. 3) is
chosen to be the mid-point between the centers of the cylinders, expressions
(37) and (38) will be modified by a simple linear translation.

We now calculate the equivalent (or, effective) height h by formula (19).
Clearly, h is directed along the y-axis. Thus, subst%quiyg (37) and (38) in

- (19) we obtain

21
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yodS = e J ds + e J ——= dS§ = 2ae (39)
2 JSI+82 - 5 2 4 s, v

h=e
- Y

LD

which is identical to (32), as expected. Substitution of (36) into (39) gives

- R,+R.\2 R.-R_\2 "
h 1772 172
5=\/1-(D)'\/1'<D) (20)

For two equal cylinders of radius R, or equivalently, for one cylinder of

radius R above a perfectly conducting ground plane at a distance D/2, equation

(40) reduces to

h , 2R 2

Let us now summarize our results according to (29), (18) and (22):

ikz cos 6
o

v<u) = iwB he
ox
() ikz cos eo (42)
i = 1wCE he
sc oy

where h and C are given by (40) and (30).
We now put (42) in the transmission-line equations (5) and (9) and obtain

second-~order differential equations for V and I as:

d2V ) ikz cos 60
S+ KV = - (E_+2ZH cos 8§ )k he
dz oy O 0OX o
(43)
2 2 ikz cos 6
ﬁ_%.+ kzz ==-(E _cos 8 +ZH )EE—IF—1 e °
iz oy o 0 0OXx Zc

where Zc is the characteristic impedance of the line and is equal to vL/C and

ZO = 1207 ohms. Let ¢O be the angle between Eo and the y'-axis (Fig. 4). Then

EO Ey'go EO cos ¢O cos eo
H e .H -H_ cos ¢ T Zo cos eo
0X =X —0 o] o]

Hence, equations (43) become
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L dV.y-o (44a)

k2 dz

2 Eh ‘ ikz cos ©

I
l§-§—§-+ I= Eg_ sin’8  cos b e ° (44b)
kK dz c © ° :

There are two limiting cases of interest: (1) when ¢_ = /2 or 6, = 0 (Fig. 4)
the right~hand side of (44b) is identically zero; (2) when ¢O = 0 and 60 = 1/2, '
the right-hand side attains its maximum value. The results of these cases
become clear when one thinks of the incident magnetic field linking the two
conductors as producing the distributed voltage source and the incident electric
field across the two conductors as producing the distributed current source.

Alternatively, one can write (44) as a set of first-order coupled equations:

ikz cos 6
o)

8V _ 4oLl - ikZ H h cos ¢ e

dz 00 °

a1 B b Lkz cos 6, "
Frd iwCV + ik 2;—-cos ¢O FOS ?Oe

Here, we wish to point out that equations (45) also apply to a two-parallel-
plate transmission line with its capacitance numerically equal to (30) and the
plate's separatioh equal to h.

(u) (u)

Up to now we have been considering the source terms v and iSC due to
uniform external fields.‘ We now go on to consider the source terms v(n) and
iiz) due to nonuniform external fields which arise, respectively, from the total
currents and charges (per unit length) on the conductors induced by the
longitudinal compénent (i.e., the component along the line) of the electric
field of the incident wave. If the conductors are of equal size and wavelengths
are much greater t@an D, %t is glear tbat iiz) and v<n) given by (24) and (25)
are zero because'Qi’nc = Q;nc’ Iinc = I;nc and Vl = —V2. For cylinders of

unequal size one needs to calculate the factors V2/(V2 - Vl) andVl/(V2 - Vl)'
It follows easily from equatioms (33) to (36) that
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i
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[¢]
j=y
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N
Q
2]
bt

Nt
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where C is given by (30) and

2D

2 2 /2 2
fgi—(Rl+R2) %g -(RI—RZ)

o =

Thus, i(n) and v(n> will be completely determined by (24) and (25) once the

Q""'s and I'"%'s are known. It would be extremely valuable if ome could

(u)
S

estimate for general incidence the relative quantitative importance of 1 .

. (n)

u n . R .
versus 1_ ", and v< ) versus v( ). But this seems too difficult, if not

mpossible, to do.
" Thus, for two parallel cylinders of unequal wsize and for an incident

wave of arbitrary incidence and polarization, the total voltage and current

sources are given by {(26), (42), (243, (25) and (46):

BN CORMN €
: ikz cos eo inc inc
= ~ 1kZOHOh cos ¢0e + le(pZIZ - plIl )
p=1W W
4 th ikz cos 60 ine ine
= ik . cos ¢O cos eoe - 1m(p2Q2 - P07 )

where I;nc’ Iinc, Q;nc and Q%nc are the total axial currents and charges (per

unit length) induced on the cylinders. Of course, these currents and charges

are related by the continuity equation.
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Q . © V. Cables With Imperfect Sheaths

In the previous sections we have considered the excitations by external
fields of uniform cylindrical transmission lines which can support a TEM mode.
A two-conductor line and a coaxial cable with long slits in its sheath are two
typical examples:. For this class of transmission lines it has been shown in
Section III that only one two-dimensional static problem need be solved for
determining all the coefficients and source terms in the transmission-line
equations. We will now discuss briefly the extension of our previous considera-
tions to other classes of transmission lines and cables and relegate the detaile&
calculations to a future study. Specifically, we want to consider two classes:
(a) cables which can support a TEM mode but have isolated inhomogeneities in
the direction of energy propagation, a coaxial cable with small isolated holes
in its sheath being one example; (b) cables which do not support a TEM mode but
have a "quagi-TEM mode'" as the dominant mode, a coaxial‘line with a highly
conducting sheath being one example., TFor class (a), two static (electrostatic
. anu magnetostatic) problems need be solved fci dotermining the two source terms,
%%% since the problem is no longer two-dimensional but, rather, three-dimensional.
For class (b), the current used in the transmission-line equations will be
defined in terms of the magnetic field of the dominant mode that can be excited
within the cable. 1In fact, the magnetic fields of all other modes, except that
of the axisymmetric TM mode, are irrelevant in the current definition, since
the current of interest is the total longitudinal current-flowing along the
cable, Of course, 1f the cable's sheath is perfect, the dominant mode will

be the TEM mode.

To begin our discussion let us write down from Section II two important

wt,

equations generalized for cables with imperfect sheaths (Fig. 6a):

g (P b o) b aEéo) b 3E!
-5 J E-dg = iw f n-B ’dg - f — do + J (imn'B' - ——)dz (47)
. ox - = 3% == 3%
a a a

a P o) b b b BBéo)

E—'J n'B d2 = -~ iwue J E.dg + { iwpeE'+dg + J‘ —= 4 (48)
z 2 222 2 e 3n

a a a a

— These equations are a direct consequence of Maxwell's equations after performing

§ |

25



p3

Figure 6a.

Cross section of a cylindrical cable
(the z-axis points into the page).

Figure 6b.

Cross section of a coaxial line
(the z-~axls points into the page).
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% some vector algebras Here,v we have gplit the total fields E and B as

=@ re,  3-39+w
with the superscript o indicating the quantity of the dominant mode. If the
dominant mode is TEM and if the transmission line is perfectly conducting,
equations (47) and (48) will reduce to the corresponding equations in Section IIL. |
For coaxial cables, the appropriate reference frame is the cylindrical
coordinate system (p,¢,z). Referring to Figure 6 we have n = - §¢, dg = gpdp.
Hence, it is clear that the last term in (48) can be discarded, since the

dominant mode used in defining the transmission line current is ¢-independent.

If one writes

b
f B;O)do = - LI
a
‘ where I is the total axial current in the inner conducter and flows along the

negative z-axis, and L is a positive constant and has a value equal to

(u/27)in(b/a) henries per meter for a coaxial line with perfectly conducting
walls (see Figs. 6), then equations (47) and (48) become, with equation (1)

for the voltage definition,

§§~= iwLI - Eéo)(b) + E20)<a) + v (49)
ar _ . .
iz - iwCV + isc (50)

3 Here, C = pe/L and
b
- — ' ! t
v iw JaB¢dp Ez(b) + Ez(a) (51.a)
b

. _ . . )
e iwC [aEpdp (51.b)

Let us emphasize again that B' and E' are the total fields minus the fields of

J ,
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the dominant mode and are-calculated by solving a scattering problem for an

unterminated line.

For the case of a coaxial line with a small aperture at z = z, in the

otherwise perfectly conducting sheath one can write, to a high degree of accuracy,

v(z) = Vaé(z - za)
(52)
1sc(z) = Iaﬁ(z - za)
where - b
- t
Va = iw J_wdz faB¢dp

[}
1f

© b
iwC f dz j E'dp = inQ

— a P 1
Q1 is the total induced charge on the inner conductor, as has bgen discussed at
the end of Section II. It is conceptually simpler te think of the localized
sources (52) than the distributed sources (51). This consideration can be
of course extended to many isolated small holes or small holes with periodic
distribution (e.g., a coaxial cable with a braid shield) provided that mutual
interactions amdng the holes are adequately taken into account. Detailed
calculations for;V“ and I are now being carried out.Lé]

For a coaxial 1line W1th a highly conducting sheath the following stn; rd

assumptions are usually wmade to equations (43) and (50): Ls]

ﬁ L = —2% 1n %
E§°)<a) = -z1, E§O>(b) =z,.1 -
v(z) = ~ E;(b)
i @) =0

scC

The quantity be is the impedance at the inside surface of the outer conductor

28
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and has the value equal to the longitudinal electric field there divided by

the total axial current in the inner conductor. To see how the general expressions
(51) for the source terms reduce to their simple form in the present case one
recalls that for all frequencies of practical interest, the skin effects of the
sheath make the fieids, Bé, Eé, E;O)(a), within the sheath insignificant compared

to E§O>(b). In this connection, Chapter XI of reference [ 3] can be consulted.
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