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ABSTRACT

An ‘integral equation is derived for the axial current induced on
a body of revolution with surface anomalies. In pafticular, surface
protusions, apertures, and connecting wire loops ére treated. A
general illumination is considered but the diameter of the body of
revolution at the surface anomaly is required to be small in terms of

the wavelength of the illumination. Further, it is required that the

anomaly size be much less than the diameter of the body of roxvGrytiion
A2 .

oy

It is shown that in many cases the effect of a surface a Qmély;ggwiﬂ
4 bl

é 25 Jul 972

-

3 v 1axy
vapons

. abhoratory

equivalent to an impedance loading.




INTRODUCTION

To determine theoretically the electromagnetic field penetration
into the interior of various semi-shielded configurations, often it is
only necessary to know the induced surface currents and charges.1
However, a tractable analysis to obtain these currents and charges
requires that most physical configurations be roughly approximated.

For example a missile is represented by a right circular cylinder2 (or
more recently by a body of revolution3), and an aircraft is represented
by perpendicular crossed cylinders.* But many physical configurations
are quite complex structures. This paper presents én attempt at
analysing a class of complex physical structures. An approximate
methodology is developed for obtaining the axial current induced on a
body of revolution with surface anomalies.

An integral equation may be solved for the axial current induced on
a body of revolution with arbitrary excitation. Surface anomalies are
treated by using quasi-static type approximations. The electric and
magnetic dipole moments of the anomlies are obtained in terms of
the surface charge and current that would exist at the positions of the
anomalies 1f they were not present. The radiated fields from these
moments are then included with the impressed (or incident) field.
Finally, Waterman's3 extended boundary condition is used to arrive at
an integral equation for the axial current.

Due to the aforementioned approximations the following limitations

must be imposed: (1) the diameter of the body of revolution must he
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small in terms of wavelength at the position of the anomaly, and (2)

the largest dimension of the anomaly must be small in comparison with

the radius of the body of revolution at the position of the anomaly.

Three specific types of anomalies are considered. First surface

protrusions
cylindrical
aperture as

example the

are treated using the examples of a hemisphere and a
stub. Then apertures are considered using the elliptic
an example. Finally, wire loops are treated using as an

circular wire loop.




PRECIS

A general formulation is presented for determining the effects of
surface anomalies on the current distribution induced on a conducting
body of revolution. In particular the hemispherical anomaly is con-
sidered in detail since it possesses comparable electric and magnetic
dipole moments. It is found that the effect of the magnetic dipole
moment is equivalent to an inductive impedance loading. Whereas the
effect of the electric dipole is equivalent to driviﬁg the structure
with a doublet generator. In many cases only the magnetic dipole
mement significantly effects the axial current. However the location
of the surface anomialy determines the relative effects of the electric
and magnetic dipole moments.

In general the surface anomaly will always have an electric dipole
moment but it may or may not have a magnetic dipole moment. Further-
more the electric dipole moment will strongly perturb the local charge
distribution but it will have a negligible effect on the local current

distribution. The reverse is true of the magnetic dipole moment.



ANALYSIS

The integral equation for the axial current induced on a body of
revolution may be obtained by using Waterman's extended boundary con-
ditions in this case, requiring the total electric fiéld to vanish on
the axis of revolution within the conducting body (see Figure 1).3

The result is

L
2
dz' It(z')(k2 - EEgEFOK[z -z', a(z")] = -j E%K Einc (0,0,2) 1
0
where
K[z - 2", a(z')] = exp[-ik’(z-2")2 + a2(z')]/V(z-2")2 + 2a2(z") (2)
I,z') = a(z') § 4'[I (z',6") + t'] 3)

with It(z') as the total current through the cross section at z' with
radius a(z'). In the foregoing k = 24/) is the propagation constant,

n = 1207 ohms is the intrinsic wave impedance of frée space, and

Einc (0,6,z) is the incident (or impressed) electric field evaluated on
axis of the body of revolution. To solve the integral equation the
method of moments may be applied; although for certain geometries
analytic solutions exist, for example when the body of revolution is a
sphere,

If the radius of the body of revolution is small compared to the

operating wavelength then the unperturbed surface current density is

simply
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with n as the unit vector normal to the surface of the body of revo-
lution., Likewise the unperturbed surface charge density under the same

conditions is

.

1 sinb(z) d
ps(z) w 2wa(z) dz It(z) (5)

R

where

_.l ~ ~
cos (n-2z) .

8(z)

The surface field associated with the foregoing current and charge
distributions is considered to be the impressed field on the surface

anomalies. The surface electric field is

14

= o (@ (6)
(o}

o

and the surface magnetic field is

- >
H, = nx Js(z) (7

The pfesence of surface anomalies may be treated by using the
quasi-static approximations. First the impressed field about a given
anomaly is Eonsidered to be uniform so that the surface currents and
charges on the anomaly may be obtained by solving an equivalent problem
of the anomaly on an infinite conducting plane with a uniform impressed

field. Then the electric and magnetic dipole moments may be readily
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determined in terms of the impressed field.* Provided the dimensions

of the anomaly are small in comparison with the radius of curvature of
the body of revolution, the field scattered from the anomaly on the body
of revolution may be expressed in terms of the previously obtained
electric and magnetic dipole moments. Including this scattered field as
part of the incident field on the body of revolution in (1) introduces
the effect of the anomaly on the current distribution of the body of
revolution.

Upon solving (1) JS and pg are obtained. 1In order then to obtain
the complete surface current and charge densities the contributions to
the surface fields from the dipole moments of the anomlies must be
included.

The electromagnetic field about an electric dipole and a magnetic

1

dipole is
L > ~jkR 1 ~ o~
By (r) = hme {['P:g'+ 3 =1[3RER * P,) = P,]
2 ~ A
-3 [Rx ®Rx B}
n_ -ikR .k k%2, -~
+ 7o e [JEZ-E—} (R x M) (8)

%
The impressed field at this point is yet an unknown. In order
to obtain it a self consistent field solution must be effected.
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with r the radius vector to the field point and S the radius vector to
the dipoles. As pointed out previously the effect of the surface
anomaly on the current distribution Js(z) is obtained by using the

following replacement in (1)

inc

EC (0,9,2) > E,

: (0,6,2) + £,(0,0,2) (10)

Superposition may be employed when there is more than one anomaly.
According to the aforementioned considerations the dipole
moments appearing in (8) and (9) by assuming the charge and current

distributions on the anomaly are the same as would occur if the
anomaly were in an infinite plane. Using these current and charge
distributions the dipole moments are readily obtained. Note that the
dipole moment of the anomaly is one-half the dipole moment of the

anomaly plus its image in the infinite plane.



EXAMPLES OF ANOMALIES

I. Surface Protrusions

First a hemisphere is considered to be protruding out of the surface
of a body of revolution. To obtain the electric and magnetic dipole
moments the hemisphere is considered to be protruding from a conducting
plane with the impressed uniform field (EO, Eo) as given in (6) and
(7). 1Image theory is used to remove the plate. Provided the radius of
sphere is small in terms of wavelength, i.e., kas<< 1, the surface charge

distribution (see Figure 2)

0 = 3g_FE_ cosb (1)

where 8 is the polar angle measured from the direction of ﬂ, the unit
normal to the plane. The dipole moment of the hemisphere with the

foregoing charge distribution to be used in (10) is’
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P, = 2ma] e, E, (12)
where Eo = EO n and

n = T sin[e(zo)] + 2z cos[B(zO)]

~

Here r is the radial unit vector of a cylindrical coordinate system, Zy
locates the cross section containing the spherical protrustion anomaly,

and 6(z) is the angle between the z axis and the normal to the surface

of the body of revolution, i.e.




0(z) = I~ o %; a(z) (13)

By following an analogous procedure to the foregoing it is readily shown

that the magnetic dipole moment of the hemisphere is’

> ->
M = - qmad3 H
o) s o

Second a short cylindrical stub is considered to be protruding
normally from the surface of the body of revolution (see Figure 3).
Following the foregoing procedure it is found that the dipole moment for
the stub is

3
- mh ecﬁ ~
0

Po = FmT3.39) P (14)

where

£ = 2 wn(2h/a)

with h as the height of the stub and a as the radius. It is readily

shown that the magnetic dipole moment of the stub is negligible.

I1. Surface Apertures

The problem of small aperture diffraction has been considered by a
number of authors.l»> Only the results are presented here. For an
elliptical aperture both magnetic and electric dipole moments are needed

to express the scattered field. They are

> - -
>

M = a°H

o] (o]
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where the elements of the dyadic are

_}. “~ ~ ~ -~ -~ ”~
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T 2% (1-e?)
o = — —————
33 3 E(e2)
2
2 = -
e 1 (21/%2)
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Here u; is the unit vector along the major axis of the ellipse, u, is
the unit vector along the minor axis, E(e?) and K(e?) are elliptic
integrals of the first and second kinds,’ respectively, %1 is the

length of the semi-major axis and 22 is the length of the semiminor

axis (see figure 4).

ITI. Wire Loops

Wire loops protruding from the surface of a conducting body will
have induced electric and magnetic dipole moments. Just as for the
hemisphere the currents and charges on the loop are considered to be
nearly the same as would occur if the wire were protruding from an
infinite plane. For convenience a semicircular loop is considered to
extend from the body of revolution so that the plane of the loop is

perpendicular to the tangent plane of the body of revolution at the
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point of the loop attachment. Therefore to obtain the electric and
magnetic dipole moments the semicircular loop together with its image
forms a complete circular loop (see Figure 5).

The field impressed on the loop is such that the electric field
lies in the plane of the loop and the magnetic field forms an angle ¥
with the normal to the plane of the loop. According to King and
Harrison® the induced current in an electrically small loop (unloaded)
is

mhHy cos ¥ . 2mkb® Eg

J
8b 2b
4n Pl 2 (2n Pl ¥)

cos ¢

I(¢) =

where y is Euler's constant. From the equation of continuity and the

foregoing, the charge per unit length induced on the loop is

2mb qDE
o (4) = 52~ sin ¢

fn 77—~ v
By using the foregoing charge and current distributions the electric
and magnetic dipole moments of the semi-circular loop may be readily

obtained. They are

\
> T b3 -
Py = 2 4q 2D fo"0
n =~y
: ;
(15)
. B T b3 > > ->
My = 73 8b wu s Hy J

A

where u is the unit normal to the plane of the loop.

- 11 =



AN TLLUSTRATIVE APPLICATION

In the foregoing various types of surface anomalies are considered.
It ig of interest to comnsider a particular geometry and to obtain the
integral equation for the current distribution. A convenient geometry
to consider is.that of a hemispherical protrusion from the lateral
surface of a right circular cylinder with sperical end caps (see figure 6).
The geometry is simple and the hemispherical anomaly possesses com-
parable electric and magnetic moments. ,

The contribution to the axial component of the electric field

along the axis of the body is obtained from (9). It is

- - uMoa 1 e_ijo .

z * EA(O,¢,Z) = - j(U T [Jk+'§] D (16)
o =0 RO .
P =0
o}

where
= V(gegy )2 2
Ro (z zo) + a an

According to the aforementioned considerations

- ~
Mo - - Mo ¢
where
i
Myom 7a L3

If the structure were driven from a magnetic ring source a z = z,
(equivalent to the delta gap source) then the axial component of the

source field becomes
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inc | . 1
B (0y0,2) = S — lk+3 1 g (17)
p=0 o o

Note that (16) and (17) become equivalent when
Uas
Vo o= = us I.(2) (18)

It may be further noted that (18) may be used to define an equivalent
impedance loading for the effect of the magnetic dipole moment of the
hemisphere anomaly. It is

3
ua

S
Z = jw..._
L 4ra?

Suppose that ka = 0.5 and a_ = a/4 , then

ZL = j 0.23 ohms

Also the hemispherical anomaly has an electric dipole contribution

to the axial éomponent of the electric field along the axis of the body.

It is
~ > aP d —ijO
. —o0 % . l.e
z EA(ps¢3z) = Zme dz {[Jk + R 1 R } (19)
P=0 ° °
M =0
° 3
- a d
= X 5_
where P = T 5 It(zo)

From (17) and (19) it is observed that the effect of the electric dipole
moment is analogous to that obtained by driving the structure from an
equivalent doublet generator. That is, it is not possible to represent

the effect of the electric dipole moment with an impedance loading.
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The obvious question now is what is the relative importance of the

electric and magnetic dipole moment contributions. Near the anomaly
the electric dipole contribution (19) approaches zero whereas the
magnetic dipole contribution approaches the maximum value. At large
distances from the anomaly RO >> 1 it is easily shown for the

hemispherical anomaly that

>

-
. EA(0,¢,Z)

‘ z
MO=O EO
— = 2 | == (20)
( z EA(O3¢5Z) nI-IO
PO=0

Considering the aforementioned geometry

: d
E — 1 (z)
0 - dz "t o (21)

o kIt(zo) .

Thus at large distances the electric dipole contribution is dominant for

anomalies near current nulls and the magnetic dipole contribution is
dominant for anomalies near current maxima. Therefore for anomalies
near the middle of the structure the magnetic dipole contribution
should be the most significant in affecting the current distribution
whereas near the structure ends the electric dipole moment should be
the most significant.

In any event the integral equation for the current distribution on

the aforementioned geometry (figure 6) is
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( 1 ' \ 2 a 2 L t
dz It(z Yk - Py ) Klz - 2', a(z")]

0
3 ~ikR
) (kas) . 1 ] o J&R,
2 3 kR 2 It(zo>
-jikR
(kas>3 d 1 e %o d 1 (z)
- — [ +—] — 1t %
k dz kR R2 dz
o o
bk g
= -3 =B (0,4,2) (22)
n oz
where
a(z ) = Va2 - (a-z)? 0<z<a
= a a<z<L-a
= Va2 - (z-L+a)? L-a<z<L
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FigureVZ: Conducting Hemisphere on a Conducting
Plane.
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Figure 3: Cylindrical Stub over a Conducting
Plane,
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Figure 4: Elliptical Aperture in a Conducting
Plane.
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Figure 5: Thin Wire Loop Over a Conducting Plane.
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Figure 6: Right Circular Cylinder with Spherical
End Caps and a Small Hemispherical
Protrusion on its Lateral Surface.
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