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ABSTRACT
Applying Waterman's extended boundary condition a general
formulation is developed for the dipole antenna of revolution. Both
transmission and scattering from the antenna are considered with no
formal restrictions on the antenna dimensions. As examples the

prolate spheroidal and solid cylindrical geometries are considered.

18 AUG9T5

Tectnlcat {ibrary
AF Weapons
Laboratory




PROLEGOMENA

Often it is necessary to know the induced surface currents and
charges on shielded configurations in order to assess the shielded integ-
rity. In developing a tractable analysis for obtaining the surface
currents and charges one is usuaily forced to make gross approximations
to the physical configuration of the shield. For example a box is
represented by a sphere, a missile is represented by a right circular
cylinder and an aircraft is represented by perpendicular crossed
cylinders. This paper presents an attempt at analyzing a class of some-
what more complex structures than have been considered previously in
approximatinglshield configurations. Furthemmore the analysis of these
structures, bodies of revolution, is no more complicated.

Perhaps the most important advantage of the presented formulation
is the capability of being extended to structures formed from segments of
bodies of revolution. For example, in the analysis of EMP interaction
with an aircraft, the aircraft may be represented by sections of bodies
of revolution. This analysis is to appear in the near future as an

interaction note.

INTRODUCTION
In the conventional formulation of the dipole antenna problem an
integral equation for the antemna current distribution is derived by
forcing the component of the scattered electric field tangential to the
antenna surface to cancel the corresponding component of the incident
field over the antemna surface. In so doing the integral equation is

By

obtained with a kernel that has a logarithmic singularity.l

*The.superscripts refer to the list of references at the end of
the paper.



TABLE 2: MONOPOLE ADMITTANCE FOR FLAT END CAP

a/x = 0.0423 , b/a = 1.187
x
h/A Ymeasured _ YTEM. N
0.12 5.6 + 1 26.9 my 6.11 + i 27.15 my 14
.16 19.8 + 1 30.6 20.42 + 1 30.30 14
.20 29.8 + 1 12.8 30.82 + 1 12.29 14
.24 19.6 + 1 3.7 20.75 + i 2.04 14
.28 12.9 + 1 3.9 13.67 + i 2.03 14
.32 9.5 + 1 5.7 9.78 + 1 5.16 34
.36 7.6 + 1 7.7 7.91 + i 6.92 34
.40 6.6 + 1 9.6 6.81 + i 8.58 34
.44 6.0 + 1 11.5 6.16 + 1 10.21 34
.48 5.7 + 1 13.4 5.87 + 1 11.94 34
.52 5.9 +1i 15.4 5.98 + i 13.91 34
.56 6.8 + i 18.0 6.83 + 1 16.33 34
.60 7 9.3 + 1 21.8 9.34 + 1 19.18 34
.64 15.4 + 1 22.3 15,54 + 1 20.98 44
.68 21.7 + 1 16.4 22.23 + 1 14.78 44
.72 18.7 + 1 8.5 19.56 + i 6.54 44

* 12
Measured by S. Holly
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discontinuities do occur, such as for a solid cylinder
with flat end faces, an approximate technique is used
that in general is quite accurate for relatively thin
antennas, i.e. for a/x <.1 where a is the antenna radius.
The current distribution on the discontinuity is obtained
from a quasi-static approximation.

To illustrate the use of the presented formulation
it is applied to treat the solid cylindrical antenna
and the prolate spheroidal antenna. The transmitting
curreht distribution and antenna impedances are obtained
for the solid cylindrical antenna. ‘Also the current
distributions induced by an incident plane wave illumi-
nation are obtained for the prolate spheroid. Comparisons
of the theoretical results with experimental data are

made.

ANALYSIS

General Considerations

In the presence of a metallic body the total electric
field may be expressed in terms of the induced surface
current on the body as4

> >

E(R) pinc (R) - i gl 4V | v -J(R')G(R,R')ds’

f J(R )G(R R Jds! , (1)
S
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where E™C is the incident or impressed electric field, J is ‘

the induced surface current on the metallic surface S, k is

the propagation constant, n = Vuo7ao = 1207 ohms is the

-3
t
intrinsic wave impedance of free space, R is the radius

vector to the differential surface element ds', and
-
> > o~ ik|R-R'|
G(R,R) = ey ' . (z)
k1)

Consider a body of revolution having its symmetry axis
coincident with the z axis of a cylindrical coordinate

system (see figure 1). Then

ds' = a(z')de'dz'/cos 8(z') : (3)
4, a(z') = tan 6(z") | @)
lE-E’] = /r? +'§’Z - 2rr' cos (4-¢') + (z-2')% (5)
v'-E(E’) = ET%TT [SE' Ty + %E‘ [a(z')Jt,}} (6)
t' = z' cos 6(z') + r' sin 8(z') | (7)
dz' = dt' cos 6(z") (8)

where (r,¢,2z) ére the usual cylindrical coordinates and ¢ is defined
in fig. 1. Here t' is the unit vector tangential to the surface
of the body yet perpendicular to §. Ultimately (1) will be eval-
uated at v = 0 and 0 < z < L, i.e. on the axis of and within the

body of revolution. To that end consider the first integral




S 0
d¢' J (z',9)] . (9
where A .
K(z,2') = expl-ik/(z-2")2+a(z")1//(z-2" ) 42" (z") (10)

Now consider the axial component of the second integral

of (1) evaluated at r = 0 and 0 < z < L.

.
z: [J(R JG(R,R')ds" I ! Cgs(zezz))[a(z ) | 48’3, (z",6)]
S 0 - (11)
Further it is noted |
J,(z",4") = [cos 8(z)1J (2" ,¢") (12)
and n'
1.0(z') = a(z") { do' Jr(z' ") (13)

is the total current through the cross section at z' along
the axis of the body.

To obtain the integral equation for the current
distribution the z-component of (1) is evaluated at

r = 0 and 0 < z < L using (9) and (11)-(13). This yields

L
i . 3 P '
E,(0,9,2) = E;nc (0,4,2) - i 7o | dz' 2= I,(z")55 K(z,2")
L 0
2
+ k dz' Itv(z') K(z,z")] | (14)
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On the axis of and within the body of revolution the axial

component of the electric field is required to vanish as
opposed to the conventional procedure of requiring the
tangential component of the electric field to vanish at
the surface of the conductor. Then (14) yields after

some mathematical manipulation

L L
! 1 2 32 1 1 ] 1
dz It'(Z ) (k™ - W) K(z,z") + Itr(z ) 37 K(z,z)
0 0
- - g dmkgine (50 0y for 0 <z <L (1s)

n Z

If the current vanishes at both ends of the body of
revolution then (15) takes the form analogous to that

' % '
derived by Hallen5 and later by Albert and Synge.6 The Hallen

integral equation equivalent of (15) is derived in the
appendix.

Up to this point the body of revolution is required
to have no discontinuities in radius, i.e. a(z) must be
differentiable. If the body of revolution has radius
discontinuities the integral equation must be modified. This

modification consists of two parts: (1) continuity of current must

£ ¥

Hallen as well as Albert and Synge claim that (15) or
their equivalent is exact. Furthermore, Hallén argues that
the solution is unique. The accuracy of the numerical results
subsequently presented also indicate the uniqueness of solution.
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be preserved at the discontinuity and (2) the incident
field on the continuous portion of the body is forced

to include the scattered field from fhe discontinuity
with an assumed current distribution. To solve the
problem rigorously is a formidable task. However, for a
surface with characteristic dimensions much less than a
wavelength a qﬁasi-static type approximation for the
functional form of the current and the use of the
aforementioned modifications should yield a suitab1y§
accurate current distribution for the body. This is to

be the procedure followed in the subsequent analysis.
For the transmitting problem the antenna is considered

to be driven from a magnetic current source. The monopole

of revolution is connected to the center conductor of a coaxial
transmission line which terminates in a ground plane at z=0.

It may then be treated as a dipole by image theory where the field
distribution in the gap of the coaxial line is represented by

6,10

a magnetic current frill Further considering only the TEM

mode existing in the coaxial line the impressed electric

field component islo

] -ik/%z~zo)2+a2
inc _ 0 e '
EZ (O;Qb:z) - Z,Q,Tl(b/a) [

/&z—zo)2+az

-iki/(z-2 ) “+b?
- 2 ] -~ (16)
/Qz-zo)2+b2




where a and b are the inner and outer radii of the coaxial
line. Also a is the radius of the dipole antenna at the

driving point z = z i.e. a = a(zo).

O’
For the scattering problem the dipole of revolution

is considered to be illuminated by a plane wave. Then

. -i(k cos 6 )z
E;nc (0,0,z) = Eo sin 6, © ° (17)

where the direction of propagation forms an angle 90 with
the positive z-axis and E0 is the complex amplitude of the

electric field.

Prolate Spheroid

The prolate spheroid is a good example to consider
since it is amenable to solution by boundary value problem

techniques. The surface of the spheroid is given by

a(z) = (ce'z 1) [F2 - (z-L/Z)ZeZJ)/Z (18)

i

where e 1is the eccentricity,xZF is the interfocal distance,
and L is the total length of the spheroid measured along the
axis of symmetry. In the foregoing the spheroid extends
from z = 0 to z = L.

An integral equation for the current distribution

is obtained by using (18) in (15) noting that

i
(o]

I (2)

0,L

SN
[
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Solid Cylinder with Flat End Faces

For this configuration the integral equafion for the
induced cufrent distribution must be modified. The functional
form for the current on the end is obtained from a quasi-static
type approximation. Accordingly the end face charge distri-

bution is approximated

p(r) = 2 (19

Ta
where a is the radius of the end face and Q the total charge on
the end face. Using the equation of continuity and requiring a
zero current at the center of the end face yields for the end

face current distribution

Jo(r) & - 1eQ . - (20)
T Zﬂa2

Also requiring continuity of current around the edges of

the end face yields

Q= I,.(0)/(~iw) (21)
Note that the current distribution given in (20) compares
quite favorably with that obtained by Einarson’ using a
numerical solution technique.

The axial component of the electric field scattered from
the end face with the assumed current distribution is readily

shown to be, after some mathematical manipulation.

n I.(0) -ik|z|
2 [ - K, (2,00] (22)

Bo(z) = i
2tk a

where

K, (z,2') = exp[-ik/(z-2")% + a2 ]

(23)

/%z-z')z + a?

Furthermore, at the opposite end of the cylinder there is

another contribution to the axial component of the scattered
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electric field.

If the ' aforementioned scattered fields are considered
as contributipns to the incident field, (15) yields the
following integral equation for the current distribution on

a perfectly conducting solid cylinder with flat end caps:

L
{ dz' T.i(z') Ko(z,2') = - i i%-liE;nC 0, 6,2)
0
for 0 < z < L (24)
where
K. i(z,2') = (k% + —3—2-) K. (z,2'") - 26(z') & X.(z,0)
t' e s 2 Tarty 9z a "’
-28(L-2') & K (2,1) - L [ THE L g k(2,00
a
1 .
- A8hE ) et ikEE) gy x (2,1)] | (25)

a

and §(z) .is the Dirac delta.

NUMERICAL RESULTS

The integral equations derived in the foregoing analysis
may be solved numerically by using the so called method of
moments.8 It has been shown that the piecewise sinusoidal
expansion for the current distribution in the method of

moments provides a rapidly convergent solution. According
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to this technique the current is

N
I1(z') = mzl I,z ui's z 4, 2.) (26)
where '
o sin k(z -z ) + o sin k(zm+1-z')

(27)

ty - _mtl
Im(z ) sin k(z -z_)
: m+l “m

= 1 Z_ <z <z

1
U(z ’zm+1’ Zm) m m+1

= 0 otherwise

with z, as a éonvenient ordered set of points on the domain
of the current including the end points.

Substituting the current expansion into the integral
equation for the current and forcing the resulting equation
to be satisfied at a suitable set of points yields a system
of linear equations for the expansion coefficients. Also
boundary conditions on the current must be satisfiedi

Prolate Spheroid

The total axial current induced on a prolate spheroid
illuminated by an incident plane wave may be obtained by solving
the appropriate boundary value problem.9 Unfortunately the
solution obtained is an infinite series of spheroidal wave
functions. Although the series is highly convergent, it may
be more practical to use the integral equation formulation
presented here. A comparison of the results is given in Table
1. The integral equation solution was obtained by N = 21.
in the current expansion (26).

Monopole Antenna with Flat End Faces

Since there is no formal restriction on the size of
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antennas which can be treated here, it is desired to test the

method for antennas whose circumference is compafable to the
wavelength. This then requires consideration of the end
face currenﬁs as given in equation (24). For an antenna with
a constant radius, the second derivative with respect to z
in (ZS)Imay be replaced by a second derivative with respect
to z' because of the difference form of the argument of the
kernel in (22). Using (26) in (24) and some mathematical
manipulation allows the evaluation of all matrix elements
without numerical integration.

Table 2 givesthe calculated and measured admittance12
of a monopole antenna above a ground plane fed by a coaxial

line whose outer conductor terminates in the ground plane,

the extension of the inner conductor forming the monopole.

Here h is the height of the monopole. For the calculated
data, equation (16) was used for the excitation, thus ignoring
higher order modes in the coaxial aperture. This neglect of
the higher order modes may account in part for the differences
in the measured and computed data.

In Table 3, the results for a relatively thick monopole
antenna are shown. No estimate of the effect of higher order
modes on the admittances calculated is available for this case
but it is expected that the necessary correction would be
considerable. Furthermore, the large radius may lead one to
question the validity of the approximation used to account

for the end face of the antenna. Nevertheless, good agreement

is seen between the calculated and experimental values.
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It was found that for thick structures, the smooth nature
of the kernel in (24) and in the driving function (16) enable
one to get reasonably good convergence with relatively few
zones over the antenna. In fact, the use of too many zones
caused the system of equations to become very ill-conditioned
and to yiéld meaningless current distribution. It was found
that by choosing the numbers of zones so that the normalized

13 of the system always remained above 1O~4,

determinant
reasonable current distributions and admittances were obtained.
Increasing the number of zones further causéd large oscillations
in the currents and very large admittance values. It appears
that to insure stability and accuracy one should choose the

zones such that the width of a zone is no smaller than about

a/4 and no larger than 2a.

Monopole Antemna with Sperical End Cap

When the end cap of a cylindrical antenna possesses no
surface discontinuities then (15) may be applied directly.
One particularly interesting such end configuration for a
cylindrical monopole is the spherical end cap. Actually
the end of the cylinder may be considered a hemisphere with
radius equal to the tadius of the cylindrical monopole. In
Table 4 the Eurfent distributions on a given antenna is shown
for spherical end caps and flat end caps. The measured driving
point current for the spherical end cap is also shown. Note
that the calculated values agree with the measured result.
Further, it is noted that the antenna current, especially the
imaginary part, for this relatively thin antenna is almost

insensitive to the end configuration.
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It is also of interest to consider the thick cylindrical monopole ‘
with a spherical end cap. Table 5 exhibits the corresponding measured
and calculated admittances. The measured data is obtained from King's

12

tables of antenna characteristics. Although he defines h as the

height of the monopole not including the end cap, recently it was

determined that h in the King's tables of data for monopole with spherical

14 Excellent agreement is obtained. Note

end cap included the end cap.
that for h/x = .12 the diameter of the monopole is nearly twice the

height. Further note that h = L/2.

CONCLUSION

A formally exact integral equation has been presented for the dipole
antemna of revolution. Solution of the integral equation yields the

total axial current even for circumferentially dependent incident fields.

Furthermore, the integral equation has a regular kernel and in principle
is valid for thick as well as thin antennas. For very thick antennas,
convergence to a solution is rapid, but numerical instabilities begin

to appear and some caution must be exercised.

For thin and moderately thick antennas, excellent agreement is
obtained when theoretical results are compared with experimental data.
In the case of scattering from a prolate spheroid an exact boundary
value problem solution is available. A comparison of the results from
the presented formulation with the boundary value solution yields
excellent agreement. Results for the current distribution on a cylinder
with flat end faces seem to justify the use of the leading term in a

quasi-static approximation for the end face current. Furthermore, the

technique can readily be adapted for use with antennas having stepped .
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radii. However, it is felt that the method may be unsuitable for antennas
with radius greater than about 0.1A.

Finally it is noted that by using the extended boundary condition
one is able to evaluate analytically the field contributions due to the
end faces and the frill sources. With the conventional solution
technique these field contributions must be obtained by numerical

integration.lg’19
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APPENDIX

The integro-differential equation for the current
distribution on the body of revolution may be viewed as

15

an extension of Pocklington's equation for thin wires.

16 the Hallén type

However, as pointed out by Mei
equivalent equation may be more convenient to solve.
Therefore, in this appendix the Hallén type integral
equation is derived.

For convenience the current is required to be zero

at the ends of the body of revolution then

L
2 .
' 1 2 é ty 4rk _inc
dz It(z ) (k® - —Eaz')K(z,z ) = -i ; E) (0,¢,2)

0 (A1)
Observing that

- z _

[é_z + k2} ( dz g(g) in i(z—g) - g(2)

dz

0

for an arbitrary function g(z), (Al) may be written

2 L
{é—z + kz} dz' It(z') n(z,z'") = -1
dz

M (0,0,2)

(A2)

41k
n

0
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where

H(z,z') = fl(z') cos kz + fz(z') sin kz

z
+ [ ae [0 - &, 0K, sk (A3)
0
with f1 and f, as arbitrary functions which may be
chosen for convenience. Integrating by parts as

follows*

Z
k2 I ag K(g,2") BREEE) - g, cos(z-s)J;
0

Z
- J deg %g [K(£,2')] cos k(z-£) (A4)

0

and

2

oz

Z
- J de S K(g,z') SR X(2Z8) oy B g ,ysin k(z-£)]
0

z
- { dg %Ev K(g,z') cos k(z-¢) (A5)
0
(A3) becomes
z
1(z,z') = K(z,2') - I da[%g K(g,z') + 25' K(g,z")]cos k(z-¢)
0 (A6)

E3
The steps in this derivation are similar to those
used by Cambrell and Carson. 17

Z
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provided

£.(2') = K(0,2") , £,(z') = - § 2= K(0,2))

Solving the indicated differential equation in
(A2) yields the desired integral equation for the
current distribution

L

dz'It(z') n(z,z') = C, cos kz + C, sin kz

Z
4n
n
0

- i dz' E;nc (0,¢,2') sin k(z-z") (A7)
where H(z,z') is given by (A6). It is noted that (A7)
is the extension of the Hallén Integral equation from
the thin wire dipole to the dipole of revolution. The
5

t
corresponding integral equation derived by Hallen™ is

only valid for thin structures.
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Prolate Spheroid Center Current
0.99

E =1.0V/m, k = 1.0/m, ¢

0

_ I, (L/2)
KL
5 -
Boundary Value Integral Equation
Problem Formulation Formulation
1.212 8.136 + i 14.39 8.126 + i 14.38
1.586 27.37 + i 0.2501 27.35 + i 0.2883
2.020 18.23 - i 10.08 18.22 - i 10.07
2.380 15.19 -~ i 10.55 15.18 =~ i 10,53
2.525 14.65 - 1 10.60 14.65 - 1 10.58
2.828 14.11 + i 10.85 14,12 - i 10.8%3
3.030 13.99 - 1 11.23 14.01 - 1 11.20
3.173 13.94 - 1 11.64 13.96 - i 11.60
3.232 13.92 - i 11.85 13.94 -~ i 11.81




TABLE 2: MONOPOLE ADMITTANCE FOR FLAT END CAP

a/x = 0.0423 , b/a = 1.187
x
h/A Ymeasured _ YTEM. N
0.12 5.6 + 1 26.9 my 6.11 + i 27.15 my 14
.16 19.8 + 1 30.6 20.42 + 1 30.30 14
.20 29.8 + 1 12.8 30.82 + 1 12.29 14
.24 19.6 + 1 3.7 20.75 + i 2.04 14
.28 12.9 + 1 3.9 13.67 + i 2.03 14
.32 9.5 + 1 5.7 9.78 + 1 5.16 34
.36 7.6 + 1 7.7 7.91 + i 6.92 34
.40 6.6 + 1 9.6 6.81 + i 8.58 34
.44 6.0 + 1 11.5 6.16 + 1 10.21 34
.48 5.7 + 1 13.4 5.87 + 1 11.94 34
.52 5.9 +1i 15.4 5.98 + i 13.91 34
.56 6.8 + i 18.0 6.83 + 1 16.33 34
.60 7 9.3 + 1 21.8 9.34 + 1 19.18 34
.64 15.4 + 1 22.3 15,54 + 1 20.98 44
.68 21.7 + 1 16.4 22.23 + 1 14.78 44
.72 18.7 + 1 8.5 19.56 + i 6.54 44

* 12
Measured by S. Holly

..ZZ...



TABLE 3: MONOPOLE ADMITTANCE FOR FLAT END CAP
a/x = 0.1129 b/a = 1.220
*
h/X Measured YrEM N
0.12 28.9 + i 41.1 mgp 29.28 + i 40.87 my 4
.16 37.0 + i’ 30.8 35.56 + i 27.14 4
.20 34.0 + 1 19.0 32.76 + i 15.02 4
.24 26.4 + i 14.3 25.84 + i 11.73 8
.28 20.9 + i 14.1 20.62 + i 11.65 8
.32 18.6 + i 15.6 17.27 + i 12.69 8
.36 15.7 + i 17.7 14.99 + i 15.99 14
.40 14.5 + i 20.1 13.72 + i 18.12 14
.44 14.2 + 1 22.7 13.18 + i 20.32 14
.48 14.3 + 1 25.4 13.29 + i 23.97 20
.52 16.2 + 1 28.8 14.80 + i 26.60 20
.56 19.5 + i 31.3 18.02 + i 28.68 20
.60 24.7 + 1 32.0 23.17 + i 29.11 24
.64 28.5 + 1 28.6 27.28 + i 24.81 24
.68 28.5 + i 22.8 27.03 + i 19.13 24
.72 25.0 + i 19.6 23.94 + i 15.85 24
—
Measured by S. Holly12

..EZ-



TABLE 4: MONOPOLE CURRENT DISTRIBUTIONS FOR FLAT END CAP
AND SPHERICAL END CAP. a/Xx = 0.007022, h/A» = 0.25, b/a = 3.0

z/h Spherical End Cap Flat End Cap
(N'= 74) (N = 80)
Driving Point 17.60 - i 7.518 mA 16.47 - i 7.680 mA

0.05 17.56 - i 8.466 . 16.43 - i 8.636
0.10 17.42 - i 9.084 - 16.30 - i 9.214
0.15 17.19 - i 9.504 16.09 - i 9.672
0.20 16.87 - i 9.776 15.79 - i 9.944
0.25 16.46 - i 9.926 15.42 - i 10.09
0.30 15.96 - i 9.964 14.96 - i 10.13
0.35 15.38 - i 9.900 14.42 - i 10.07
0.40 14.72 - i 9.738 13.81 - i 9.912
0.45 13.98 - i 9.484 13.13 - i 9.660
0.50 13.16 - i 9.136 012.38 - i 9.316
0.55 12.27 - i 8.700 . 11.55 - i 8.884
0.60 11.30 - i 8.180 10.67 - i  8.368
0.65 10.27 -i 7.576 9.72 - i 7.768
0.70 9.17 - i 6.890 8.71 - i 7.086
0.75 8.01 -i 6.118 7.64 - i 6.322
0.80 6.78 - i 5.262 6.51 - i 5.476
0.85 5.47 -i 4.318 5.31 - i 4.542
0.90 4.07 -i 3.260 4.03 - i 3.504
0.95 2.49 -1i 2.028 ©2.60 - i 2.296
1.00 0.0 -i 0.0 ' 0.48 - i  0.430

Driving Point Current Measured by Mackl? for a Spherical End
Cap is 17.84 - 1 7.50
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TABLE 5: MONOPOLE ADMITTANCE FOR SPIILRICAL END CAP

a/x = 0.1129 , b/a = 1.22
%

h/x- Measured Yoru

0.12 10.8 + i 34.5 my 9.38 + 1 32.9 my 4
0.16 21.2 + i 43.3 20.8 + 1 38.5 8
0.20 34.3 + 1 32.9 32.0 + 1 29.4 8
0.24 33.1 i 19.6 31.1 i 18.2 8
0.28 27.0 i 15.1 25.5 + i 14.3 18
0.32 22.3 i 14.4 20.8 + i 14.3 18
0.36 19.0 i 15.6 17.6 + i 15.4 18
0.40 16.9 i 17.3 15.5 + i 17.0 18
0.44 15.8 i 19.6 14.3 + 1 18.9 18
0.48 15.0 i 22.1 13.7 + 1 21.0 18
0.52 15.1 i 24.9 14.0 i 23.2 18
0.56 16.6 i 28.0 15.4 + i 26.4 24
0.60 19.7 i 30.2 18.4 + i 28.2 24
0.64 24.4 i 30.3 22.8 + i 27.9 24
0.68 28.3 1 27.2 26.3 + 1 24.1 24
0.72 28.8 i 22.5 26.1 + i 19.2 24

* 12
Measured by S. Holly

..SZ...



-26-

z=0 Py

.

Figure 1: The Body of Revolution with .
the cylindrical coordinate system.



