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Abstract

The singularity expansion method is applied to the problem of a
plane wave incident on a perfectly conducting sphere. Surface current
and charge density responses are calculated for a delta function in the
frequency domain and step function in the time domain. The effect of
adding individual poles to the expansion is noted. Calculations performed
by the more conventional frequency domain-inverse Fourier transform

solutions are included for comparison,
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_ In a recent note, a new approach for the analysis of EMP problems
was described by Baum. (1) The technique, referred to as the Singularity
Expansion Methqd, describes the scattering properties of an obstacle in
terms of poles of the response function which occur in the complex fre-
quency plane associated with the Laplace transform of the time domain
function.

Associated with each pole is a natural mode and a coupling vector
which are independent of the type of excitation. The coupling vector and
the incident field define a coupling coefficient which does depend on such
factorsasangle of incidence and polarization of the incident field, With
the pole locations, the natural modes and the coupling coefficients, the
delta function time response of the scatterer may be rapidly computed.
More general waveforms may then be treated by convolution techniques.

In addition to being able to easily compute the time domain response
of a scatterer, this method provides a means to characterize the com-
plete electromagnetic behavior of the obstacle by a few numbers. Once
the natural frequencies, modes and coupling coefficients are known, a
wide variety of scattering problems can be rapidly determined without
having to re-~solve thé boundary value problem. From this standpoint,
the Singularity Expansion Method is clearly more desirable than the con-
ventional frequency domain or direct time domain solutions. ‘

For a general body, it is difficult to determine the locations of the
natural frequencies. A numerical search procedure is usually employed.
As pointed out by Baum, the special case of a spherical obstacle can be
treated in this manner, and the natural resonances found in terms of the
zeros of certain spherical Hankel functions, Stratton(z) briefly considers
this question.

Other investigators have treated various aspects of the Singularity

(3)

Expansion Method. Marin and Latham have looked at the analytical
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properties of the scattered 1ield by a periecily conadcling, iiluue wudy,

using the H-field integral equation. That a finite, perfectly conducting
body has only poles in the complex s plane has been verified, Lee and
Leung(4) have developed explicit formulas for the natural resonance fre-~
quencies of a thin cylinder, using a Wiener-Hopf technique, Their results
are valid, however, only for very thin wires. More general numerical
results for the thin-wire scatterer have been obtained by Tesche, where
the pole location, natural modes, and time behavior of charge and currents
are computed using the E-field integral equation., The results in that note g
as obtained by the singularity approach are shown to agree very well with
those of the Conv_entional frequency domain method.

In this note, some numerical results for the case of scattering from
“a perfectly conducfing sphere are considered. The formulation of the
problem in terrﬁs of the natural resonances of the sphere is the same aé
in Appendix B of Baum's note, and this is reviewed in the next section.
Time domain curves of the current and charge at various points on the

sphere are presented, as a function of the number of poles considered. .

The results of the conventional frequency domain-Fourier transform analy-

sis are also given as a comparison,

It is hoped that this note, along with the others previously referenced,
will provide a guide as to how the Singularity Expansion Method can be
applied to EMP problems.
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II. The Perfectly Conducting Sphere

In Appendix B of Ref. 1 the problem of electromagnetic scatter'ing
from a sphere is given in very general terms. In this section the equa-
tions from Ref, 1 are taken and stated in terms which can be conveniently

used for numerical calculations, Throughout this note, equations refer-

'enced are those in Ref, 1, unless otherwise stated.

Equations Bl give the unit vectors for describing the plane wave

incident on the sphere and are

51 = sin(el) cos(¢1) é; + sin(g 1) sin(d)l) é; + cos(el) 5;
gz = -cos(el) COS(¢I)E_>;{ - cos(el)sin(qSl)é; + sin(el)g; (1)
ey = sin(qSl) e, - cos(¢1)ey

A convenient orientation for numerical calculation would be such
— —
e

that € = e, e2 3

¢>1 must be 7, The convenience of such a coordinate system is that many

= é_'x, and e, = é;. To accomplish this g, must be 0 and
of the terms involving the spherical harmonics will drop out or simplify.
Fig. Bl in Ref. 1 represents the coordinate system in general, and
Fig. 1 in this note shows the special orientation of the incident field. In
this note, as in Revf. 1, the primed coordinates refer to the object
coordinates.

—

Equation B99 is the frequency domain step function response for the

surface current density and is given as
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Figure 1. Plane Wave Incident on Perfectly Conducting Sphere.
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Consider first the various factors defining Vp (', s). The T
. . O 3 3

are the natural frequencies and are discussed in Appendix B, pp. 93-100.

Granzow(s) tabulates the (s ! —ac-) in his note. For this numerical work,

3 3

Granzow's computer program which generates the sc1 o o Was modifiedto

3 2]

punch the numbers on data cards. Several checks were performed to
insure agcurac;y. :F'igure 2 depicts the natural frequenéées occurring in
the upper left quadrant of the complex frequecncy plane.

The S0, m,n', m, G, p (6 X ¢1) are the coupling coefficients. In this
problem the E’p is the direci:’ion of the static elg»cﬁtric field. The p sub-
script is;chosen such that Einc lies along the x-axis, so p must be 2.

The coupling coefficient is then c (0, 7). This may be broken

g, n,n',m,a, 2
down with Eq. B98, B58, and B56 as follows
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Figure 2. Natural Frequencies of the Perfectly Conducting Sphere

for Use With Exterior Incident Wave.

1<n<6
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Forq=1

‘ .
cl, n,n', m, o, 2(0’ m) an, m, qu, n, n'
where
. .m
: = (2-5 )(_1)n+1 (2n+l)(n-m)1mPn (cos (0))
a e 0, m n(n+1)(n+m)! sin (0)
n, m, _

The even terms drop out due to the factor sin(m=) = 0.

Now(7) '

dP (cos (a)
n

P™cos (o) = (-1 sin™ (o) . -
n d (cos (o))

S0,

P (cos (o)) d"P (cos (o)
n -1 n

e = (=1} 5in o)
sin (o) ( in (e

d(cos (™

{

-sin (mm)
cos (m)

(4)

It can be said, since ¢ = 0, that the right hand side of this expres-

sion is 0 for all values of m except 1, where the sin (o) term is indeter-

minate. Evaluating this for m = 1,

 limi
“ml; (sin (a))o =1

—

Therefore
Pl(cos (o)) dP (cos(a))
n - n
sin (@) d (cos (o))

From Van Bladel(8)

dPn(cos (e)) _n(n+l)

d(cos (o)) =0 2

(8)

(9)
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1 .
- S SRR LLI.L T, (10)
sin (&) -0 2

Since m = 1, the coupling coefficient now becomes

n+1l (2n+1)
n(n+1) Dl, n, n' (11)

(0, m = (-1}

c
1,n,n',1,0,2

For q = 2,
= -ht
C2, n, n', m, o, Z(O’ﬂ) bn, m, o D2, n, n' (12)
where m,
) -b! (2 -5 y(-1)PF1 (2n+1) (n-m) ! dF, (eos 6,)) cos(mvr)}
e 0, m n(n+1) (n+tm)! dg.) sin (m7)
n, m, 1
(13)
This time the odd terms drop out, since sin(mz) = 0. Now,
aP™ (cos (o) dP™ (cos (o)) aP™ (cos (o))
T mad = -sin(e) — 7555 Ta) (14)
@ —_ d (COS (a)) «
-sin (@)
In Ref. 7, the recurrence relationship
: dP;n (z) o -
(z° - 1) ———— =nzP (z) - (a+tm)P (z) (15)
dz n n-1

£
o

is given. Letting z = cos (o),

dP™ (cos (o))
n

-sin” (a) —3 (cos (o))

= ncos (o) P (cos (@) - (n+m) P (cos (@)
n n-1
' (16)
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S0,

PP (cos(@) PP (costa)| P (cos (o))
-sin (o) YY) =n cos (@) ~(n+lm)

sin (o) sin (@)

(17)

It can be seen that the terms in the brackets will be 0 except for

m = 1 as above, This leaves

dP! (cos (o)) P! (cos (o) Pl (cos (a))
 -sin (o) —= = n(cos (a)) -(n+ 1) S
d (cos (@) sin (o) : sin (o)
- (18)
Evaluating this at o = 0 gives
. :
—sin (o) dP (cos (a)) Y 16 el V) NRPAPIPRY Bl 1)(n)
¥ " d(cos (o)) 2 2-
a=0 . (19)
_ -nln+1)
2
The coupling coefficient for g = 2 is therefore,
n+l (2n+1)
= (- k.14 0
Co,mn', le, 2 (0, ) = (-1) n{in+1) 72, n,n' (20)
Note that the factor in front of the D oo is the same for g = 1 and

=2, The D o ! 2F€ given in Eq. B82 and are the reciprocals of the -

J

first derivatives of the C coefficients, given in B 78, evaluated at the

poles.
From B786, |



Cial® " fz ——rﬁ—ﬁ)— (20)B = z _r_i_‘f_w_ -5+1

N wad g - B <n-B)'
- ] o (21)
¢ N < (gl -
Z +)2y[u-sm“ﬂ=r+§ B enPa-p
: B B: B
apd
Dy, cle .o o (22)
n
S (n+§)’ “8., _
| 1+25 - gt 20 e X
§‘-Sl,n,n‘—c-
Similarly, .

n -8
R apien® @t o)Lyl
Co 't = f_z DL 2¢ 2 BT~ pi 29

n . |
e N mER 5B
= -0 ST an <2§)» (x+) (23)

_2n N @mtp) B i} ~B-1
=l BZI'B”H"-B“ @0 P+ (g + a2 P

3
=

2
= o1 - _<L+_&_ “Bi{-p-B_
1 Z S eofa-p-5 (24

-10-
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and

} -c/a RS | (24)
& (n + B)! B
zz (2%¢) -8 -840

2,n, n'
- B!

a

2,n,n'c

{=s
Table 1at the end of this section presents the numerical values of

a a a '
the (sq’ nn e ), (Dq, non'o ), and (c.q’ o, 1,0, 2(0, 1) 3) for all poles up to

-and including n = 15, The n' given are for n' 2 0, since the negative index -

simply gives the complex conjugate value, and there is only a single pole

when the n' index is O,
The next factor in the expansion is the natural mode vector, Eq. B88,

7)) IR (6", ¢") for q = 11
v S (', ¢ = j e (25)
n, m, o -, =

H

LQn’ m, 0(8 L, ¢) forg= j

From the coupling coef f1c1ents, it was seen that m can only be 1, Also
for g = 1, only the odd ¢ can be considered and for g = 2 the even o, all

other combinations giving 0. From this arr B15

. P:;/cos; (6% d P;;(cos (6 ')
! 1y = & e (AY = & s !
Rn, 1’0(9 s 0N Y e PR I (¢") €y R sin (¢") (26)
The theta component is therefore,
, PI]; (cos (')
! 1 - 1
Qin,l,o(e » 0 )> c0s (¢") — 5y 27

6 1

-11-



and the phi component

dPl(cos (")
- sin (¢ TR

¢!

1]

(%o, 1,00"67)

aP(cos (g)

sin (¢ )| sin (9" dn(cos o) (28)

Similarly, from B13

R | dPrll(cos 8') . P/r{(cos(e'))
Qn, 1’ e, '(?l, (}5 ’) 7=ge.e' de' cos (¢ 'A)—e¢ wsin (9') sin (¢ ') ‘ (29)
The theta component is e
v dPé(cos(G'))
(Qn, G M)e' = cos (§0{-sin (6") 3Ty (30)

an< the phi component is

Pz'l(cos (e'))}
(B 006 0) =m0 | g — (30

In evaluating the Legendre functions the subroutine from

(9)

Mathematics Note 3 is used except when g' = 0 and g8' = 7. It can be

seen from Eq. (10) and Eq. (19) what the values are for §' = 0, From

'ﬂéfringtén(lo)
L Pl (COS (Q')) - n
2 __I'_l_______ = (-1) nin+1) S . . (32)
sin (&) - 2
and R
."'f; . 1 IO 3 -
. n _(=1)
sin (¢) T(oo5 D) _ =3 nin+1) (33)
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This completes the breakdown of the factors in the Vp S 7 (r", s) of
Eq. B99., The waveform part is © '
~@3) % G |
V_ T (T, s) = Uu_" 0 - (34)
b S P ‘

;';(?T+ )
2 S - = ! 1 b
Uy " @00 =4 1 g aRy g 0f0%9)
(35)
2| [Picos (o) d P} (cos (9")
= 2= I 1 +—-» . ' . 1
5 €y STle f:os(d)) eé,sm(eé EYICH) sin (¢')
For the theta component, T
1 (e )
Fpfees it _osaniet) oy (36)
sin(g") sin(g ") -
So, the theta component of the static term is simply ~3/2 cos (¢').
For the phi component
pl )
dF 1 (cos (8"} _d(-sin(g")
d(cos (g')} d{cos (s }h _
(37)
_cos(p")
sin(g")

The phi component of the static term is then 3/2 sin(¢') cos (g').
Note that in all the factors having vectors, a term cos (¢') may be
factored out of the theta components and a sin(¢') out of the phi component,

so that all ¢' dependence may be factored out from the currents.

-13-



The Vp S (@, s) of B99 may now be broken into components and

stated as follows, to summarize, the theta component is

< ~T) ) 3 N
(T, s) -st
2 1 _r
cos (¢') s zzz Sq, n, n' q,n,n‘<xq,n(9 )>6' s -5

gn o 9, m, n'

(38)

where the X function is one component of the mode veetor with no ¢' depen~

dence. So, forgq=1 o 7

| S |
\ - <u S (g' ¢'9 Pl(cos (6"
RN IV \1,n10 """ /' "n
. <X1, n{® )>6’ " cos(¢") ~ sin(g") (39)
and for g=2
v (8", 9" dP-(cos(g')
_ 2, 1, l: e g = i 1 n
< 2,00 )> - cos (¢') = =sin(6') 37555 oM - (20)

For the phi component,

T
<V2 F, s)) |
o' _

sin (¢ ')

3 cos(G) ZZZ

qnn q,l’l:'

1 i
(8"} ———— S - (41)
< q,. )‘15' —S.Q:n:n[} ’ , o

q, n,n

(2

~14-



where for g = 1,

WY

| (T )
S 1
<v (g ',¢,')> dP*(cos (')
<><1 <e'>> iy e 3 (42)
s n ¢|

S (91 = sin(6") —3(Gos (a"N

and for q = 2,
| < @) ) ,
v (6", 9" P (cos(g")
<X2 (e')> s .2 (43)
J n ¢'

sin(¢") 7 T sin(gh

also,

. r _ gl en+ 1) |
Cq, n, n' (-1) nin + 1) Dq, n, n' (44)

where the Dq o are given in Eq. (22) and (24). From Eq. B75,

t4

to = - afc,

This completes the analysis of the equations in B99 for the special

@

coordinate system used for the numerical calcuistions. Novw the time
domain equations must be considered. These are found in Egs. 2. 64,

which are,

@) ) Ty 8 )
v S @, =ZS ¢ @)YV T @ve alt~t )
p a. o 1" @ o
(o] o O O 0
.
.‘ » __,(E’S) lwa+(t-to) Qa+(t_—t0) ,
+ 22Re s "¢ (El)v (e e u(t-to)
o o, o oy :
(45)
L) o)
v S @.n=0_ ° @) [E’ S ]u(t-t )
P, 1 o

)

~15~-



From 2.1

s EQ +iw (46)
.o o o :

The natural frequencies, cdupling coefficients an& mode vectors are
the same as in B899, so combining the object and waveform parts and

separating into theta and phi components, the time waveform will be

v, )¢, 3 WHEZE 1 o (")
sin(¢h |2 °°F o s  “a,nn'\*g,n ° ¢!

g nn Gn

(=t ) (47)

S i !
g, n, n o)

u(t—f )
o

- o ' : '
where the Cq 0 (Xq, n(e ))6' , and (xq, n(e ))q')' are the same as defined

above, o
The limits on the summations will depend on what is to be considered

in any given case. The g index goes between 1 and 2. n will range between

1 and infinity, and the limits on n' are given in B79, In this note a given

n is taken and the calcu;ations will include all the poles up through and

"jincluding those in that ofde'r";and then adding individual pg)llesK (or pole pairs)

in the n+1 order' to observe fﬁeir effect‘ on the waveform.. If a pole does

not occur on the real axis (iw # 0) then it aﬁd its complex cohjugate must

both be included. |

Now that current has been considered one may go on to the charge

density. This is given in B100 as

-16~
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{p) (p_) (p)

V 2@se=V ® @ a+V_° @9
p Py P,
(p) e-Sto ~(ps)
A% ', s) = U @', 0)
PW s p
n¥l
~(ps) -st_ & n k( 2 ) .
TS e=e >y [2
O n=1 m=0 o=e, 0 n,____k(n?.) S2, n, n!an
n'#0 for n odd
(48)
(p )
% S 1 ! .._.._._..__....._.1
c2, n,n,m,o, p(el’ ¢ 1}1/2, n, m, o (6" ¢ ") 578y L o }

The coupling coefficient is the same as for current when q = 2,

Eq. 20, which means only the m = 1 terms with ¢ even may be considered,
all others being 0,

From B96
an =nn+ 1)a (49)

The natural mode term is, from B89,

(ps)
)y =
VZ, n, 1,e(_f) Yn, l,e(el’ 9"

(50)
= cos (¢') Pi(cos (8")

Ifg'=0o0r 8'= 7 the natural mode term is 0 since Pi (1) = 0, so

§' must be values other than 0 or 7.

-17-



The static term is, from B104, with m = 1 and o even

(p ) ' , -
-~ S = f 1
U, ” @00=2A, ¥ (6.4Y (51)

From B58 and B56

' 3
= ! = - ——
A2, 1,1,e,2 R bl, 1, e 2

S0

=]
0
5
(e}
N

- 3 cos (gwpi (cos (8"))
(52)

I

cos (¢ '){3 sin(6 "))

Now rewrit‘e‘ B100 as

\
(o1

\Y% @,s)  -st o . n ,
2 ., © 3 sin (8') +2§:n(n+l)c/a cr o Plcos(a")
cos(¢') s 2 2,n,n' " n o
n n' Sy opop L
1

s (53)

-5
. 2,1, n'

. o .
where C2, n, ' is given in Eq. 44,

The time domain expression will be

2 (p )
Vz.: (?"13 t)

- . . < nln +1)c/a 1. | _
COS(d)[) = 3Sln(6)+zz _.._2____—-.Cl n'Pn(COS(O'))

2, n,

! S
nn 2, n, n'

52, n n"(t-to) o
e 7’7 ’ L u(tvto) : (54)

where again the summation limits are as before,

-18-
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The surface current and charge density step response functions are
now in a form whiéh can be programmed for calculations on a.digital com-
puter. Inthis note the calculations for the freque'ncy’dc;main step response
functions are multiplied by s (ika in the normalized frequency Spectrum).
The difference Eetween this and the delta response function is discussed

in Section IV.
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n' °1, n,n'a/'C Dl, n,h'alc °L,n,n', 1,0, 2(0: mlale
real imaginary real imaginary real imaginary
110 -1,0000  0,0000 1.0000 0, 0000 1.5000 0.0000
211 -1.5000 . 83660 . 5000 . 8660 -, 4167 -, 72117
310 -2.3222 0, 0000 1,6285 0. 0000 . 9439 0.0000
3|1 | -1.8389  1,7544 -.3142 . 9616 -. 1833 . 5609
411 | -2.8962 . 8672 1,4116 1.7555 -. 6352 -, 7900
412 | -2.1038  2.8574 -. 9116 . 4919 . 4102 -, 2213
510 | -3.6467  0.0000 3.9045 0.0000 1.4317 0.0000
501 | -3.3520  1,7427 -. 4110 2.8844 -. 1507 1.0576
512 -2,3247 3.5710 -1.0412 -, 2373 -.3818 -.0870
~ |
6|1 -4,2484 .8675 4.0506 4,47117 -1,2537 -1,3841
6812 -3,7357 2. 6263 -2,8791 2.2090 .8911 -. 6837
6, 3 -2,5159 4,4927 -, 8715 -. 8779 . 2078 L2717
T10 -4,0718 0. 0000 10,7796 0.0000 2.8874 0.0000
711 -4,7583 1.7393 -. 5262 8.6995 -.1410 2.3302
T12 -4,0701 3.5172 -4,3508 -, 4020 -1.1761 -, 1077
T13 -2,6857 5, 4207 L0272 -1,1460 L0073 -, 3070
811 -5, 5879 .8676 12,2272 12,6837 -2,8870 ~-2.9948
812 -5, 2048 2.6162 . -8,8795 8,1230 2,0965 ~1.9179
813 -4,3683 4,4144 -3, 6036 -3.8343 .8508 . 9053
814 -2.8380 68,3539 . 7559 -,9194 -, 1785 L2171
910 -6.2970 0. 0000 32.0333 0.0000 86,7626 0. 0000
911 ~6,1294 1,7378 -, 3618 27,1014 -, 0764 5,7214
gz 2 -5,6044 3.4982 -16,0822 -, 1358 -3,3951 ~, 0287
913 -4,6384 . 5,3173 -, 2772 -6, 1874 -, 0585 -1,3062
91| 4 -2,9793 7,2915 1,2045 -, 2790 . 2543 -, 0589
101 -6,9220 .8B677 38.3290 38.2615 - -7.3173 -7.3045
1042 -6,6153 2.61186 -27,9335 28, 4831 5,3328 -5,4377
1013 -5,9675 4, 3849 -15, 4475 ~14,1688 2,9491 2,.7050
10 | 4 -4,8862 6.2250 4,3792 -5,7277 -, 8360 1,0935
1015 -3,1089 8.2327 1,1728 . 5239 -, 2239 -, 1000

Table la. Natural Frequencies and Pole Expansion Terms for the Perfectly -
Conducting Sphere.
q=1
1<n<10

-20~



% n | °1, n,n'a/C ]?1, n, n‘a/C C:1,n, n', 1,0, 2(0’ mlalc
‘  real imaginary real imaginary real imaginary
1110 -7,6223 0.0000 99.6026 0.0000 17,3550 0.0000
1111 -7.4842 1.7371 1.5114 86.7723 . 2633 15,1194
111 2 -7.0579 3.4890 -56, 6944 2.6875 -9,8786 . 4680
113 -6.3013 5.2762 ~2,8656 -26.6266 -. 4993 -4,6395
111 4 -5,1156 7.1370 8.0972 -1,8978 1,4109 -. 3307
1115 -3,2297 9.1771 . 6501 1.,1652 . 1133 . 2030
1211 -8,2534 L8677 123.4916 120,09874 -19,7903 ~19. 2464
12 1 2 -7,9973 2.6091 -89,8188 - 98.6691 14,3940 -15.8124.
1213 -7,4656 4,3702 -60.6824 -49,9360 9.7247 8.0027
12 1 4 -6.6110 6.1715 19,1131 -27,7060 -3, 0830 4,4401
1215 ~5,3297 8.0529 8.5734 4,1366 -1,3738 -. 6629
12| 6 -3.3430 10,1243 =, 1768 1.3742 . 0283 -. 2202
Y1310 -8, 9477 0.0000 319.3543 0.00G0 47,3767 0.0000
1311 -8.8303 1,7367 11,1044 283,8186 1.6474 42,1050
1312 -3, 4706 3.483¢ 1 ~187,6906 - 17,3112 -29,32717 2,5681
P1303 -7.3444 5,254 -16. 56714 ~-105, 1183 -2, 4578 -15.5945
: A 29004 7.070¢ £0.32775 -106.8C52 {7 3.47E82 -1. 6178
.; 30531 0 -5,5307 8.8722 4,63804 9.7539 . 6958 1.4470
y 13 8 -3.4438 11,0739 -. 5915 1.04189 -, 1471 . 1546
14 11 -5, 5832 .8677 406,1225 387. 5621 -56.0836 -53, 5205
1442 -9.3631 2.6076 | -294,2717 341, 4053 40,6375 -47, 1464
14 |3 -8.9110 4,3616 | -228.9372 -173.4236 31.6151 23.9490
14 | 4 -8.1988 6.1430 75,2563 -119, 7447 -10.3925 16.5362
14 {5 -7.1724 7.9732 46,4561 21.3480 ~6. 4154 -2.9481
14 16 -5,7204 9.8947 -2.,6581 11,9418 ©. 3671 -1.6491
1417 ~3.5511 12,0257 ~1.4679 . 2688 L2027 -, 0371
1510 -10,2731 0.0000 | 1046,9179 0.0000 135.2269 0.0000
) 1511 -10.1709 1.7364 52,1798 943. 9529 6.7399 121,9273
: 15 |2 ~9,8596 3.4807 | -688,2131 81,1837 -388.8942 10, 4862
1513 -9.3236 5.2423 -78,6977 -398., 5534 -10. 1651 -51,4798
15 1 4 ~8,5325 7,0344 176,7443 -54, 6047 22,8295 -7.0531
1515 -7.4294 8.8790 27,0396 55,8020 3.4926 7.2078
1516 ~-5,9002 10,8200 -10,6149 - 8,7526 -1.3711 1.1305
15 |7 -3.6474 12,9795 -1.3970 -, 8661 -, 1804 -, 0860
Table 1b. Natural Frequencies and Pole Expansion Terms for the Perfectly
B Conducting Sphere.
) q=1 ‘

11<ng 15
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) 52, n,n'a/C : DZ, n,n’a/C z,m1', 1, e, 20 male

n |n . :
“real imaginary real imaginary real imaginary

1 v -, 5000 . 8660 -. 5000 ~. 2887 -, 7500 -.4330
2|1 0} -1,5961 0.0000 -.6265 0.0000 . 5221 0.0000
211 -, 7020 1.8073 -. 1867 ~.4808 . 15586 . 4006
3 |1} =-2,1571 . 8706 -. 6330 -. 5127 -.3692 -. 2991
3| 2 -. 8429 2.7579 . 1330 -, 4715 L0776 -, 2750
4 | 0] =2,9487 0. 0000 -1,3236 0.0000 . 5856 0.0000
4 |1 -2.5714 1,7523 -, 2127 ~-1,0072 .0957 . 4532 -
4 1 2 -, 9542 3.7148 . 3746 -. 2945 - -. 1686 . 1325
5 1 1 -3. 5443 .8689 -1,5392 -1.2729 . -. 5644 -. 4667
51 2] -2,9081  2,6443 . 57086 -1.1300 . 2092 -.4143
5 | 3] -1.0477 4,6764 . 4685 -, 0216 L1718 -. 0079
6 |0 -4, 2846 0.0000 ~-3.4713 0.0000 1,0745 0.0000
6 | = -4,0336 1.7430 -. 5387 -2.8050 . 1687 . 8682
6 1 2. =-3.1952 3.5449 1.3823 -. 6408 -, 4278 . 1983
6 | 3 -1,1289 5, 6416 . 3921 . 2501 -, 1214 -. 0774
7 1 -4,8972 . 8684 -4,3041 ~3.5865 -1.1529 -. 9607
7T 1 2] -4,4540 2.6233 1.8705 -3.4511 . 5010 -. 9244
713 -3. 4476 4, 45286 1.77559 . 4089 L4703 . 1085
7T | 41 -1,2012 6. 6097 L1778 . 42777 . 0476 . 11486
8 | 0| -5.61586 0, 0000 -10,0314 0.0000 2.3685 0.0000
8 1} -5,4263 1.7398 -1,5530 -8.4287 .3687 1.9901
8 | 2 ~4,8254 3.5095 4.8351 - ~1,9997 -1, 1416 L4722
8 | 3 -3.6739 5.3662 1.3309 1.6302 -. 3142 -. 3849
8 | 4| -1.268686 7.5801 -. 0973 . 4525 . 0230 -, 1068
9 [ 1] -6.2383 . .8682 -12.9072 -10,7982 -2.,7249 -2,2796
9 [ 2 -5,8954 2.6153 6. 1346 ~10, 9895 1.2951 -2,3200
9 |3 -5,1598 4.4011 6.5316 1,9157 1,3789 . 4044
9 | 4| -3,8798 6.2850 . 0781 2.4279 . 0165 . 5126
9 | 5] ~1.32866 8.5525 ~. 3371 .3180 ~-. 0712 . 0671

Table lc. Natural Frequencies and Pole Expansion Terms for the Perfectly
Conducting Sphere, ‘
g=2
1<ng 9
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o arEo e Reeisen e B bmEa ek oo e AFICTo T L s S

% 0 la SZ, 1, n’a/C : 2, n, n'ar/‘C ‘ c2, n, n', l,g, 2(0’ malc
3 oo real - imaginary ‘real " imaginary real imaginary
1041 0 -6.9444  0,0000 -30. 6474 . 0. 0000 5.8500 0.0000
101 -6,7922 1.7383 _-4,7608 . -26,4439 . 9089 - 5.0484.
101 2 -6.3191. 3.4950 |  16.6591 -6.5288 -3.1804 1.2464
10} 3 -5, 4050 5.29717 4, 9897 7,1036 -. 9526 -1,3562
10| 4 -4,0694 7.2081 | -1,8052 2.2673 .3064. -. 4328
.10} 5 -1,3821 9.5265 | ~. 4592 L0722 . 0877 -.0138
111 -7.5739 . 8680 -40,3984 -33.8803 -7.0391 -5,9034
1112 -7.2935 2.6113 .20.3558 . -35.8819 3.5469 -6.2522
11} 3, -6.7067 4,3789 | . 23.5834 ... 7.5880 4,1092 1.3220
11 4 -5.17465 6.1987 - -.8180. ... 10,8721 -, 1077 1.8944
11 5 ~4,2453 8.1351 | . -3,0011 . 9624 -. 5229 . 1877
11] 6 -1.4339 10,5019 -, 4218 .-, 19889 -. 0735 -. 0348
Y1200 -8.,2722 0.0000 | ~97.0834 0.0000 15.5582 . . . 0,0000°
1211 -8, 1448 1,7375 1 -15, 1487 -85,3830 2,424 - 13,6832
1212 -7.7532 3. 4875 57,350 -21.7837 -0, 1810 ... 3,48913
R -7, 0650 3.2668 18,3569 28,0890 -2.2386 -4, 5037
; ~oo0B4 T 10T 8.5 039 10,1673 1. %269 -1. 810
q N | -4, 4099 9.0655 -3,3387 -1,1532 . 93862 . 1848
A 127 -1.4825 11.4786 -, 2378 -, 4044 .0381 . 0648
1311 -8.9065 .8680 | -130,1711 ~-108, 3505 -19.3111 -16.2223
13 2 -8.6691 2.6090 68,3584 -119,2875 10. 1411 -17.6965
1313 -8.1787 4,3670 84,1582 28,4562 12,4850 4,2215
131 4 -7.3989 6.1583 -4, £472 44,3780 ~. 65897 8. 5835
1315 -6.,2537 8.0125 -16.,1760 3.0554 ~2.,3997 . 4533
1316 -4 5647 9.9990 -2,2524 -3.2782 -. 3342 -, 4863
1317 -1.5284 12,4563 .0301 -. 4709 . 0045 -, 0699
Table 1d. Natural Frequencies and Pole Expansion Terms for the Perfectly

Conducting Sphere.
q=2
10<n<g 15
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T Y Sz,p,;i'a/c o Dz,n,n‘a/c cz,n.n',l,e,z(o’”),a/c ‘
- real ° '..imaginary| ' real imaginary real imaginary
1410 -9, 5994 0,0000 | -315,4652 0. 0000 43, 5642 0.0000
141 -9, 4898 1,73%70 -49,4237  -281, 4597 6.8252 38.8682
14} 2 -9,1551 3, 4831 198, 1264 -73,7556 | =-27,3603 10, 1853
141 3 -8.5758 5, 2496 66,6335 106, 6635 -9,2018 -14,7297
14| 4 -7.7120 ° 17,0533 -40.8105 41,6856 5.6357 -5.7566
1415 -6, 4847 8.9245 -17,7311 -9, 0531 2,4486 1,2502
1416 ~4,7110 10,9351 . 1475 -4, 4290 -.0204 .6116
1417 -1,5719 13, 4351 . 2905 -, 3757 -. 0401 .0519
1511 -10, 2373 .8679 | -428,3704  ~360.2875| ~-55.3312 ~-46, 5371
15} 2 | -10,0312 2.6076 232,0083  ~402, 0841 29.9675 -31,9359
151 3 ~9.6092 4,3598 299,0684 104, 2044 38.6294 13,4714
151 4 ~8.9488 6. 1354 -21,8088 173.2352 -2.8170 22,3762
1515 ~-8,0072 7.9516 -74,6609 9.3119 -9, 6437 1.2028
15) 6 ~6.7033 9.8396 -10.2234 -21,5534 -1.3205 -2.7840
15} 7 -4,8500 11,8737 3.0368 -3.8637 . 3923 -.4991
151 8 -1,6133 . 4539 -, 1503 . 0586 ~.0194

14,4147

Table 1d, (Continued)
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III, Classical Frequency Domain Approach

In this section, the conventional frequency domain-inverse Fourier
transform solution is discussed. For the induced current on the sphere,

Harrington develops the equations

dPrll(cose) 1
an(cose)

(2)
n

lEinc(ka) cos ¢ < sin g d(cosg) +

a A A
6 2 ka & 'n dH(rzl)(ka) singH
d (ka)

(55)

(ka)

and
d Pl (cosg)
0

1 .
inc sin ¢ [ Pn(cose) sing d{cosg)
n

L = a - ]
A AN(D
¢ 4, ka =1 i dH(i}(ka) jHQ )(ka)

sin g ——g =
9 T kA

iR,  (ka)
(56)

L.

A
Note that H(i) (ka) = ka h(r21) (ka) where h(i) (ka) is the Hankel function and

ZO is the free space wave impedance, The spherical Hankel functions
11
were evaluated with the subroutine in Mathematics Note 4.( )

In Eq. (55) and (56),

a_ = i on + 1)/ + 1) (57)

1
and Pn is an associated Legendre function which may be evaluated using
the subroutine from Ref. 9. Equations (10), (19), (32), and (33) were

used to evaluate the values for ¢ = 0 and g = 7.

The infinite sums of Egs. (55) and (56) were calculated with the

convergence criteria of

i n -
B /> B.| £1x10 8 (58)
| n i=1 *
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where B is the nt%l term of the serles.. _, _ . .

For the purpose of this note, Einc(ka) was the tf.z'féﬁsfo;"r:ned step
function'in time. In the frequency domain, - El.n‘c(ka) ~ EO/ ika, With this
value of ;E_'inc(ka), Egs. (55) and (58) were transformed into the time

domain. All transformations were done using the fast Fourier transfor-

mation method, (12)

From the continuity equation,
e , '
V:J+sp=0" ‘ ' - (59)
The charge density is found to be

: Lo g (07 % en + D Pl cos o)
C p=E€ (ka)cos(¢>) A — - (60)

0" | (ka)2 1 H ke ))'

The results of these equatlons are compared to the natural mode

"
i,,..\‘

method in Sectlon IV
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IV. Numerical Results

The step function current density and charge density responses are

given in Egs. 38, 41, 47, 53, and 54 for both frequency and time domains.
~(J ) (p)
These equations are in terms of the V S (@'t or s) and Vp (@', tors).

These may be written in terms of the current and charge densities. From

2.36 in Ref, 1,

V S @,s)=T(s)U_° (7, s) (61)
‘ p b .

~ B 00 B (7)) |
T @,8) ==—F (U @, 8=2V @8 (62)
Z p Z .
P o 0
so for the theta and phi commnonents of current
B [ (7))
I (s) = ==V (£, s)
! o 6'
(63)
/= \
N \
J o (s)=+ - \v (£, 2
o o\l /s
Similarly, for charge,
| (o) -
- —*'
pS(s) EOEOVp (r', s) (64)

-97 -



" In this note the normalized frequency response is evaluated for s on
the iw axis, so that

NP RPN D
PR O et Sab oz a7

e & B Lo TE L
SE i 2 ika : (65)

The time,'domginre_s»ults are also normalized by a_/ ¢, so that they
are presented in terms of ct/a. The expressions evaluated are then, for
frequency domain step function response times ika. These give a close

approximation to the delta function response and are,

ikaJs (ka) Z ~(:f )

o
9f - ika S 2y .
E cos(¢')  cos(s') Vp ﬁr ’ lka)

,.;ier‘ ShL Ll L
o ikaJS¢'(k§)ZQ o ~<—fs}' AT
E sin(g7) T sin(g ") Vp (f’lka)qb, (86)
ika p_(ka) . {p)
8 ika T S (i}{a)

GOEO cos (') cos (¢") 'p

and for the time domain step function response

7)) :

J_ A(ct/a)Z <~ s’ o, )
S o= Vp (r,ct/a)e,
Eo cos (¢') cos(¢")

)

JS¢ ’(ct/a)ZO <‘~/. s'@ ct/a)>¢,

) t = b r (67)
L (o) sin (¢ ')

_(p)
Py (ct/a) } Vp (ct/a)
€ E_ cos (') " cos(g")
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In evaluating the classical frequency domain approach the equations
were normalized in this same fashion, so that direct comparisons could
b.e made, |

Figures 3 ;through 7 show the waveforms for the time domain equa-
tions (Eq. 63), Poles considered are all poles through a specific order,
labeled N on the graphs. So, if N = 3, all poles up to and including
n = 3 are included. The line labeled N = 0 is the static term. Orders
up through 15 were studied; the graphs illustrate waveforms for orders
n=1, 2, 3, and 4, This is sufficient to show how the addition of poles
contributes to the convergence of the current to the actual infinite limit.

The initial effect of the incident wave at the cbservation points
considered (' = 0, #/4, #/2, 3x/4, and #) is shown by the vertical dotted
line. These time values may be determined by geometric optics. Note
from Fig. 1 that time zero is at the center of the sphere. The ''turn on"
time for 8' = 7 will then be -a/c, and for g' =0, ct/a=1+#/2. All
graphs in the time Jomealn begin with otfa = -1,

On the ""shadowed'’ side of the sphere (0 <p'< 7/2)the N =15
curve shows some very small oscillations along the zero axis until
"turn on'' time and then it follows the N = o curve exactly. The classical
frequency domain approach produces exactly the same numbers as for
the N = 15 waveform. The curves labeled » are those computed from the
classical technique. For the illuminated side (#/2 < 8'< = ) the classi-
cal frequency approach produces a smooth curve from the "turn on'
time; the singularity expansion method at N = 15 is still producing some
oscillations at early time before converging to the infinite pole limit,

Figure 8 is the delta functidn reéponse graphs for frequency domain
at ' = 37/4. 'These are the magnitﬁdes of the complex functions in
Eg. 66. |

As more orders are included, the singularity expansion frequency

spectrum more closely approaches the infinite pole limit. With fewer

-20-



poles, the frequency spectrum goes to zero sooner than in the case where

more poles.are ad‘ded. _As in the time-domain graphs, the curves labeled
o' are produced from the classical frequency domain approach, For
N =15 there is a-'hump' which occurs at ct/a ~ 15 and then the spectrum
goes‘to 0. - It is noted that for orders between N = 4 and N = 15, the wave-
form closely follows the o curve until a certain point in frequency and
then a "hump'' occurs before it goes to zero, . This is true for both
"shadowed'' and "illuminated" parts of the sphere. Fig. 8 includes curves
for N.= 15, = - ' : . _
“Figures 9 and 10 show, in the time _domain, the effects of individual
poles (or pole pairs if the poles are complex) on the waveform. For
Fig. 8, poles of order. l'are added to Athe‘f static term, and in Fig. 10,
poles of order 2 are added to the waveform produced by all poles through
ordern =-1, S e e - 7
Note in Fig. 10 for the theta component of the current that 82’ 2,0

ana s do not contribute anything to the N.= 1 waveform. And simi-

2,2, 1
larly in the phi component S1 9 1 does not contribute to the N = 1 curve,
2 2 (J )

This effect can be seen from the mode vector 7' ° (¥'). For q = 2 in the

theta component, and from Eq. 40

) | | o .
<V2 i 1 e(@’,sﬁ'))e, , dPé(cos (')
o5 (6 1) = -gin(g ") IETICE) o =0 (68)
g'=37/4
n=2

The same thmg is true for q 1 for the ph1 component This‘irr»lp}ie‘s."
that due to nulls 1n the natural modes of the sphere, not all of the natural
frequenc1es contrlbute to the convergence of the Waveforms at certam

points on the body.
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. | As was noted earlier in the note the frequency domain calculations
3 ~ for Fig. 8 ére not étrictly speaking the delta function response, but
" rather the step ‘func_tion response multiplied by ika. The actual delta
function response of Eq. B97 was also calculated for comparison., It
was interesting to note that when all the poles for a given order are
i includgd, along with all poles for lqwer orders; the two calculations
- differed only by a relative differenc%é of about 10_3 for values of n up to
15 and ka to 15, When only a few poles are included in an order, the

two calculations did vary considerably.

s
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V. Conclusibns“

Wy : T -
oot ot I

. This note has taken the general equatmns for electromagnetlc
scattermg by a sphere as formulated by Baum usmg the Slngularlty
Expans:Lon Method, and obtained numerical results for the 1nduced sur-
face currents and charges in the frequency and tlme domains. A com-
parison of these results Wlth those obtamed by the conventlonal frequency
domain analys1s with a Fourier transformatlon has also been made.

It can be generally said that the results of the Singularity Expansion
Me’chod compare very favorably with those of the conventmnal technique,
prov1ded the proper number of poles are con81dered For late times,
only a.few poles are needed to have reasonable agreement between the
twq methods For earller times, more: poles are needed for the same

degree of accuracy. ' )
The most beneflclal aspect of thls method however, 1s that a com-

plete description of the time dependent behavior of the spherical obstacle
can be had by tabulating the pole locations, and coupling coefficients as :
in Table I, and by knowledge of the natural mode vectors. In the case of ‘i
the sphericalobstacle, these natural modesﬁ»are‘de‘s crlbedby ‘the Legendre
polynomials. ; '
} Frorrl the results of this study as applied to the special case of a
spherlcal obstacle, it can generally be said that the Singularity Expansion
’I_)‘e chnique provides a new method forftreating EMP interaction problems.

At present, the more general aspects of this. method are b‘eing studied.
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