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TIME HARMONIC ANALYSIS OF THE INDUCED CURRENT
ON A THIN CYLINDER ABOVE
A FINITELY CONDUCTING HALF-SPACE

ABSTRACT

A thin cylinder above a finitely conducting half-space is 1llu~-
minated by a monochromatic plane wave. The electric vector of the
incident plane wave is parallel to the axis of the cylinder and the
Poynting vector of this incident plane wave intersects the surface
of the finitely conducting half-space at an oblique angle. Green's
functions are employed in a formulation which requires the applica-
tion of boundary conditions in two coordinate systems: a cylindrical
coordinate system for the thin cylinder and a Cartesian coordinate
system for the finitely conducting half-space. Formal expressions
are derived for the total current on the thin cylinder and the elec-
tric field at the surface of the half-space under the condition that
the height of the thin cylinder above the half-space is much greater
than its radius. The height of the thin cylinder above the half-
space, however, is unrestricted with respect to wavelength.
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1. INTRODUCTION

The intent of this memorandum is to analyze the scattering properties
of a cylindrical conductor above a finitely conducting half-space. The
boundary-value problem is simplified by treating a cylindrical conductor
of infinite length and considering only parallel polarization such that
the only component of the electric field is parallel to the axiﬁ of the
cylindrical conductor. Related problems have, indeed, been addressed in
the literature dating back to 1926!. Much of the earlier work analyzes the
transmission or radiation characteristics of a wire above ground under the
assumption that the wavelength is much longer than the height. This long-
wavelength assumption is not valid for many wavelengths of interest in prob-
lems concerning the interaction of an electromagnetic pulse (EMP) with long,
overhead transmissioh lines.

The objectives of the present study are: (a) to develop a useful fre-
quency domain characterization of induced shield current on a long cable
above a finitely conducting earth due to EMP or other RF excitation, and
(b) to apply a Green's function approach to the idealized boundary-value
problem in order to employ conventional assumptions made in electromagnetic
scattering theory and linear antenna theory. The accomplishment éf the
former objective should provide a new tool for use in EMP vulnerability and
hardening programs. The accomplishment of the latter objective should help

bring the present study and earlier efforts into the proper perspective.

lcarson, J.R., "Wave Propagation in Overhead Wires with Ground Return,"
Bell Syst. Tech. Jour., 5, October 1926.



The format of this study is a didactic one in the sense that the actual
problem of interest is addressed through a stepwise procedure. That is,
several preliminary applications of Green's theorem are treated in order of
increasing mathematiéal complexity. Each of these preliminary applications
adds to the mathematical machinery available to analyze the plane wave scat-
tering from a thin cylinder above a finitely conducting half-space. Ideally,
this procedure should lead to a clear understanding of the mathematical
approximations employed in this study and an intuitive feeling for the util-
ity of the Green's function method in analyzing other related boundary-
value problems involving the presence of a finitely conducting half-space.

Most modern textbooks on electromagnetic theory or mathematical physics
treat the scalar form of Green's theorem and Green's functions. Only a brief
description of fundamental definiéions will be given here. Many electromag-
netic boundary-value ptoblems involve solving the scalar, ho;;geneous Helm-
holtz equationlsubject to arbitrary Dirichlet or Neumann boundary conditions
on a closed boundary surface S:

V2¥(T) + k2¥(r) = 0
where T is within or on S. The Green's function for such a boundary-value
problem, G(?f?)), is the solution of the inhomogeneous Helmholtz equation
for a unit point source at r~°, i.e.

v26(T|T”) + k2G(T|T") = - 4né(¥T-T7),
which satisfies homogeneous Dirichlet or Neumann boundary conditions on the
surface S. Greeh's functions will be used in the present study to obtain

solutions of the homogeneous Helmholtz equation which are subject to inhomo-

geneous boundary conditions.



The reciprocity principle and Green's theorem lead to the usual rela-

tionship between ¥(T¥) and G(T|T"):

¥(r) = 1§ [ G(F|T") 3¥(F) - ¥(¥F) G([T¥) ] ds
4n an

on Ton S
where T is within or on S and
2_=n-V.
an .
The unit vector n is normal to the surface S and is directed from the inte-
rior of S, i.e. n points away from the region where y(¥) is to be measured.

Lastly, recall that the closed boundary surface, S, need not be simply

connected but can be made up of more than one simply connected surface.

2. INDUCED CURRENT ON A CYLINDER IN FREE SPACE

A conducting circular cylinder of infinite length is exposed to an
incident plane wave ﬁith the electric vector parallel to the axis of the
cylinder as shown in figure 1. The total electric field, Ez(iﬁ, is the sum
of the incident electric field, Ei(?), and the scattered electric field:

E,(D) = EL(D) + L § [ Go(FIF) 2E2(F) - £, ") o(rleD ) as

4 _ on on Y on S
where Go(?l?') is the two-dimensional free-space Green's function, i.e.
G (vlT) = tru{D [T - 7)), (1)
and
EL(F) = E exp(-1kx) (2)
Time dependence of the form exp(-iwt) is suppressed throughout. The sur-
face S includes the cylindrical surface at infinity and the coaxial surface

of the perfectly conducting cylinder such that the region of interest is



=l

™

Figure 1. A circular cylinder illuminated by an incident plane wave.



between these coaxial surfaces. The integration over the cylindrical
surface at infinity vanishes. Consequently, the total electric field at
a point in space becomes
2n
E,(p,6) = Ejexp(-ikpcos¢) + 1 | [G (p,é]a,6") 3By (0 7,07 | |
. p =3
4n O 3(-p°)

- Ez(a’¢’) aGo(p’¢|p‘i¢‘) ' . ]ad¢‘

3(-p") p =a
where
E,(a,67) = 0
so that
2' E rd rd
E_ (0,4) = Egexp(-1kpcos¢) - 1_ [ G,(p,8]a,67) 2E2(P 7247 | = aay-.
z 4n 0 3~ 0 “=a

The normal derivative of the electric field at the cylinder's surface is

proportional to the surface current in that

B (07087 | = - tumHg(a,87) = - LwugKz(67) (3
o~
p=a

where K,(¢”) is the surface current distribution. Therefore the total

electric field at an arbitrary point in space is given by
2n

E (p,$) = E_exp(-ikocoss) + 1002 [ G (p,0]a,07) K (47) do~. (4)
4m 0 2

An integral equation for the surface current is obtained when the
boundary condition on the electric field at the surface of the cylinder
is imposed:

2w

Whol | K, (47) ngl) [2kalsin((¢-6")/2)|] dé¢* = E exp(-ikacoss)  (5)
4 0

where the kernel of the integral operator can be written as



H(D [2kalsinC(o-0)/2) |1 = ] €3  (ka)H{!) (ka)cost(4-67)

=0

for

1 s, 2 =0
€, -{ (6)
2 [} L = l’ 2, 3’ e oo

The integral equation can be solved in a straightforward manner by expanding
the surface current in a Fourier series,
- ,
K (¢7) = ] K,cosms”. 7
m=0
Using the well-known eipansion
exp(-ikacos¢) = J em(~i)me(ka)cosm¢,
m=0

substituting the series expansion for the kernel of the integral operator

in equation (5), employing equation (7) in equation (5) and integrating

leads to
WHoaT T Rodm(ka)HS!) (ka) cosme = Eg ] en(-1)®Ip(ka)cosmé.
2 m=o m=0

Equating coefficients of the same eigenfunction in the last result yields

Ky = _ 2 E, tm(D" (8
wHpam Hél)(ka) »

so that

K,(¢) = 2 "o ) € ol )" cosmé. ' 9)
mka r"jz: m=0 H(l)(ka)

From equation (4), the scattered field from the cylinder, B:(T),



is given by

27
E;(p,0) = 19803 |G (p,8a,67) K,(67)de". (10)
4n o

If the cylinder circumference is very small compared to the wavelength of
the incident radiation, the surface current is uniform:

K () =——r _ 2 Eo (11)
wu,an Hél)(ka)

as ka + 0, Consequently, the scattered electric field specified in equation

(10) becomes

27
E, (p,0) —— - __Eo J BV (a2 + 02 - 2apcos(¢-97))1/2)ds"
2rt{V (ka) ©

and, thus,
Ey (p,0) — - E; _Jo®®) {1 k) (12)
Hél)(ka)
as ka >+ 0. An azimuthally uniform surface current implies an azimhthally
uniform scattered electric field and vice versa. Although this is somewhat
self-evident, it is an important factor in constructing self—consistaht for-
mulations for more complex boundary-value problems that involve narrow

cylinders.

3. INDUCED CURRENT ON A CYLINDER ABOVE A PERFECTLY CONDUCTING PLANE

Two coordinate systems are displayed in Figure 2: a coordinate system
associated with the reflecting half-space, (X,Y), and a coordinate system
associated with the perfectly conducting cylinder, (x,y). The origin of
the (X,Y) system is at the point of reflection of the incident plane wave

in the absence of a cylinder. The origin of the (x,y) system is on the
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axis of the cylinder and located at

x=0= X =X, =Y, /tany
and

y=0=2Y=y,
where ¢ is the angle of incidence of the incident plane wave with respect
to the plane at Y = 0. Here, the plane surface at Y = 0 is taken to be
perfectly conducting. Thus, the region of interest lies between the closed
surface S, the surface of the perfectly conducting cylinder, and the closed
surface made up of S,, the semi-cylindrical surface at infinity with its

axis at X = 0 and Y = 0, and So, the plane surface at Y = 0,

The total electric field in the absence of the perfectly conducting

o
z’

cylinder, E_, is given by
EQ(R) = Ej[exp (ik(Xcosy - Ysiny)) - exp (ik(Xcosy + Ysiny))]  (13)
in the (X, Y) system or
EX(T) = Eolexp (+ik(xcosy - ysiny))- exp (+ik[xcosy + (y+2y,)siny])}(14)
in the (x,y) system where
Eo = Eo exp(+ik(xocosy - yosinyg)) = the incident plane wave
evaluated at (x,,y,). (15)

Green's function for a perfectly conducting plane can also be expressed in

either the (X, Y) system or the (x,y) system: that is,

GRIR") = tn { B{D k(X - X2 + (¥ - ¥)2)1/2) (16)

- H{D [k((X - X2 + (Y + Y1)2)1/2))



or

G(r|r?) = in { Hgl)[k((x - x)2 + (y - y))1/2) an

- D ((x - x)2 4 (y + 37 + 27D V/2) ),

Since the plane at Y = 0 is taken to be perfectly conducting, the boundary-
value problem can be formulated entirely in the (x,y) system using equations
(14), (15), and (17).

The total electric field can be represented as the sum of the field
in the absence of a perfectly conducting cylinder and the field due to the
presence of the cylinder over the perfectly conducting plane. The latter
field is rélated to Gteeﬁ's function for a perfectly conducting plane via
the appropriate Qurf;ce integrals over Se, Sy, and S. The surface integral
over So vanishes because of the behavior of the Green's function and electro-
magnetic fields at infinity. The surface integral over so vanishes because
both Green's function and the total electric field vanish identically at

Y = 0. Therefore, the total electric field at an arbitrary field point be-

comes
E(=EXD + 1 § [6x|r) ) (' ) - E,(x) G(rlr ) d
z z — —_
4v r“on s
where
Ez(r’ onS) =0
so that
E (r) = 2 (r) +1 $ [6(r]r") E (") )45, (18)
lm 3“ r on S
This result can be expressed in cylindrical coordinates as
E,(0,8) = EX(p,4) + nca / 0 G(o.¢|o = 2,0 )K_(4°)d¢" (19)

10



vhere Kz(¢') is the surface current defined in equation (3).
The surface current is rigorously defined by imposing the boundary
condition at p = a, i.e.
| E,(a,$) = 0.

The integral equation for the surface current is, then,

ika Jﬁﬂf }”c<a.¢la.¢’)xz<¢‘)d¢' = - Eg(a,¢) (20)
4m €, © .
where

G(a,$|a,$”) = in { Hgl)[ka((cos¢ - cos$”)2 + (sin¢ - sinQ‘)z)l/Z] (21)

- Hgl)[k(az(cos¢ - cos$”)2 + (asin¢ + asin¢” + 2y°)2)1/2] }

and

Eo(p,8) = E [exp(+ikpcos(¢+y)) - exp(+2iky,siny) exp(ikpcos(¢-¥))]  (22)
An exact analytical solution of equation (20) for the surface current does
not appear to be feasible. Howéver, the related problem concerning scatter-
ing by two parallel éircular cylindefs has been treated by numerical methods
and has been reported in the literature?:3,

An analytically tractable situation occurs when the height above ground,
Yo» 1is much greater than the cylinder radius, a, even though Yo and a are
not restricted with respect to wavelength. The kernel of the integral oper-
ator in equation (20) simplifies for y >>a: |

G(a,p|a,0") == in { HSD) [2ka]sin((s-67)/2) |1 - BSD) (2ky,) }
yo>>a ]

2Row, R, V., "Theoretical and Experimental Study of Electromagnetic Scattering
by Two Identical Conducting Cylinders,' Journal of Applied Physics, Vol. 26,
Number 6, June, 1955.

301a0fe, G. O., "Scattering by Two Cylinders,'" Radio Science, Volume 5,
Number 11, November, 1970

11



and equation (20) becomes, for Z, = "uoleo,
2n
- ka zoj; { 0§D [2kalsin((s-67)/2) |1 - BED (2ky IR, (67)d¢” =

4
(23)

o
- Ez(a’¢)

which can be solved in the same way as equation (5) using Galerkin's method.
The surface current can be expanded in a Fourier series as

K (¢) = I + ] (Ajcosnd + Bysin né) | (24)
z 2ra n=1

where the total current is, simply,
2
a [ K,(4")d¢" = I. (25)
o
Expanding the kernel of the integral operator in equation (23) and substi-

i ating the Fourier series expansion of the surface current leads to

27
kaz, | ([HED (2ky) - Jo(ka)uY) (ka))
4 o

- 2( E Jm(ka)ﬂél)(ka)cosm¢cosm¢‘
m=1

+ ) Jm(ka)ﬂél)(ka)sin mésin m¢”] }[I/2ra
m=]

+ ) (Apcosné” + Bysin n¢”)]1d9” = - ES(a,9)
n=1
where
EO(a,8) = E, (1 - exp(+2iky,siny))

+ 2 Eg(1 - exp(+21iky,siny)) ) ime(ka)cosm¢cosmw
m=1

- 2 Eg(1 + exp(+2ikyosinyg)) ) 1"Jp(ka)sin mésin my.
m=1

12



Performing the indicated integrations and, subsequently, equating coeffi-

cients of the same eigenfunction yields

1 = 484 (1 - exp(+2ikyosiny)) (26)
kZo 13, (ka)HD) (ka)-HSD) (2ky )]
= 4k, (1 - exp(+2iky_siny)) imcosmg . 27
Am kzoaw ° Hml (ka)
By = ~%0  (1+ exp(+2ikygsiny)) 1 sinmy (28)
kZoavr Hls‘l ) (ka)
so that
Kz(¢)». 2 [E5(1 ~ exp(+2ikygsiny)) ] (29)

kZoam (5 (ka)H§V) (ka) - HED) (2kye) ]

+ A& ¥ 1"cosm(¢+p)
kzoaw m=1 H'll(ll) (ka)

- AEo exp (+2iky, siny) z imcosm(g-y) .

.kZoaﬂ m=1 H,gl)(ka)

Conventional transmission line theory invokes the assumptions that a
and y, are both small compared to the wavelength in addition to the restric-
tion that y,>>a. Employing the small argument expansions for the Bessel

and Hankel functions that appear in equation (26), the total current becomes

i
I = g'Ezsin(lqrosimb) (30)
k Zc
where
E; = 2E, exp(+ikx,cosy) (31)
and
Zc = Eg In EZQ . (325
" a

13



‘The current in equation (30) ié the short-circuit current for a two-wire
transmission line excited by an incident plane wave with an electric vector
parallel to the line“. The Poyncing vector of this incident plane wave
makes an angle ¥ with the normal to the plane of the transmission line. The
amplitude of the incident electric field along the axis of the two-wire line
is E: and the characteristic impedance of the two-wire line is zc. Appar-~
ently, then, the Green's function formalism reduces properly to well-known

transmission line theory in the limit of long wavelengths,

4. TOTAL FIELD ABOVE A FINITELY CONDUCTING HALF-SPACE

Suppose the cylinder, denoted by the surface S, is not present in figure
2 and that the half-space for Y < 0 is a conducting dielectric with electri-
cal parameters €gs> Op, and u,. The total electric field above the conducting

dielectric is given by

4

-

E,( =E,(R) -1 [ [E,(®") 36®IR) T ds,
on, _
R on §,
since Green's function vanishes when R” is on S,+ In the (X,Y) coordinate

system this total field becomes

+o
E,(X, Y) = EZ(X, Y) +1_ [ E (X", 0) 6(X,Y|X;¥") | dx~. (33)
4y -= Y~
Y =0

The total field above the finitely conducting half-space is represented in

equation (33) as the sum of the total field above a perfectly conducting

“Harrison, C. W., Jr., "Receiving Characteristics of Two-Wire Lines Excited

by Uniform and Non-Uniform Electric Fields." Interaction Note 155Liandia
Corporation Monograph SC-R-64-164. Albuquerque,New Mexico, May 1964.

14



N

plane and a term due to the presence of a non-zero field on the surface of
the conducting dielectric. In the absence of a scatterer above the conducting
dielectric, the field distribution on the surface Y = 0 is well-known and
provides an example problem for checking mathematical manipulations and
procedures.

The zeroth order Hankel function, Hél)[k(uz+v2)l/2], can be represented
by an integral along the real axisS: |

+

Hgl)[k(uzwz)l/zl =1 [ exp(+ifu) exp(+iv(k2-£2)1/2) q¢ (34)
" - (k2-£2)1/2

where k can be complex and v 2 0. Using this identity, the derivative of

the Green's function appearing in equation (33) can be written as
4o

3G(X,Y|X;Y") =2 [ exp(+LE(X - X7) + 1¥(k2 - £2)1/2) 4
Y~ - |
Y =0
so that
E, (X,Y) = E; (X,Y) (35)
+eo Rt '
+1 [ exp (HEX + 1Y(k2-£2)1/2)[ [ exp(-16X7)E,(X",0)dX"]dE.
27 - =

At the surface of the conducting dielectric, this result becomes

4o o
E, (X,0) = [ E,(X",0) [_;__ J exp(+1E(X - X’))dl;] dx”
-0 T - ‘

where
+o
1 [ exp(+iE(X - X"))dE = § (X - X*)
2r -

so that equation (35) degenerates to an identity at Y = 0.

5Head, J. H., "The Effects of the Air-Earth Interface on the Propagation
Constants of a Buried Insulated Conductor," Interaction Note 50,Kaman Nuclear
Report KN-785-70-6(R), Colorado Springs, Colorado, 19 February 1970, p.17.

15



The fields in and above a finitely conducting half-space due to an inci-
dent plane wave are well known for any polarization of the incident electric
field. The electric field at the surface Y = 0, for the situation of interest,
is given by

E,(X,0) = E5(1 + Ry) exp(+ikXcosy) (36)
where Ry is the reflection coefficient for a horizontally polarized elgctric

field. The horizontal reflection coefficient is given by
= Siny - [(er+iag/weo) - coszwll/2 (37)
sinp + [(eptiog/uey) - cos2y]1/2

where

R Y (38)
Substituting the surface field specified by equation (36) interquation
(35) gives

E,(X,Y) = Ep(X,Y)

+e

4o
+ E (4R [ exp(HEXHY(k2-£2)1/2) [ exp(+iX”(kcosy-£))dx"|dE

1
2n -
wherein the bracketed integration over X“ is a Dirac delta function so that
E,(X,Y) = E,[exp(+ik(Xcosy-Ysiny))- exp(+ik(Xcosy+Ysiny)) ]
+ E,(1+R) exp(+1kXcosyHY (k2-k2cos?y) 1/2)

or

E,(X,Y) = E,[exp(+ik(Xcos¥-Ysin¥))+ R, exp(+ik(Xcosy+Ysiny))]. (39)

Equation (39) gives the expected result for the total electric field
above a finitely conducting half-space. The functional form of the surface
field specified in equation (36) permitted the exact analytical evaluation

of the integrals appearing in equation (35). When a scatterer is present

16



above the finitely conducting half-gpace, however, the functional form of
the electric field at Y = 0 will not, in general, permit an exact analyt-

ical evaluation of those integrals.

5. TRANSMITTED FIELD IN A FINITELY CONDUCTING HALF-SPACE

A refracted wave with a complex angle of refraction, a, is shown in
figure 3 in conjunction with incident and reflectedeaves. A scattering
obstacle is not present in the region above the finitely conducting half-
space such that the electric field for Y =2 0 has already been derived using
Green's function and is given by equation (39). The present objective is
to derive the field in the conducting dielectric using the field at Y = Yg
= 0 and Green's function. |

A new coordinate frame of reference is defined in figure 3 such that a
field point in the finitely conducting half-space, ié' can be specified in
the (X,Yg) coordinate'system for convenience. The transmitted electric

field, Eg(ié), in the conducting dielectric is given by

— . —_ 'ﬁ %
ES (Ry) = -1 | eB®,) 2% g/Rg) | as,

4 on _
' B Ry on S,
where
Go(X,Yg[X; ¥g) = an{u{D  (r, JOX - X2 + (¥, - Y92 ] (40)
- 1 - X")2 )2
HED [k JOX - X2 + (¥, + Y2 1)
and
kE = ngegu? + 1ugogw . ' (41)

17
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In the (X, Yg) coordinate system, the transmitted field thus becomes

4o
EB(X,Y) =1 [ EE(X;0) 3Gg(X,Yg|X¥g) | qx-. (42)
bn == 3Y *
¥ =0

The (X,Yg) coordinate system has been introduced in order to represent
the derivative of Green's function in equation (42) as

4o
BGg(X;{sB(’_&)_ = 2 J’ exp(+1E(X-X") + 1yg(k§_52)1/2) d€

so that
+o0 +m
ESx,yg) =1 exp(+iEX+iYg(k§-§2)l/2)[ [ exp(-1EX")EF(X;0)dX1dE.  (43)
2n -0 -t
Noting that
E2(X,0) = E,(X,0)
and using the surface field specified by equation (36) in equation (43) leads

to
400

EE(X,Yg) = Eq(1+Ry) [ exp(+LEX+HYy(k2-£2)1/2) § (£-kcosy)ds

-0

where the replacement of Y, by -Y gives

-4
ES(X,Y) = E(1+R,)exp(+i[kXcosy - Y(k3-k2cos2y)!/2]).
Using Snell's law of refraction,
kcosy = kgcosa , (44)
and introducing the transmission coefficient,
Th = 1+ R, | (45)
yields the final result for the transmitted field:

E%(X,Y) =- EoThexp(+ikg(Xcosa - Ysina)). (46)

19



Equations (46) and (39) are, of course, the classical results for the
scattering of a plane wave by a finitely conducting half-space. The mathe-
matical techniques and procedures developed up to this point can now be

applied to the boundary-value problem of interest.

6. INDUCED CURRENT ON A THIN CYLINDER ABOVE A FINITELY CONDUCTING HALF-

SPACE

6.1 Formulation

The total electric field at a point above the half-épace can be repre-
gsented as a sum of three partial fields: (i) the total field above a per-
fectly conducting plane in the absence of a scatterer, (ii) a contribution
from the presence of a non-zero surface field at Y = 0, and (i1ii) a field
due to the induced current on the scatterer. That is, the total field above

the half-space can be expressed as

ano

E,(r,R) = Eg(r or R) - 1 [Ez(i') 3G(R|R” g:l ds,
on S

9 G(r|r) %EZ(r)) (9 ds
“on _
ron S
where the cylinder coordinates, T and ;‘, have been mixed with the half-space

coordinates,‘i and R”, for convenience. Thus, this total field becomes

40
E;(T,R) = E9(r or R) + 1 [ E,(X;0) 3G(X,Y[X;¥) | dx~ (47)
4n o Y~

Y= 0
27
+1ika Zo [ G(p,é|p" = a,87)Kz(67)d¢"
4n o

where, as before, Kz(¢‘) is the surface current distribution on the cylinder.

20
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The transmitted field at a point in the finitely conducting half-space
can be represented solely in terms of the field at Y = 0. This transmitted

field is given by

ES(R) = - L j’[sg(ié) 26 (R [RIT a5,
4 an
& R”on S
g °
and, as before,
EE(X;0) = E,(X;0)
so that
4+ . ’
ES(X,¥g) = 1 [ E,(x;0) 3Cg(X.¥g|X¥g) | ax- | (48)
4T -= ) o8
& y'=0

g
The surface field at Y = 0 and the surface current on the cylinder must

be determined through the appropriate boundary conditions. The total elec-
tric field must vanish at the surface of the cylinder,
Ez(;}i) =0 forr, Ron S, (49)

and the tangential component of the magnetic field must be continuous at

Y = Yg = Q,
3E, (¥ ,K) - - PEZ(RY) . (50)
Y 3Yg
Y = Y =0
0 g

Equations (49) and (50) lead to a set of coupled integral equations for
Ez(X;0) and K,(9") which, in general, are not subject to exact solutions.
In that which féllaws, approximate solutions are obtained for Ez(X§0) and
Kz(¢’) under the conditions that the circumference of the cylinder is much
smaller than a wavelength and that the radius of the cylinder is somewhat

smaller than its height above the half-space.
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6.2 Fields Above and Within the Half-Space

The surface field at Y = 0 is assumed to be of the following form:
E,(X;0) = Eo(1+Rp)exp(+ikX“cosy) + C H§D) [k((X*-x,)2 + y2)1/2),  (51)

The exponential term in equation (51) is the surface field that would be
present in the absence of a scatterer above the half-space, equation (36).
The Hankel function in.the above equation is the contribution to the surface
field due to the presence of the cylinder at (X = x,, Y = y,) and C must be
determined via boundary conditions, As will become evident shortly, the
Hankel function in equation (51) gives rise to a modification of the image
field (due to a cylinder at (X = x,, Y =-y,)) which would be present if the
plane at Y = 0 were perfectly conducting.

The partial field above the half-space that originates from a non-zero

surface field is denoted as

400
E;(X,Y) =1 [ E,(X;0) 3G(X,Y[X;¥*) | dx~ (52)
% oY~ :

Y =0
so that
E;(X,Y) = E5(14R,) exp(+ik(Xcos¥ + Ysin¥))
v
+C [ exp(HEX + 1Y(k2-£2)V/2)1(5)de
2r --
where
40
1(e) = [ exp(-1£X") HSD [k((X“-x)2 + y2)1/2)dx". (53)

-l
The integral I(£) can be evaluated using the integral representation of

the Hankel function given in equation (34):
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E pd +oo
I(&;) = ‘1; J' exp(‘icxo+iyo(k2"cz)1/2)[ J‘ exp(.‘.i(l;_g)x')dx']dc
n

—o (k2-y2y1/2 —o
so that recognizing the integral over X as a Dirac delta function yields
1¢e) = 2 exp(-1£x Hy (k2-£2)1/2) (54)
(k2-g2)1/2
Consequently,
E;(X,Y) = Eo(1+R,) exp(+ik(Xcosy + Ysiny)) (55)

+ ¢ HSD [R((X-x)2 + (YHyg)2)1/2]
wherein X = x + x5 and Y = y + y, 80 that using x = pcos¢ and y = psin¢ leads
to
Ez(p,¢) = Eo(1+Ry) exp(+2ikyosiny + ikpcos(¢-y)) (56)
+ ¢ BSD { k[p2+(2y,)2-20(2y,) cos(¢+n/2)11/2} |
The partial field that originates from the surface current on the cylin-

der is defined as
. 2n
E, (p,6) = ika 2, [ G(p,$|p"=a,6") Kz($")d¢~ (57)
4m o
which reduces to a more manageable form for the case of a "thin antenna.”
That is, when the wavelength is long compared to the cylinder circumference,
ka<<l, the surface current flows essentially along the axis of the cylinder

such that

G(p,0|p” = a,¢") —— G(p,$|0,¢7) . (58)
ka<«<1

Therefore, equation (57) becomes

E; (0,6) = - k 2z, (H§Y) (kp) (59)
4

- H{D (ko2 + (29,)2 - 20(29,)cos (¢+1/2)11/2} )1
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where, as in equation (25),
2n
a [ Ky(67d¢” = L.
o

The total current, I, must also be determined through boundary conditions.

Equation (59) can also be written as

EX (X,Y) = - k Zo(H§D{K[(X = xg)2 + (Y - y5)213/2) (60)
A

- HSD KX - x)2 + (Y + yo)214/2D1.
Collecting results, equations (13), (55) and (60) can be used to express
the total field above the half-space in the (X,Y) coordinate system:
E,(X,Y) = Eg(X,Y) + E;(X,¥) + E, (X,1) .
Similarly, equations (22), (56) and (59) can be used to expréla the total
f'eld above the half-space in the (p,¢) coordinate sysfem:
E,(0,0) = ES(0,0) + E;(p,8) + E; (p,8) .
The total field above the half-space has been expressed in both coordinate
systems in order to facilitate the application of boundary conditions.
Turning attention, now, to the transmitted field in the finitely con-

ducting half-space, equation (51) can be used with equation (48) in order

" to obtain
Eg(x,Yg) = E,(1+Ry) exp(+1kXcosyHY,(k2-kZcos?y)1/2) (61)
+ - 2_¢2)1/2 2_¢2y1/2
s ] SRPCHECR MY (G-e2) /241y (k2-¢2)1/2)
T - (k2 - g2)1/2

Note that Snell's law of refraction has not been invoked because of the

presence of the scatterer above the half-space. Furthermore, equation (61)
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reduces properly to equation (51) when Y8 =0,

The electric field above and within the finitely conducting half-space
has been expressed in terms of the unknown quantities C and I. These unknown
quantities can now be evaluated by imposing the appropriate boundary condi-

tions,

6.3. Boundary Conditions

The boundary condition for the tangential electric field at the surface
of the cylinder can be readily imposed using equations (22), (56) and (59);

E,(a,0) =E, [ ] ime(ka) cosm (¢+y)
m=0

+ Rpexp(+2iky,siny) ) 1me(ka)cosm (¢=-¢) ]
m=0

+C ] emim(ka) H:Sul)(ZkYo)cosm(Mﬂlz)
m*=o

- 1 (k/&)Z [H§Y) (ka) - ] egpIp(ka)BSD) (2ky,) cosm(¢+n/2) ]
m=0

i
o

wherein

o0
m
exp(+ikqcosa) = Z i Jp(kq) cosma
m=0

and

Hél)[k(q2+p2~2pqcosa)l/2] = z eme(kq)H&l)(kp)cosma
m=0
for p 2 q. Integrating over ¢ from O to 2n yields
t
Jo(ka)E,(x,,5,) + C J (ka) HSY) (2ky,)

- T (k/4) 2,0 H{Y) (ka) - J (ka) BED (2ky )] = O
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for
E:(xo,yo) = E, (1 + Ry, exp(+21ky°sin¢)) = total field at
(x5,Yo) in the absence of a scatterer. (62)
The "thin antenna" assumption implies
Jo(ka) +1
and

B (ka) + 1+ 24 [y + In (ka/2)]
n

for ka<<l where Y = 0.5772. Employing only the former small argmﬁent apprdx—-
imation for the time being, the boundary condition at the surface of the
cylinder can be compactly stated as

¢ 1§V (2ky,) - T(k/4) Zo[HSY) (ka) - D (2kyo) ] = - Ejlxo,¥0). (63)

The boundary condition for the tangential magnetic field at Y = 0 can
be impoz-x.ed by generating the following derivatives using equations (13), (55),
(60) and (61):

aEz;:’Y) = E, exp(+ikXcosy) (-1 + Ry) iksiny

Y=0
4o

+1 [C+ (k/2)Zo1] [ exp(#1E(X-x0) + iyo(k2-£2)1/2) d
n

-

and

PEZ(X,Y) , = - E, exp(+ikXcosy) (1 + Ry) i (kZ-kZcos?y)1/2

i k2-g2y 1/2
c (_s_f;) exp(+1E(X-x,) + 1y, (k2-£2)1/2)qc.
== \k2-¢2

A |r
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Consequently,
E, exp(+ikXcosy) {[iksiny - i(ké-kzcoszw)l/zl

- Ry [1ksin¢ + i (ké-kzcoszw)l/zl}

+u
- [1 + k2“52 1/21 exp (+1E(X-x ) +iy, (k2-g2)1/2) 4
k2_€2

400
+1 /2 25 [1 [ exp(HE(X-x,) + 1y,(k2-£2)1/2) dE ]
[ )

for all X.

Dividing the last result by X and integrating over X from -« to +=

requires the following integrations:
40
J exp(+ikXcosy) dX = im , kcosy>0
X

-0

and

4o )
[ exp(HEX) dX = in { +1 , £50
A X -1, E<0.

These results then lead to

Eo{ [1ksiny - 1(kg-k2cos2w)1/2] - Ry[iksiny + i(k2-k?cos2y)1/2]}

{ "1 + (“2“52)1/2] exp(-1Ex, + 1y, (k2-£2)1/2)ag
k2-g2

-1 | ’:1 + (kzg“g'z) 1/2] exp(-1£“x, + iyo(kz-E’z)l/’-)dEj'}

1
T/ 7, Ti [ expl-ixg + 1y, (k2-£2) /2 dg
L™ o
o v
-1 [ exp(-187x, + 1y, (k2-£2)1/2) de” ]
o e
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and, defining £° = -£, this becomes

Eol [1ksiny - 1(kZ-k2cos?¥)!/?] - Ry [1ksinyH (k2-k2cos?y) 1/21}

= c{z j [1 +(k2‘52)1/2 sin(Ex,) exp(+iy, (k2-£2)1/2) dz}
k2_€2

+ 1 (k/4) 2, [_a_ [ sin(exy) exp(riy,(k2-£2)1/2) de]
T o
Finally, the last result can be expressed more succinctly by defining

1+ k2-£2 1/2
kZ-EZ

] sin(Ex,) exp(+iy (k2-£2)1/2)de  (64)
£(v,k,k,) = E{[iksiny - 1(k3-k2cos2y)1/2] - Ry [1ksinp+i (k3-k2eos29) 1/21} (65)

o%— 3

F(xo,Yoakvkg) =2
L
with
and, therefore,

c F(xotyo:kokg) + I (k/4) ZO F(xosyookuk) = f(w,k’ks) (66)

for kcosy>0.

6.4 Formal Solutions

Application of boundary conditions has led to a system of two algebraic
equations, equations (63) and (66), in the two unknown quantities C and I.
A straightforward application of Cramer's rule provides formal solutions for

C and I:
c = £k k) [HED (ka)-HED (2ky ) ] - Flxg,y KK EE (xg,y,)
- KoKk g P o 01T oK 1K) B X515V (67)
F(xo1Y sk rkg) [HSD) (ka) -HED) (2ky o) ] + Flxg,56,k k) ESD) (2Kyo)

and

I=4_ Fx0,¥0,K,kg)EE(xo,y0) + £(¥,k,kg)HED) (2kyp) . (68)
K2, F(xg,¥oskskg) [HSD) (ka)-HEL) (2kyo) 1 + F(xo,¥4,k,k)HSL) (2ky,)
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In order to numefically evaluate I and C, the integral F(xo,yo,k,kp) mus t
be evaluated for arguments of interest. A form of F(xo,yo,k,kg) that is
more amenable to numerical evaluation is derived in the Appendix of this
work,

Two limiting forms of the total current in equation (68) yield the
expected results. First, consider the case where y, + = such that

Hgl)(Zkyo) + 0 and, therefore,

t
I+ 4 E;(%55%5) ag Yo > - (69)
kZy 5l (ka)

Far above the half-space, then, the induced current is essentially that on

a thin cylinder in free space, equation (11), due to the incident and
ground-reflected plane waves which constitute the total field at (xoyo),
Eg(xoso). Secondly, 1f |k | » = then Flxo.yoskskg) » = and £(4,k,kg)
remains finite so that

I+ 4 Eg(xo,yo) as |kg | + =. (70)
kZ, (D) (ka)-HEY) (2ky,) )

This result is essentially the same as equation (26) when ka is required

to be small in that result.

7. CONCLUSION

Formal expressions have been obtained for the total induced current on
a thin cylinder above a finitely conducting half-space and the electric
field at the surface of that half-space. The assumptions made regarding
the cylinder radius, a, the height of the cylinder above the half-space,
Yo» and the free-space propagation constant, k, are as follows:

ka << 1,
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the "thin antenna" assumption, and

Yo >> a.

An assumption was not made restricting Yo with respect to wavelength and
neither conduction currents nor displacement currents were assumed to be
dominant in the finitely conducting half—spacé.

The formal expressions for the total current and the surface field
involve integrals that contain several parameters: the angle of incidence,
Yo-k, and the complex propagation constant of the finitely conducting half-
space. These integrals. in general, do not appear to be amenable to analyt-
ical evaluation and, consequently, have been expressed in a form suitable
for numerical evaluation. Complex propagation constants for the half-space
w.ich are large in magnitude, compared to the free-space propagation con-
stant, in conjunction with small angles of incidence may render these inte-
grals analytically tractable.

Suppose a cylinder is imbedded in the finitely conducting half-space,
rather than located above it, and a plaqe wave is obliquely incident on this
half-space. A Green's function formulation analogous to that developed in
the present study should also be applicable to this problem.

Future efforts in this problem area will be devoted t; numerical eval-

uation of the total current in equation (68) for particular cases of interest.
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APPENDIX

Transformation of F(xo,yo,k,kg) for Numerical Evaluation

The integral F(xo,yo,k,kg) given in equation (64) has a singular inte-
grand at £ = k, which lies on the path of intégration. This integral,
however, can be split into two 1ntegrals and each of these can be transformed

into integrals with non-singular integrands. To this end, define

F(xgs Yorkiskg) = F (x5,¥50kokg) + Fy(x5,¥qsk kg) (A-1)
where
P, (Xg,Yosk,kg) = 2 "‘ (kZ-gz) 1/21
ToO k2-£2
X smczxo) exp(+iy, (k2-£2)1/2) dg (A-2)
with
Fp(x sy Jkok ) = 2 [ [1+ ( —52) ”2]
o o g K2-g2
x sin(Ex,) exp(+y (k?-£2)1/2) qe. (a-3)

The integral Fx(xo'yo'k’kg) can be transformed with the following change

of integration variable:
E=ksind D E=k=20=7%/288E=0=0=0
with

df = k cos 6d6.

Consequently,
n/2
F(X0s¥0skskg) = 2 [ [kcos® + (kZ-k?sin26)1/2)
n o
X sin(kxosine) exp(+1kyocose) de (A-4)

so that F1 has no singularities along the path of integration and should be

integrable numerically. Similarly, the integral Fz(xo,yo,k,kg) can be
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c10 (3%

transformed via

52"‘12+k235'k=0u-o&€+ﬂ.u+-

and, therefore,
=

.Fz(xo9y°sk:kg) -% ‘r {lﬂ’ UZ‘I(ké"kz)z }

o .
x sin(x, Juz-l-kz ) exp(~uygp) du. : (A-5)
u+k? |
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