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ABSTRACT

An alternative integral equation is derived for the problem of
a plane electromagnetic wave incident on a perfectly conducting cyl-
inder of infinite length containing a slot of arbitrary central
angle. The electric vector of the incident plane wave lies along
the axis of the slotted cylinder and the conductor is taken to be of
infinitesimal thickness. The kernels of this integral equation for
the diffraction problem are non-singular and the formal eguation
contains the electric field in the opening and the surface current

on the conductor.



FOREWORD

This report is the third in a series of reports concerning
electromagnetic scattering by apertures in conducting screens and
conducting enclosures. The first two reports of this series were
published by the U.S. Naval Ordnance Laboratory at White Oak, Mary-
land, with the numbers NOLTR 70-58 and NOLTR 72-25. The work re-
ported herein was partially sponsored by the Defense Nuclear

Agency under Subtask EB-088.

~
o}

[



4

CONTENTS

ABSTRACT....-..-....oo...oo.-o.--.n.ol..oIuooo..oooc...-.. 3

F.OREWORD........I...I.........I................Il....ll... 4

1.
2.
3.

4.

5.

INTRODUCTION.'...‘...I................'............... 7
INTEGRAL EQUATION FOR THE ELECTRIC FIELD IN THE SLOT.. 8

INTEGRAL EQUATION FOR THE SURFACE CURRENT ON THE
CONDUCTOR...'.........'....................l.........'13

ALTERNATIVE INTEGRAL EQUATION FORMULATION.:.eceeeoeecos.l4d

CONCLUSIoNSQI'....'-..................l'.‘....‘l......lG

FIGURES

1.

Linearly polarized plane electromagnetic wave incident
on a slotted cylinder...ccceeeceecsecsscssssssossasses 9



B I o L SV S

1. INTRODUCTION

The problem of scattering of electromagnetic radiation by a per-
fectly conducting cylinder of infinite length containing a slot par-
allel to its axis was not resolved until very recently. Progress
had been made toward the solution of this diffraction problem, but
only approximate solutions of greatly restricted validity -had
evolved. Presumably, Sommerfeld! published the first theoretical
work, formulating the solution in terms of series expansions for the
fields internal and external to the slotted cylinder. The applica-
tion of boundary conditions did not lead to an explicit - evaluation
of the unknown expansion coefficients that appear in this formula-
tion. To obtain an approximate solution, Sommerfeld assumed the
slot arc length to be small compared with the wavelength. By ap-
plying the method of least squares, he obtained analytical expres-
sions for the coefficients in this asymptotic limit. Sommerfeld
furnished no numerical or experimental results. Morse and Feshbach?
also used series expansions for the field. They, however, expressed
the unknown series expansion coefficients in terms of an integral
over the unknown electric field in the slot. The requirement that
the azimuthal magnetic field must be continuous in the slot led to
an integral equation for the unknown slot field. Morse and Feshbach
approximately solved this integral equation by assuming that the
distribution of the field over the slot, for the slotted cylinder,
is proportional to the electrostatic slot field distribution for a
slotted plane. An analytical result for this proportionality con-
stant was obtained from the integral equation at the midpoint of
the slot. No numerical or experimental results were furnished in
this work either. Turner® derived an integral equation for the
- surface current on a half-cylindrical mirror and by a variational
( approximation obtained an expression for the total scattering cross-
section per unit length of the mirror. Again, no experimental or
numerical results were furnished in this special case.

Perhaps the most extensive earlier treatment of scattering by
slotted cylinders was that of Macrakis. (The results of this study
were presented as a PhD Dissertation to Harvard University in 1958
—"Backscattering Cross Section of Slotted Cylinders."”) The back-
scattering cross section was of primary interest in this study.

The approach utilized the method of Green's functions and yielded
the same integral equation for the electric field in the slot as
obtained by Morse and Feshbach. Macrackis assumed a static form

for the slot field with unknown constants and carried through a
variational calculation to obtain the backscattering cross section.
Although the results are limited in usefulness to narrow slots,
Macrackis did present analytical forms and numerical results. Prob-
ably more important, he published experimental results. He reported
measurements of backscattering cross sections for a slotted cylinder
and a half-cylindrical mirror for many wavelengths. Until very re-
cently, the data of Macrackis had not been successfully interpreted
and compared with theoretical results except at long wavelengths.
These recent results will be included in a paper to be published by
the present authors in the near future.

! A. Sommerfeld, Partial Differential Equations, Academlc Press, New York, 29-31, 1949,
2 p.M. Morse, H. Feshbach, Methods of Theoretical Physics, Part 11, 1387-1398,
McGraw-Hill, New York, 1953,
B 3 R. Turner, ''Scattering of Plane Electromagnetic Radiation by an Infinite Cylindrical
( Mirror," Technical Report No. 161, Cruft Laboratory, Harvard University, Cam-
' Bridge, Massachusetts, 1953.



In 1969, Barth" also considered the slotted cylinder scatter-
ing problem. His method is fundamentally similar to that of Morse
and Feshbach; an essential difference, however, is that he assumed
a finite series for the slot field. The corresponding finite num-
ber of series coefficients was evaluated by satisfying the integral
equation for the slot field at an equal number of spatial points.
This produces a finite solvable algebraic system at each wavelength
of interest. Barth calculated numerically the distribution of the
electric field in the slot at 500 megahertz (MHz) for a one-meter
(1-m) radius cylinder with a slot that subtends an angle of 60 deg.
In particular, Barth numerically obtained the electric field at the
center of the slot in the Morse and Feshbach formulation. Thus,
Barth did not publish calculations of the backscattering cross sec-
tion or the scattered fields, it was inconvenient to compare his
theoretical results with experiment. Nevertheless, there is a
serious objection that can be raised concerning his formulation of
the problem. It has been shown by Jones® that the normal component
of the magnetic field at an edge possesses a singularity. Barth's
assumed form of the slot electric field generates a normal compo-
nent of the magnetic field that vanishes at the edge.

Earlier attempts to solve the problem of plane wave scattering
by a slotted cylinder have been reviewed. We have recently investi-
gated this problem and are presently preparing our findings for pub-
lication. This report presents the formulation of an alternative
integral equation that has not been exploited heretofore—not even

by the present authors.

2. INTEGRAL EQUATION FQR THE ELECTRIC FIELD IN THE SLOT

The target is a conducting infinite circular cylinder of radius
Po whose axis is coincident with the z-axis and which contains an
infinite slot parallel to the axis. This slot subtends the half
angle ¢, at the cylinder axis as shown in figure 1. A monochromatic
plane wave is assumed normally incident on the slotted cylinder.
The incident wave vector, kj, is assumed parallel to the plane bi-
secting the slot and containing the z-axis. For simplicity, the
X-axis is chosen to lie in this plane. Finally, the electric vector
of the incident plane wave is assumed parallel to the cylinder axis.

After suppressing the harmonic time dependence e-iwt, the in-
cident fields are given by

Ej (T) = Ej,(p,$)&, = Eje~ikpcosdg, , (1)
Hi(E) = H; (0,$)8 = Hoe~lkpcosés, , (2)

where
k = 21/ = w/c . (3)

* M.J. Barth, "Interior Fields of a Slotted Cylinder Irradiated with an Electro-
magnetic Pulse,” Technical Report No. AFSWC-TR-69-9, Air Force Special Weapons
Center, Kirtland Air Force Base, New Mexico, August 1969.

° p.s. Jones, The Theory of Electromagnetism, Pergamon Press, New York,

566-569, 1964,
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Figure 1. Linearly polarized plane electromagnetic
wave incident on a slotted cylinder.

The amplitudes of the incident fields are related by
Eo = Yug/EoHg , (4)

where n, and €, are, respectively, the free-space magnetic permea-
bility and electric permittivity.

From the symmetry of the problem, it is clearly indicated that
the electric field has only a z-component. This field satisfies the
scalar wave equation at source free points,

VIEZ(F) + k%Ez(F) = 0 (5)
Furthermore, all the electromagnetic field components are independent

of the z-coordinate. From the electric field, we obtain the magnetic
field components via

1 3Ez(pr¢)

— 1 3Ez(0.¢)
H¢(pr¢) = - iUUo 56 (7)



Symmetry considerations also lead to the fact that the electric
field is an even function of the coordinate ¢. Hereinafter, we
shall append the superscript (i) to any quantity to indicate that .
it refers to the "interior" of the cylinder—that is, for p<pg.
Similarly, we use the superscript (e) to denote the "exterior”

or p>pg-.

The form of the solution to the scalar-wave equation (eq. 5),
for the interior region will be taken to be the series

(1) N . Jm (Kp)
Bz (pe9) = L 5 Ty Pmcosmé (8)
where the A are expansion constants and n is defined as
27p
== (9)

n=—r-kpo ’

that is, a convenient parameter describing the ratio of-the slotted
cylinder radius to the wavelength of the incident radiation.

A formal solution is constructed for the region exterior to
the slotted cylinder, which is the sum of a well-known field that
would be present in the absence of the slot®, and, a field arising
from the presence of the slot. Thus, we have

® . Im(n) (1)
_ _am _ 9Im
Eée)(p,¢) = EopL, €m(-1)7 [y (ke) —TTT?EY Hy * (kp)]lcosm¢ (10) :)

= Bfl) (ko)
+ EO W Cmcosmd: ’

where the coefficients Cp are as yet undertermined, and

Eg = 1, m 0 (11)
2, m

1,2,3,...

Now at p=p., the interior and exterior fields must be identical
in the slot and both must vanish on the conducting cylinder itself.
This requires that for all values of ¢,

[>-] (-]
méo Cn cosmé =m§o Apcosm¢  ;

and consegquently,

Cn = Ay - (12)

® W.R. Smythe, Static and Dynamic Electricity, 3rd Ed; McGraw-Hill, New York,
485, 1968, ' )
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The electric field in the slot at p=p, is denoted in this re-
port by E(¢). The electric field at p=pg can be written as

E(9), 2W'¢o<¢<¢o

E{L) (5, 9) = E{®) (po,0) = ; (13)
or, equivalently,
© E(¢),2ﬂ-¢o<¢<¢°
mEo Am cosmé = (14)

o, ¢0$¢52ﬂ-¢0

Therefore, the expansion coefficients can be expressed in terms of
the slot distribution of electric field—that is,
%
Em » - »
A, = EF'I d¢ “E(¢”)cosmd (15)

¢o
Consequently, one way of explicitly solving the scattering problem
is via a determination of the electric field in the slot.
An integral equation for the slot electric field will now be

obtained from the physical requirement that the tangential mag-
netic field must be continuous in the aperture. That is,

B{ (06,8) = H§® (0o, 0)  2m-9o<b<0, . (16)

so that equations (7), (8), and (10) lead to

Am oo Em( l)
HT4*n) cosm¢ = E, m— —T_T___ cosmd, 2m-¢ <d<dgy . (17)

méo
I ()

where we have used the Wronskian relation

(

gz B () - apy B oy = =2

T (18)

The surface current on an integral cylinder without a slot is de-

noted as Kéo)(¢) and is given by the well-known formula

/ o g (-i)M
K(zo) (¢) = % o Eomgo _I—I(IT)(—) cosm¢ o<go<2m . (19)

11



Equation (17) may now be written as

)

© Am _1n_ /Ho _ (o)
mZo T a0 (m) cosm¢ = - EZ'KZ ($) s =9,<d<dg . (20)

Substituting for the A, from equation (5) yields the integral equa-
tion for the electric field in the slot, namely,

%o - sy 2 €m cosm(¢-4") mm /Ho _ (o)
Lp WEED wko S T2 S F @ (21)
=0

for -¢,<¢<¢,. It is this particular integral equation—or rather
the attempts to solve it—that constituted the historical view
presented in the first part of this report.

Before continuing, two properties of the kernel of this inte-
gral equation should be pointed out. First, note that the kernel
is singular at the zeros of the Bessel functions. This forces cer-
tain requirements to be placed on the slot electric field at the
set of frequencies that generate the zeros of the J,'s. The
physics of this will be presented in a subsequent report in this
series of publications. Another property of this kernel that
should be mentioned is that it is a divergent infinite series.
This is readily demon?Efated by employing the large order asymptotic
forms for Jp(n) and Hy~/ (n)

Jn(n) =+ L [ﬂ]m
m Y2mm

. m
2 (1) . 2 en
Hp™' (n) » -1 [— [EJ

as m + . Asymptotically, the product goes as

Ip(m B () » 22X

as m + =« and, in turn, the series diverges.

The attempts of earlier workers to solve equation (21) were
essentially all focused on assuming an approximate functional form
for the electric field in the opening, which facilitates carrying
out the integration analytically. This ostensibly generates a
tractable approach. In the Rayleigh limit of approximation, the
kernel reduces to a more manageable form that permits one to obtain
—wvia Galerkin's method, for example—solutions for narrow slots.
This long wavelength approximation to the problem will also be
included in a subsequent report.

12



3. INTEGRAL EQUATION FOR THE SURFACE CURRENT ON THE CONDUCTOR

The diffraction problem has been cast into the following formu-
lation, where the governing relation is an integral equation for
the surface current on the slotted cylinder. Let K be the true
surface current on the surface defined by p=p, so that

R(o) = 8,(0) x [ (00,0) - BV (00,001, (22)

where €.(¢) is an outward unit vector normal to the cylinder axis
at an aﬁgle ¢ from the x-axis. This results in a surface current
that has only‘'a z-component which is given by

K, (0) = H{®) (py,0) - BE) (o ,0) (23)
in turn, we find

_ 2 €o ®  eqn(-1)™ _ 5 Ay
Kz(¢) = Fﬁ gg Eoméo ﬁ;TTT;T cosmg¢ méo Jm(n)HAl)(n) cosmé (24)

The first term in equation (24) is the surface current for the
cylinder in the absence of the slot; the second term represents the
modification due to the presence of the opening.

Let us introduce the new simplifying notation
em (-1)™ P
B () g (mafl ()

Bp = E, form=20, 1, 2,... (25)

which enables us to rewrite equation (24) more compactly as

e [~ -]
K, (¢) = %% / Eg méo B cosm¢ . (26)

[o]

Clearly, the surface current vanishes in the opening in the cylin-
der. Consequently, the surface current becomes

K(¢)I ¢o$¢$2ﬂ-¢o
K, (6) = (27)
0 ¢ 2T=¢o<d<d,

where we use the notation K,(¢) = K(¢) on the conducting cylinder.
Inverting equation (26), we obtain the formal expression for the
expansion coefficients By: which, as is to be expected, are deter-
mined by the surface current on the conductor

2T-¢4
#% /52. By =yl J © d6°K(¢”)cosmé” . (28)

(o]
%o

13



An integral equation is derived below for the surface current
distribution. Multiply through equation (25) by Jm(n)Hél)(n)cosm¢,
sum over the index m, and rearrange to get

Lo Budn (ML) (n)cosmé = =I_ A cosms (29)

s m
+ By L, €m(-1i)"JIp(n)cosme .

Using equation (28), the last result becomes the integral equation
for surface current:

2m=¢4
7 /E—g a9 K(4") Hgl)tznlsin[%‘b—']ll = Ej,(Pos0) i 9o<<2m-9,
%o (30)

where we have used the identity’

Ioemdn (M BLL) (mcosm(4-¢7) = BED (2051085801 L (31)

Just as in the earlier situation with the integral equation for
slot distribution of the electric field, no exact analytical solu-
tion for the surface current has been reported in the literature.
We point out, however, that the kernel in equation (30) is a well-
behaved function and readily lends itself to a direct numerical
calculation for the problem. There arises, furthermore, a consid-
erable simplification of equation (30) in the Rayleigh limit. This
facilitates obtaining analytical results for narrow cylindrical
strips. Such results have been obtained and will be discussed in

a forthcoming report.

4. ALTERNATIVE INTEGRAL EQUATION FORMULATION

Several relations exist between the electric field in the open-
ing and the surface current on the conducting cylinder. Examina-
tion of equation (25) reveals this to be quite evident. The first
of these is embodied in equations ¢15) and (24), which together
vield

. bo '
_ L(0) 2 /g apfaey 5 _fm  cosm(4-¢")
K(¢) = K,”" (¢) - == /— [dd"E($7) _Z - (32)
z ™ Y Hg J m=o 2m g (mELL) (n)
-¢O

for ¢,<¢<2m-¢,. Equation (32) provides a means of calculating the
surface current on the conductor from knowledge of the electric
field in the slot.

7 1.8. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and Products,
Academic Press, New York, Formula 8.531, case 2, 979, 1965.
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A second relation is obtained from equation (29) where the use
of equations (14), (28), and (31) lead to

21=¢,

E(6) = By, (po,8) - § /2 d¢‘x(¢')nc§”[2n|sin[9§£]ll (33)

: €o
! &

for -¢,<¢<+¢,, which tells us how to find the slot electric field
if we ﬁnow the surface current distribution on the conductor.

A third and significant relation can also be derived. The
derivation of this relation begins by multiplying equation (25)
through by (-i)MJp(n) cosm¢ and summing over m to obtain

bt Anp I ot . \Th _ (34)
mZo E;TTTHT (-i)"cosm¢$ + I By (-i)"Jp(n)cosm¢ =
© gn(-i)T .
nEo —{IT—1Eo (1), (n) Tcosms .
Hp™' (n)
An integral representation of the Bessel function, i.e.
T
. m 1 © _-incosé” -
(=1)" T, () = 5 d¢-e cosm¢ '
¢ =
) leads to -
Eo(-i)me(n) = f% Jd¢’ Eiz(p0,¢‘)cosm¢‘ . (35)
-7

Equation (35) and the integral representations of A, and B, allow
us to write equation (34) as

b0 m *
a6 E(67) s €n (~1) -
¢ ¢7) L, Hml)(n) cosm¢ cosmé

-¢o
2m-¢,
+ %P/'E% ¢ K(¢") I Em(-i)me(n) cosm¢ cosm¢”
%o
T
- - - ® em("i)m .
= d¢ Eiz(Oo '®7) méo W cosm¢ cosmé R
-T

N
A}

15



which can be written in the more succinct form

%o _ 2T-¢,
[ E6”) KL (4= + I d9” E;, (0o, 0-6")K($") (36)
~¢ bo
o}
T ™
= | a0"E;, (0 ,07) K2V (6-67) = | @87E,, (0o, 0-01KE) (47) .
-T -

Integrals of this type were dubbed "reaction" integrals by
Rumsey®.

5. CONCLUSIONS

Equation (36) essentially represents a third formulation of
the diffraction problem—meaning, of course, that one could choose
to solve this integral equation rather than equation (21) or (30).
It should be noted that the kernels of the integral operators in
equation (36) are well behaved—that is, they have no singularities.
Although such an attempt has not been reported, it would seem that
a self-consistent numerical solution of equation (36), and con-
sequently the diffraction problem itself, is quite feasible.

% v.H. Rumsey, Phys. Rev. 94, 1483, 1954,
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