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I.

THE GENERAL PROBLEM

We shall consider a plane, monochromatic, linearly polarized
electromagnetic wave incident at an oblique angle f.on an infinite
perfectly conducting plane containing an infinite slot. Let the
width of this slot be 2po. We shall assume the conducting plane
screen lies in the XZ-plane and that the remaining space is simply

- free space, To fix the polarization we sssume the incident electric
field parallel to the slot axis (i.e. the Z~axis); thus (r,t) =
Eo (T,t) & where'ti is a unit vector along the +2-direction. To

. denote the direction of incidence of the plane wave, we use the unit
vector €o. Figure 1 illustrates the geometry and coordinates for
the screen and incident radiation.
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i Figure 1. The Slotted Infinite Conducting Plane Showing the
Direction of Incidence

1l



NOLTR 72-25

Using the constitutive equations

B(f,0) =€ E (F,0), B (r,0) =, & (r,0) (I-1)

the Maxwell equations in free space are

v x E (r,t) = 0 (1-2) .,
v, - B (f,t) =0 (1-3)
v, xE (F,0) = -8 (5.8 (1-4)

at

- - - I 3E (x,t)
e xB5E = 7 3t (I-5)

Assuming the time dependence to be of the form e.iwt, the fields

of the incident electromagnetic wave will be

- - -, ojut —
E; (r,t) = E, (r) e e, (1-6)

B, (F,t) =B (D o ivt &, X 8 (I-7)

It will be useful to also have the unit vector e explicitly in

terms of unit vectors along the coordinate axes. Thgs uantity,
simplified by the choice of the polarization of the incident
radiation,is *

3° = ~-(cos @) 3" -(sind,) ;Y (I-8) >

We then have for the incident wave

Ei =X 3; - -k {cosQL :x + lin‘% ;&} (I-9) )
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where kX = w/c is the free space propagation constant.

From the symmetry of the problem, we have only a 2 component of
the electric field. Thus, we have to deal only with the differential

equations

2 = 2 r) = ' -
v B, (r) + k E, (r) (4] (I-10)
. 1 y JE, (D)
BP (r) = (1w) P a? (I-ll)
J3E_ ()
3 _ =z (T=-12)
Bg(F) = = Tiay 3p

Furthermore, we note that the solution of eq (10) will in turn
yield the magnetic field solutions of eq (1l1) and (12).

We shall use the boundary device of(sye Kaden cylinder (1)
which we discussed in an earlier report « The Kaden cylinder
divides all of space into the three regions:

(1) region (1): p >pg , 0 <¥ < m

(i1) region (2): p < po » 0 <¥ < 2n
(114) region (3): p > po , " <¥ < 2n

This is illustrated in Pigure 2.

Our problem is to determine the fields Ez, By , B, in each of
these regions such that the appropriate boundary conditions are
satisfied on the conducting plane and on the upper and lower halves
of the Kaden cylinder as well. In addition, of course, the radiation
condition must be satisfied for p - = in regions (2) and (3).
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Figure 2. Cross-Section of Three Scattering Regions Used In
Formulating The Diffraction Problem.



aa,

NOLTR 72-25

II., BOUNDARY CONDITIONS; FORMAL SOLUTION FOR THE FIELDS

Above and below the slot region, that is in regions (1) and (3),
the fields wmust satisfy the following boundary conditions

Bt (pi0) =0
(1) .
E (p,n) = O
'z Ps (11-13)
H(;) (p,0) = O
Bgfl) (p,m) = 0O
and

g£3) (p,7) = 0O

(3)
E {p,2n) = 0O

z Ps (II-14)
H(;) (p,m) = O
Hg:) (p,2m) = 0O

Consistency requires that the solution of the slot problem
reduce properly to the limiting case of zero slot width. We there-
fore digress briefly to consider the problem of our plane wave
incident, obligquely, on the perfectly conducting plane screen without
a slot. The geometry is illustrated in cross-section in Pigure 3.
The incident unit vector is identical with that given in (8).

For the reflected radiation, the unit vector in the direction of
propagation is simply

;x: = -(cos ¢° ) zx + (sin@,) ;y (1I-15)

and of course the corresponding propagation constant is given by

k =k =
r

nle

(Yi=16)
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Linearly Polarized Plane Wave Incident Obliquely
at Angle é. on Conducting Plane Screen Containing
No Apertures. Polarization of Incident
Radiation is Parallel to the Screen.
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At any point T above the screen, the incident, and reflected fields
are respectively -

1) = o - 1 (K;eT -wt)
E, (r) E, e i

and

(xr)

i (K¢ =wt)
Bz 3

(P)=C e

where the unknown coeffici?nf c ii fo be determined by invoking the
boundary condition that Ez'2’+ E_{¥) = 0 on the screen. From this
we find that at ¥ the total elecfric field has the amplitude

-i{k x cos ¢, +wt)

z(:)(ib + Eér’ = 2% E e sin (ky sin ¢, ) (1I-17)

We shall use this result below.

Returning to the slot problem, we consider the Y?neral form of
the electric field above the slot region namely E { (p,2)e In
region (1) the total field is considered to be dué& to the three
contributions:

(1) E(i) field of the incident radiation

z

(11) E;r) 2z field of the reflected radiation in the absence
of the slot

(1ii) 3(31°t’ z field due to the presence of the slot

Z

Consequently at any point T (p,¥) in region (1) the electric field
has the amplitude (where the time dependence is suppressed)

(1)

(prp) = E;i)(p,w) + Eéx) {pye) + Eé519t) (p,y¥) (I1I-18)

It should be emphasized here that we are representing the total
field in region (1) in such a manner that in the lipit of slot
e? ilag reduces to eg (17). This reguires that Eé + Eér and
Ez8 ot satisfy the boundary condiiioys of eq (13) independently. At
large distances from the slot, E{S19t) must correspond to the field
of an outgoing wave. It then follows that the appropriate form of
the contribution to the total field arising from the slot will be
00
8108) L,y = > A BV (k) sin ny (21-19)
z el n'n
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Combining egs (18) and (19), we have for the total electric field .
in region (1)

(Y (o) = 21 £, & 1%P o8P 0% bo gy (koainpsing,) +  (11-20)

00

+ 3 A, u? (xp) sin ny
n=1

If the electric field as given in eq (20) is ? stituted into
eq (12), it is easy to see that the total field H'y’' satisfies the
boundary conditions stated in eq (13) at the conducting screen.
Next, we consider the fields in region (3). This we accomplish
through the use of known symmetry conditions relating slot fields
above and below the perfectly conducting plane. By considering the

current density on the screen, it can be argued by reason of
symmetry that the following is true

nx 208108 2y a7 x EG) (D (1I-21)

where the point r' is the image in the screen of point r and n is a
unit vector directed normally from the conducting plane into region ')
(1)« In our geometry il = ey. We can then write

- = _(slot) (= o2 .= pl(3) =
eyxez E, (z?) eyxez Bz (r)

or equivalently
£{3) (p,p) = B{81°%) (5 ) (1I-22)
From this result we find more explicitly the relation

00
3 (p,9) = -n‘é‘,l A, B (cp) sin ny (11-23) i

This solution for the electric field in region (3) satisfies the
boundary condition on the screen and also the radiation condition.
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(
\ The field B,,(,a) obtained from eqs (23) and (12) does likewise.
Next, we must obtain the fields within the slot region. We shall
carry this out after we have obtained the E fields of regions (1)
and (3) in a convenient form. After some straightforward
manipulation we have the relation
21 E, e~ikp cosecosf ., kp sinlesind,) = E, {el¥XP cos(r+é.)
-e~ikp cos (o) | (II-24)
Using the series representations“’
ap
cos(kp cos(vtd;y) ] = J, (kp) + 2 né:zsz:’lg?{?. Jn(kp) cos n(vtd,)
(IXI-25a)
x n-1
sin(kp cos(v2¢,) ] = 2 > (-1) 2 J, (kp) cos n (¢2¢0)
n-1’3’5,000 (II-ZSb)
, we can rewrite eg (24) in the form
\

- 00
21 B, e kP ©98COS% .44 (kp sinvsins) = 4E, 3 (-1) n/2 5 (kp)e
n
n=1,3,5,...

(2]
» 8in n ¢ sin(néy-4E 22 i—l) n/2 J,(kp) 8in nesin ne,,  (II-26)
n- , ’...

Let us define the following function

= [8in n¢ ;3 Osvg
9 (¥ l=sin ne 3 Os v s 2n (11-27)

w!&l)a the aid of this function and eq (20}, we can write the Fields
E and 3(3 (egs (20) and (22)) as the single expression

ot )
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n/2 n/2

E£1.3) (p,¥) = 2 E, i(-l) Jn(kp) sin n¥ sin n¢.—2l-:° %(-1){

n=l,3,... ' n=2,4,...
Jn(kp) sin nY sin nQJ.*- 2 E, %(-l)n/2 Jn(kp) g, (§) sin né -2 L

n-1’3,... -
Q. ..n/2 $ (1)
. (=1) J (kp) g, (¢) sin né + A_H {(kp) q_ (%)
Ez,«t,... n'*P) 9n 1§ * n=1,3,... » " n
¢ S A n D xy (®) (11-28)
n n P! 9n

n-2’4’...

The function g, (§) will next be processed so as to produce a

representation of it which will help us to find the fields inside
the Kaden cylinder in a convenient form. Since g, () is an even
function, we can write

o0
qn Q) = E Cmn Cosn\p ; n=13,5,... (I1-29)
mo,z,‘,...

where

n
Cmn-% | 9 @ d?-% ( n]:#m+ nila); m=0,2,...

J
° ns=1,3,...

{11-30)

Eq (29) enables us to rewrite eq (28) as

o0
Y (-1)"/2

(1,3) - Sy /2
Ez ’ (p,P) 2 Ej { m=1,3, 000 Jn (kp) sin n¥ sin n¢, E;(":)“..
+ 3. (kp) sin n\ sin nd, +
© Q o
+ 2 Z(--l)n/2 J_ (kp) ¢ cos m¥ sin - .
n=1,3,... 1m0,2,... @ = sind, §2,4,..°

10
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o .
ey, (-1)“’2 I (kxp) Can Cos m¥ sin nQ, +
m=1,3,...

) o (1) ) @
DY 2 A, H (kp) cos m§ + 3, Y, L Ap x
n-1,3,... 00,2600 n®Z ., 4,00, ”1,3,.0.
B (1) . 3
x Hy (kp) Cmn cos mw¥ | (11-31)

where we have used the notation

c® -

21/2 [‘_on -O 3 n-l,3.5,oo.
m

Cmn IP2,4,.ao H 1,3,5,0.. (11-32)

Using eq (31) for the form of the field outside the slot region,
we can deduce the field within the Kaden cylinder. In the plane of
the conducting screen, the tangential component of the magnetic
field within the slot must be the same as that of the incident field
at the same position{5]l consegquently, the first and second series
in eq (31) will also be present in the expression for the electric
field within the slot region, E,{2), Also present will be a

(— contribution arising from the siot. $ince the lattfr component must
remain finite as p ~ o we have for the form of 532

, ® : &
Lz(l) (p,g) = ZEO Z{—l)nfz Jn {kp} sin nY sin ¢° -ZEO Z (-1) n/:z

X
..Jn {kp) sin nY sin n¢° + n§° Bm Jm (kp) cos mVy (I1-33)

Egqs (28) and (33) give the iformal expressions for the electric
tield in regions (1), {(¥) and (3). From these the magnetic fields
everywhere can be outained,

We must complete the set of boundary conditions stateé in Eqs (13)
and (14), which,we recall,apply on the conducting screen itself.
This is eifected by adding the conditions at the Kaden cylinder:

) . {2 \ .
gD (ou) = 5 Y lpe, 9 ) (1I-34a)
{. Bél) (Pon?) - 352) (o, ¥ ) J (11-34c)

11
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2 -
Ez‘” (po,¥) = Bz‘ Y pos9) : (IX~35a)
3 I
B;P) (po,¥) = B[Sz) (po,¥ )j | (11-35c)

In principle, the sets of still unknown coefficients A, and Bp |

are to be determined via the boundary conditions. Proceeding in this
direction, we obtain from the pair of eqs (34a) and (35a) (and also

the pair of egqs (34c) and (35c)):
— (1)

2E 55 -1nV2 g () ¢ sin n¢ + ¥ A H () »

o ml’3,... . n m ° n-1,3,... n n

‘c: =B, J  (7), m=0,24,... (1I-36)

e n/2 i {1)

2E_ ), (=1) J_. (%) Cnm sin n$_+ A_ H ()

© n=2,4,... n 7 ° m=2,4,,.,. 0 P 1

xCan =B J (9), m=1,3,5,... (TI-37)
where we have introduced the helpful notation

(11-~-38)

9 = kp, = wpo/c = 2mpo/i

Similarly from the pair of eqs (34b) and (35b), we obtain

) 0 4
2. Y D™23%w) ® asinnp + 3 A m1 D )«
° n-l,3,ooo n ? n ° n-1,3,... nn ?
n /
4 Cm = B' Jm ('?) ? IFO,2,4, eee (11-39)

12
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o a0 /
/2 ’ (1)
2E (-1)™2 37 9) Con sin nd, + 3 A_H ()%
Cun = B, J7 (3) 3 mel,3,... (1I-40)

where the prime indicates differentiation with respect to the argument
kp evaluated at 7 = kpg-

Simultaneous solution of eqs (36), (37), (39) and (40), if it can

be achieved, will give explicitly all the coefficients and hence, in
turn, the fields everywhere.

We next consider the solution of the problem in the Rayleigh
limit of approximation.

13
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IIXI. THE RAYLEIGH APPROXIMATION

In the Rayleigh region, the wavelength of the incident radiation
is very large compared to the characteristic dimensions of the
scattering region. For the problem in hand, this latter quantity is
simply the slot width. Equivalently the condition on the parameter
n = 2npo/A <<1, implies the Rayleigh approximation. Wwe will solve
our scattering problem in this asymptotic limit.,

Small argument asymptotic forms of the Bessel and Hankel functions

that are needed are
m
.—-——-_- 2
I () m<<1 ?;%:%I) y m= 0,1,2,3,...

Do m<<I 2@ 2mp™; m=1,2,3,... (TII-41)

> m
Jn' ('7) n<<1 B (n/2) ,; m=1,2,3,...
r(m+l)

g () AT =2
/ .
e TR rm 2 w23,

Using these asymptotic forms eqs (36) and (39) become, respectively

[ d n a0
2E (-2 [-(-’343)—] i + S a c?
° El,.’i,l. m | T(aen] 5" ne, n2-1,3,..,. n ®"
s ,'n o)™
* [-ﬂ—" ™ (n) % ] = By .LDL_L_( 1) for m = 2,4,... : (IXI-42)
T (m+
L] n oo
2E_ 2 (-1)“/2 c? [ﬂ /2 sin n, +) A cP?
© n=1,3,... B 1" r(n+1) n=1,3,... O m ¥
n mB m
» [iﬂ I (n)C%) ] = 155 l?ﬁfi; ; T=2,4,... (ITTI-43)
s I

14

)
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We shall consider the m = 0 case separately. If we multiply eq (42)
through by m and eq (43) by -4 and subtract the latter from the former
we obtain

aB

z, n n <
2E [_,( 1)"’2 (m-n) %LEIL)Z)_ sin né_ -‘% Lo AL {ra+n) »

n
n 2 (IT1~44)
*Cp ¢ (M) (?) for m=2,4,..

Now for the case m = 0, 1f we multiply the asymptotic form of
eq (36} by "%/2 and add it to the asymptotic form of eq (3Y), with
m= 0, we obtain

a0
<

g
= y2)" i - n n
© p=1,3,... ° TimD * " nei,3,.. ™ ° ?

(I11-45)

where we have used the long wavelength condition
n/l.'\a . 7/2 .
Eq (44) with m formally set equal to zero exactly coincides with

eq {(45). Thus, we can write the set of equations to be solved for
the coetficients A,, for n = 1,3,5,..., as

- oC
e < ¢
n/2 n (UYp" i A (mm) x
2Et) i,}). (m=n) Cll ~(n+1l) sin n¢° = 3«1,3,5.0..

zc: ~ (n) (2/‘7)" for m = 0,2,4,... (1II-46)

In precisely the same manner given in BL—I(G’

coefficients outside the slot region

» we obtain for the

. n+l
A = - ITEgsin® _ (7/2) n=l,3,.. (ITI-47)

-y

n V4
{n+1) (n Z)Khzf).

-a

The next immediate task is to determine the even subscripted series
expansion coefficients *n Equations (37) and '40) become with the
ald of eqs (41)
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2E i (=1) n/2 Can [(M] sin né + E: A Smn . )
O n=2,4,... r(n+1) * n=2,4,... P
n
‘[' i ~(n) (-'72‘)] - EIPT.%)QB L mm1,3,5,000 . (II1-48)
and
2E %: (-1) n/2 Can L [M] sin nd + i A Cuyn *
© n=2,4,... I (n+l) °  mm2,4,... D "

in 2 n m°m g“'zzzz“ 5 m=1,3,5,... (IXI-49)
¥ T'(n) =
m ¥ o (m+l)

Processing this in exactly the manner we handled eqs (42) and (43),
we obtain finally the solution

. n+2
- in Bo sin29e 8 (g) P pe2,4,.. .
(n+2) an-g)l] ,)

(IT1I-50)

Now we shall find the Rayleigh region series coefficients within the
Kaden cylinder namely the Bp. In the long wavelength limit eqs (42)
and (43) are respectively just

e
iE c; " sind, + > A, C: [—‘—1 r (n) (;)"] - B (/2"

m= 2.4,,..
and (IXI-51)
@
1 B¢ ] .
iE_ cnvsind, + 2. A cP [—f: r (n) @ﬂ - 2R
n=1,3,.. m=2,4,...
(II1-52)

Subtracting these and using the explicit form of 2, as given in
eq (47), we obtain quite readily

16
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@

A:.E.____i’_sin ] -Z- c? _(B"_u_!_—_ - 1-m) (%9/2)%Bm

c n=l,3,... © 2(n-1) [(!r_l)l]z _(_I‘m(m-i-l) Bl i
2 /e

m2’4'6... )
(IXI-53)

Following the same procedure used above to find the Ap, we
obtain the coefficients in question:

B -F“—‘ﬂ—'—im m! T LI'M]‘) 2\" for m = 2,4,..
TR A=) (/2] (ﬁ) |

(I1TI-54)

We next fill in for the missing coefficient Bg. From egs (36)
and (39), the long wavelength approximation gives for m = 0O

1l ) d nro n
2E_ c_ (/2) 51:31;’-?:_‘“% co [ drm (2/m)"] = 5,

and
e
1 n n n _ _ 2
NE, Co sind_ + n-lz,s,..A“ Co 4 Tn) t2/49) B, M°/2
Solving for By (where we recall ‘g <<l) we have
B, = 4 A Ch(n+1) v(m) (277 (I11-55)

n-1’3’00 n

Comparing this with eq (54), we find that it coincides in form if
we set m = O, Thus eq (54) can be modified to include m = O:

+ 1
} ‘—) ( )n
Eo sin m 2 2
B = —_— - ¢ ’0,2’4000 (III-56’
= Jn ¢ (1=m) (@)} 7/

We next complete this solution by obtaining the odd subscripted
coefficients By. From egs (48) and (49), we have Rayleigh limit forms:

«
2 2 :
28, -1 ¢ -‘—‘-"%BL;L sin 24, + 2. A c . [k rm) (2/%)")

n=2,4,.. 7 ™ &7

= (m+1) J m=1,3,5,...

17
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(- -]
)
1. (2y (w2l in _2."] Y
2E° (-1) cm2 ("L\l T (3) sin 2.¢° + n§,4,...pl] Cmn (n,‘ r(n) ("l)
_m  Bp (/2"
“? r (m+1) ;] mw=1,3,5,... (III-58)

Multiplying eq (57) by 2 and eq (58) by % and then subtracting
yields

o
-1 Z A_ C__(n+2) T(n) (2/m)? = L2=m n/2)"
" n=2,4,... " P " T (m+1)
m=1,3,5,... (III-SQ)

Subtracting for A, as given by eg (50) and solving for the Bp
we obtain finally

By = "M Eq _sin 2o m} L (m/2) (_2_ -1 ; m=1,3,5,...
2./ (2-m) (m— | ki
2

(III-60)

RN

Using eqs (47) and (50), we have the electric field in region (1)
in the Rayleigh approximation

Ez(l) (p,§) M <<l 2iE_ exp(-ikp cos@ cos,) sin (kp sin¥ sin¢.) -

2 (1) Rin+1
- MEg sin @, Ho (ko) sin nf (-2- +

n=1,3,., (Al [511—2“(%_1_)!]2

2 (1)
+ inE_ sin 2¢, n§2:4 %:T.(?}Tm) snin nw‘ 5 (%)n+2
o 2 [(%).] (III-61)

In region (3), the electric field is similarly

18



-

NOLTR 72-25

(3) (1)
E, (p,9) = iﬂE sing, Z Hp (ko) sin n¥ (3)n+1
‘nel 235,00 (n+l) (n-2) f{n=1} 2 \2
2 [( 2 J
- inE_  sin 2¢° Z _n___(_p_H ko) SIn L ( )
° n=2,4,.. (n+2) "{(“ ']
(X1I-62)

Using the identity of eq (26) and the results for By in egs (56)
an;i (60), we can write the long wavelength electric field in region
(2) ¢

3;(;2) (p,¥) "L<<I 130 exp (-ikpcos¥cos §,) sin (kpsin@ sind,) +
o £ T
i E_si _
YR m=0,2,4,.. (1—m)(%)! (%Y cos my +
2 3 r3) "
+ (2) Eq sin 2®e > 2 (/i) cos m@
2 Jr m=1,3,5,.+, (3om) (m;l )! Po

(IXI-63)

An extremely important point to elaborate is that of fulfillment
of the boundary condition at the slot edges. Consider then the edge

defined by p = po and § = 0. Here eq (63) takes the form, after

setting m = 2M in the first sum and m = 2M+1 in the second sum:

+

[- -]
(2) (po,0) ,2<<1 iRE, sin o Z T‘l(M+142)
Jm M=0 M. (1-2M)

+ (‘_;_)2 En s=in 2¢a i T _(M+1/2)

M =0 M (1-2m)

Using the identity

|
,Z'n (2M) ,
T (M+1/2) = 2h |
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and in turn the series definition of the beta-function

. norams . ol 1
B(5,1/2) (e + 1/2) prapd 22”(11!) (N+2Y) , (I11-64)

and recalling that 7°(0) = @ , we find that

(2)
E, (fo,o) n<< 0 (III-65a)

In precisely the same manner, we can demonstrate that at the
other slot edge the field also vanishes

‘éz) (Pos™ 72 " ° (I1I-65b)

We can conclude then that our solution in the Rayleigh limit
satisfies the boundary conditions at the edges of the slot.

20




NOLTR 72-25

IV. FORMULATION OF THE NUMERICAL SOLUTION FOR ARBITRARY SLOT-WIDTH

AND I )_INCIDENT WAVELEHGTH

To determine the unknown series coefficients Apn, Bp required to
explicitly find the fields in the general situation for arbitrary
n=kpo = 2ﬂeo A, we adopt a numerical technique developed by one of
the authors Essentially the method of approximation is to require
fulfillment of the boundary conditions at only restricted sets of
points on the boundary rather than over its entirety and to truncate
the infinite series in the formal field expressions at a corresponding
finite number of terms. This leads to sets of simultaneous linear
eguations which are readily solved (at least in principle).

Pollowing this procedure, we define angles ¥ such that
mT< Ye <27 (IvV-66)

and at these azimuths we have from the boundary condition requirements
at the Kaden cylinder.

2 3
Also we have
2 3
H; ) (b0, ) = Hg ) (Do,gb ) (Iv-68a)

or equivalently
(2)

(3)
I 0 N

However, if egs (67) and (6f) are written out in detail in terms of
the summations, it will be cbserved that whenever eq (67) holds

eq (68) is automatically satisfied. The boundary condition on Hv
at the Kaden surface gives us

(3)

(2)
Hy (Por) = HY (po, W) (Iv-69)
or equivalently
3B (2) 3 )
(b(kp) ) P=Po (;(kp) ) p=po (IV-69a)
Y= ¥, ¥ =19y

This, together with eq (67), constitute for each‘& two independent
relations connecting the sets of expansion coefficients An and Bm.

For a given slot width and a given wavelength for the incident
radiation, the A,'s and B;'s that contribute significantly to the
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composition of the fields can be numerically obtained approximately
but, nevertheless,quite accurately if one ignores all the remaining
coefficients further out in the series representations. To effect
this we truncate the series so that the indices n and m run respect-
ively from 1 thru W and from O through M = N~1., We now have 2N
unknowns to evaluate. By suitably selecting N values of Yjwe will
generate from egqs (67) and (69) the two sets, each of N simultaneous
linear equations in 2N unknowns

ENZ (1) 3
H inn@+
s a, By (n) sinwng) %o_‘l b, d, (1) cos m¥y =

g-i'n cos % cosdy

- n sin (n sin 'y, sin#o) ;

I=1,2,...,% (Xv-70)
N _ (1)0 N-1 p
) 1n B (n) sin n\?’ +?-:0 bm Jm (n) cos mﬂ -

sin ?’ sin 4’0 e~1in cos %cosh’cos (n sin Y sind,)

COS"P’ cos ¢° e"j.ﬂ cos l?’ C03¢¢ sin (n sin‘p’ sin¢0 ))'

|
She S

P=1,2,...,8 (IV-71)

where for further convenience we have introduced the additional
notation

a = 4, iBn (IV=72)

Before considering the calculated results, we shall briefly
d:rive the transmission cross-section wxpression in terms of the
fields.
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V. ANGULAR DISTRIBUTION OF SCATTERED INTENSITY AND TRANSMISSION
CROSS~SECTION

If we introduce the following notation

py = total power transmitted through the slot per unit length
of the slot

S4 * magnitude of the real part of S; the incident complex
Poynting vector at the scatterer = |Re § |

we define the transmission cross-section per unit length of the slot

as
¢ - ﬂ———-
t | Re Ei | (V-73)

which in turn can be expressed in terms of the expansion coefficients

A

Since IRe Sil = [1/2 Re Ei x i!’i*l (V=74)

we can use egs. (4) and (6) to obtain S;. as follows

x &, eﬂ.:i';]*} at slot

1)

IRe Sil = 1/2 |Re {EO & x [ fung

2 . .
- goiu‘“_o | re {;z x [-(1) (—ie-iki'r :z x k ﬂ} at slot

which becomes simply

2
S; = Eo / 2u,c (Vv=75)
: The total power transmitted through a unit length of the slot
s
2n ~ 2(3) _ 3)e
Py = 1/2 S ap pea - Re [Lim (E x #3] (v-76)
m P f-s”

or more simply
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2n . -
Py = 1/2 g" ayp p &, ° Re }?@32(3) g’(” ]

We repeat Eq (23) for the field 33(3)

g (3) (p,) = = iA H‘(‘l) (kp) sin n®

z nsl n

Using the relation
4 3 p
b (TN

(3)

we obtain

> & s
(3) g3)* _ XK
E,;5 Hy fong zl ) An A

’

xsin ny sin,?? .

In the far field as p - =, we use the asymptotic forms of the

Hankel functions and obtain I \
(3) ,(I® 2 v _i(-n)n/2 -’
P;f:o B, Hy —rr g]. El A A! e
sin n@ sinfy

The transmitted power is then

@
2
P -
Py = 1/2 ; | a,l (V=77)

and consequently the transmission cross-section per unit slot length
is

©
2
2, -1
Ot = (xE_“) gl | A,,l (v-78)

In geometric optics this transmission cross-section is just

optics
¢ - 2p, (V=79)

which will serve as a convenient normalizing parameter. Thus, we
introduce the normalized transmission cross-section, which is here-

-
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(~ after referred to as the transaissjion coefficjent:
Ty (Po,m =0, (Pg,n)/ g, oIS (v-80)

which in terms of the scattering coefficient is

a a
1 2 2
TE ( ?o,‘q) - 27130 2 §1 ' Anl = ‘g gl ‘ an (?O, ﬂ)l (v-81)

This is truncated in our approximation technigque to the sum
N
2
™ (Yo,m =2 2 |a® (Yo,m| (v-82)
n=]

where the superscript (N) has been appended to the appropriate symbols
to indicate the order of approximation to which they are to be
calculated.

In addition to the total radiation transmitted through the slot,
another physical parameter is of interest in scattering problems.
This is the angular distribution of the intensity of the scattered
radiation in the far field. Or in other words, the differential
. power transmitted per unit length of slot, in the direction e Gy).

If we denote this quantity by Ig (y), we have

TN
.

I (Y) = 1/23(9) - Re Limp [E3) x HI*] (v-83)
f-ﬂb
which following the same arguments leading to eq (77), becomes in
terms of the scattering coefficients, a, :

© ©
I.(¥) = 7

2 Z a; a 4.!1(‘Q -n)n/2 sinp'f sin np‘

nei p=1 4 M

(Vv-84)

Truncating this consistem with our method of approximation, this
becomes in turn

N N
™ ) = 3|2 ia},"g‘“’* AR -RI2Z 00 ain n
n=l {0 =1 (V-85)

Having completed the formal development, we next present the
numerical results obtained for oblique incidence.

l’.‘\
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VI, NKUMERICAL RESULTS AND DISCUSSION

We restrict the specific results presented in this report merely
to (1) the calculated values of the transmission coefficient Tg(4¢,)

iven to several orders of approximation;(2) and the angular

istribution of the far field intensity for a single but rather high
order of approximation., Although we do not include the numerical
results obtained for the scattering expansion coefficients; namely,
the a,, we shall nevertheless briefly discuss their behavior. For

a given ¢, the expansion eoefficients exhibit the same behavior
obtained and discussed in an earlier report (BLI) as the order of
approximation N increases. Here, as in the report just cited, the
angles ¥, , f =1,2,...,N were selected by evenly spacing the range of
¥ . These values were chosen via the relation

b4

Y=+ o1 A =1,2,...,N (VI-83)
The results obtained for the expansion coefficients a, for a
sufficiently large but fixed order of approximation N vary with
changes in the choice of the set of angles Y, . For given ratio of
slot width to incident wavelength, i(.e. 7 , the predominant a,'s show
quite small dependence on the choice of the ¥, . This dependence on
the ¥, is more marked for the less significant ap’'s. The net result
of this behavior is to produce a numerical value for the transmission
coefficient which is practically independent of the Y, ‘s provided
that they are more or less uniformly distributed over the range of

¥ . By decreasing N, the order of approximation, this salutary

behavior was found to be even more pronounced.

Many calculations were carried out for a large range of order of
approximation and for angles of incidence from ¢,= 10° to & =90°
in steps of 10°, However, we present in this report only a part of
the numerical results obtained. These are in every way representative
of all the calculated results and embody all the essentials of the
extension of our study of the approximation technique.

Table I contains the numerical value of the transmission coefficient
Tp (¥) for the ratio of slot-width to wavelength parameter over the

range 0.5 < n < 2.2. The values are listed for approximations
obtained by matching at N = 23,25, and 27 boundary angles chosen in
accordance with eq (83). These listings are for angles ranging from
$,= 10°, that is, almost grazing incident, to ¢,= 90°, normal
incidence on the slotted plane. We see in Table I(a) for &, =10°
that the results differ at most in the fourth decimal place as N goes
from 23 to 27. The entries in Table I were actually only calculated
to the fourth decimal place. A more careful inspection of these
values strongly suggests that the discrepancies between the results
for a given value of 7n really occurs in the fifth decimal place. (N)
This is borne out by the results shown in Table II which gives Tg
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for $,= 10° for K = 43,45 and 47. Table II, however, covers the
larger range 0,5 < 11 < 6.0. Over even the extended range of n the
values of TE(N’for fixed n only vary in the fifth decimal place. This
indicates that for the range of 1 covered T (10°) has in all
probability been accurately determined by cﬁooaing N = 43, Clearly
for n & 2.0, T;(10°) can be adequately calculated using a lower
order of approximation N2 25. Pretty much the same situation is
the case for incidence at 4,= 30°. One can see in Table I(b) that
the transmission coefficient deviates for fixed n in the fourth
decimal position as the order of approximation increases from N = 23
to N = 27, For ng 1.5, Te(N) (30°) is as given in Table I(b) for
- N 2 25. At intermediate angles of incidence such as ¢ = 50°, we note
that in Table I(c) where N runs from 23 to 27 that the deviations in
Te( ¢,), fixed n,are in the fourth decimal place for smaller n values
and in the third decimal place at the larger values. Examination of
Table III, however, reveals that at nearly double the order of
approximation in Table I(c) Tg ( ¢,) values obtained vary at fixed n
in the fifth decimal place for small n,in the fourth place for all
the larger values of n. For the common range of ratio of slot-width
to wavelength in Tables I(c¢) and IIXI the improvement obtained by
increasing the order of approximation to twice the number of matching
boundary angles is essentially only on the order of a very few percent
actually from about 4% to less than 1%. Nevertheless, it appears
that at the intermediate range of angles of incidence the calculated
results are more reliable for N = 45. The overall trend continues as
¢, increases. Thus in Table I(d), we have the results for incidence
just a bit off normal at ¢,=80°. For the smaller 7 values the
Tg (80°) values vary in the lourth decimal place. For all larger n
this deviation occurs in the third decimal place. However, it should
be noted that this deviation, for 0.8 < 11 < 2,2, is less than 1% as
N goes from 23 to 27. Improvement of this calculation occurs, of
course, for higher order of approximation. Finally, we can study the
results for normal incidence 4;-90° given in Table I(e) for
0.5<N%X 2,2 and N= 23, 25 and 27 and in Table IV for 0.5 < n < 6,0
and N = 45, 47, and 49. Examination of Table I(e) shows that as N
changes from 23 to 27, for fixed n,Tg(90°) varies in the third decimal
position although this variation ranges from 2% for n = 0.5 to about
0.3% for n= 2,2, Table IV on the other hand exhibits a variation in
the fourth decimal position for n < 3.3 and at most in the third
place for n beyond this value , resulting in a smaller spread than for
the lower orders of approximation in Table I(e). For the common
range in 1n of the Tables, the improvement at double the order of
approximation displayed in Table I goes from .1% at n = 2,2 to about
4% for n = 0.5,

One conclusion we draw is that for more accurate results a much
higher order of approximation is required the closer we come to
normal incidence on the slotted plane. Thus we need N =~ 45 for
$,=90° whereas N = 25 is gquite adegquate for ¢,~10°. The reason
underlying this is not too evident as yet and is presently undergoing -
invsgtigation. We display in Figure 4 the transmission coefficient
rg (49) (&, n) for ¢,from 10° to 90°., The results calculated for the
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other orders of approximation discussed in this report are nearly
coincident with the curves shown and hence only one set of curves is
presented. fiquro 4 also shows the earlier results of Morse and
Rubenstein(®) for the transmission coefficient. Our results are in
very good agreement with theirs. However, we probably have better
numerical accuracy than the earlier tables of Mathieu functions used
by Morse and Rubenstein.

In Figures S, 6, and 7 we show respectively relative angular
distributions of the diffracted radiation for angles of incidence of
¢.= 30°, 60°, and 90°. The results in each case were obtained,
using 49 matching boundary circles oa the Kaden cylinder for A = 2mpo,
A = mpo, and A = 2mpo/3., Again these results agree gquite well with
those obtained by Morse and Rubenstein.

In conclusion, we observe that the numerical method of approximation
vields accurate results for the obliquely incident slotted plane
problem. The technique is being applied to more complex scattering
problems and the results will be reported in the near future.
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caesenn gz L (A=274,)
————e92 2 (Ar TP,)
2:3 (A22TAR /3)

, Figure 5. Angular Distribution of the Transmitted, Relative
Far-Field Intensity, Ip (¥), for Several Wave-
lengths at Angle of Incidence §, = 30°.

30




NOLTR 72-25

sesesce P31 (A-‘-’&W)o.)
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—— 2=3(2=274/3)
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Figure 6. BAngular Distribution of the Transmitted, Relative
Far-Field Intensity, Iy ($), for Several Wave-

lengths at Angle of Incidence ®,= 60°
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cevescaces P (/\=27)°¢‘
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-

Figure 7. Angular Distribution of the Transmitted, Relative
Far-Field Intensity, I (¥), for Several Wave-
lengths at Angle of Incidence §°= 90¢°
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Table 1.

a). Angle of Incidence ¢o= 10°

7,

e o ¢ o 0 0 0 0
NHOVONIIMTMBMWNMFOODONOWM

NN o e e =000 00

Ns= 23

0.0016
0.0029
0.0049
0.0075
0.0107
0.0141
0.0174
0.0199
0.0215
0.0220
0.0217
0.0209
0.0200
0.0191
0.0185
0.0183
0.0186
0.0194

N= 25

0.0016
0.0029
0.0048
0.0074
0.0106
0.0140
0.0173
0.0198
0.0214
0.0220
0.0217
0.0210
0.0200
0.0191
0.0185
0.0183
0.0185
0.0193

N = 27

0.0016
0.0029
0.0048
0.0074
0.0105
0.0140
0.0172
0.0198
0.0214
0.0219
0.0217
0.0210
0.0200
0.0192
0.0185
0.0183
0.0185
0.0193

Slotted Plane Transmission Coefficient, Ty

(N)

(¢, M); E-Polarization
4

b). Angle of Incidence ﬂi= 30°

4?

NN HRE R R R eEEO00 000
[ N )
NROUDNONAWNHOODNSAW

N= 23

0.0134
0.0247
0.0414
0.0643
0.0926
0.1240
0.1545
0.1794
0.1960
0.2037
0.2040
0.1995
0.1927
0.1858
0.1804
0.1781
0.1796
0.1857

N= 25

0.0133
0.0245
0.0411
0.0637
0.0919
0.1232
0.1536
0.1787
0.1955
0.2033
0.2038
0.1995
0.1927
0.1859
0.1805
0.1780
0.1794
0.1853

N= 27

0.0132
0.0243
0.0408
0.0633
0.0913
0.1225
0.1529
0.1781
0.1950
0.2030
0.2037
0.1994
0.1928
0.1859
0.1805
0.1779
0.1792
0.1849
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Table 1. Slotted Plane Transmission Coefficient, TE(N) (¢°‘ ‘7); E-Polarization

c). Angle of Incidence f§= 50°

L]

® ¢ 6 00 0 0 o C 6 % 0 0 0 0 @
NEHOVWONOUVMAWINEHFOLDOIOWN

NNNERREEREEREERPR00000

N= 23

0.0322
0.0599
0.1016
0.1597
0.2335
0.3180
0.4033
0.4776
0.5325
0.5650
0.5778
0.5762
0.5662
0.5528
0.5403
0.5319
0.5302
0.5372

B= 25

0.0320
0.0594
0.1008
0.1584
0.2317
0,3158
0.4008
0.4753
0.5305
0.5635
0.5768
0.5756
0.5657
0.5525
0.5399
0.5313
0.5294
0.5360

N= 27

0.0317
0.0590
0.1000
0.1572
0.2302
0.3139
0.3987
0.4733
0.5288
0.5622
0.5758
0.5749
0.5653
0.5522
0.5396
0.5308
0.5286
0.5349

{contd)

d). Angle of Incidencg!‘=80°

»

¢ o 06 0 0 o v o
NHOOVONOVMSEWNMHOLDONOWN

NNNHEERRRRRRRO00000

Ns= 23

0.0547
0.1027
0.1764
0.2814
0.4185
0.5804
0.7507
0.9082
1.0353
1.1239
1.1757
1.1979
1.1993
1.1876
1.1685
1.1462
1.1235
1.1021

N = 25

0.0542
0.1018
0.1749
0.2790
0.4150
0.5759
0.7456
0.9030
1.0304
1.1196
1.1720
1.1949
1.1968
1.1854
1.1665
1.1444
1.1216
1.1002

M= 27

0.0538
0.1010
0.1736
0.2769
0.4120
0.5721
0.7412
0.8985
1.0262
1.1159
1.1689
1.1923
1.1946
1.1835
1.1649
1.1428
1.1201
1.0986
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Table 1. (Continued)

e). Angle of Incidence = 90°

” Nw 23 N = 25 N= 27

5 0.0565 0.0560 0.0556

.6 0.1062 0.1052 0.1045

o7 0.1826 0.1810 0.1797

.8 0.2916 0.2891 0.2569

.9 0.4342 0.4306 0.4275 2
.0 0.6031 0.5984 0.5945 £
.1 0.7813 0.7759 0.7713 =
o2 0.9467 0.9412 0.9365 <
o3 1.0811 1.0758 1.0713 S
o5 1.2319 1.2280 1.2247 u
.6 1.2573 1.2540 1.2512

.7 1.2606 1.2578 1.2555

.8 1.2497 1.2472 1.2452

.9 1.2303 1.2280 1.2262

.0 1.2064 1.2044 1.2027

.1 1.1807 1.1787 1.1771

02 1.1547 1.1528 1.1512
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Table II: Slotted Plane Transmission Coefficient, TéN). (¢Q:7)7 E-Polarization,
Angle of Incidence, ¢. = 10° and 0.5 & "} £6.0

N = 45 N = 47 N = 49

~
~

N = 45 N = 47 M= 45

0.00152 0,00151 0.00151
0.00277 0.00277 0.00276
0.00462 0.00461 0.00460
0.00711 0,00710 0.00708
0.01019 0.01017 0.01015
0.01357 0.01355 0.01352
0.01682 0.01679 0.01677
0.01944 0.01942 0.01940
0.02112 0.02111 0,02109
0.02180 0.02179 0.02178
0.02167 0,02166 0.02166
0.02100 0,02100 0.02100
0.02010 0,02010 0.02010
0.01922 0.01922 0.01922
0.01855 0,01855 0.01855
0.01824 0,01824 0.01823
0.01839 0.01838 0,01837
0.01906 0,01905 0.01903
0.02026 0.02023 0.02021
0.02190 0.02187 0.02184
0.02383 0.02380 0.02377
0.02583 0.02580 0.02577
0.02764 0.02761 0.02758
0.02901 0.02900 0.02898

0.02984 0,02983 0.02982
0.03009 0,03009 0.03008
0.02986 0.02986 0.02987
0.02931 0,02932 0.02933
0.02862 0.02864 0.02865
0.02798 0,02800 C€.02801
0.02754 0.02755 0.02756
0.02742 0.02742 0.02742
0.02769 0,02769 0.02768
0.02839 0.02838 0.02837
0.02949 0.02947 0.02945
0.03088 0,03086 0,03083
0.03392 0.033%0 0.03388
0.03609 0.03609 0.03608
0.03658 0.03660 0.03662
0.03576 0.03580 0.03582
0.03470 0.03474 0.03477
0.03447 0.03449 0.03450
0.03561 0.03561 0.03561
0.03790 0.03790 0.03789
0.04039 0.04039 0,04039
0.04192 0.04195 0.04198
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Table III: Slotted Plane Transmission Coefficient, T#N), (@,,7): E-Polarization,
Angle of Incidence,@e = 50° and 0.5 = "7 < 6.0

N = 45 N = 47 N = 49 N= 45 N= 47 N = 49

=)
= 2

0.0306 0.0305 0.0305
0.0568 0.0567 0.0566
0.0964 0.0962 0.0960
0.1517 0.1513 0.1510
0.2224 0.2219 0.2215
0,3043 0.3036 0.3031
0.3881 0.3875 0.3868
0.4630 0.4623 0.4617
0.5198 0.5193 0.5187
0.5552 0.5547 0.5543
0.5708 0.5705 0.5701
0.5715 0.5713 0.5711
0.5630 0.5628 0.5627
0.5503 0.5502 0.5500
0.5376 0.5375 0.5374
0.5283 0,5281 0.5279
0.5248 0.5246 0.5244
0.5294 0.5290 0.5287
0.5432 0.5427 0.5422
0.,5665 0.5659 0.5653
0.5983 0.,5975 0.5968
0.6358 0.6350 0.6342
0.6752 0.6743 0.6735
0.7121 0.7113 0.7105

0.7430 0.7422 0.7415
0.7656 0.7649 0.7643
0.7794 0.7788 0.7784
0.7852 0.7848 0.7844
0.7848 0.7845 0.7842
0.7801 0.7799 | 0.7797
0.7734 0.7732 0.7730
0.7666 0.7664 0.7662
0.7613 0.7610 0.7608
0,7589 0.7586 0,7583
0.7605 0.7601 0.7597
0.7663 0.7658 0.7653
0.7891 0.7884 0.7878
0.8182 0.8174 0.8167
0.8411 0.8405 0.8399
0.8511 0.8507 0.8502
0.8489 0.8485 0.8482
0.8393 0.8390 0.8388
0.8281 0.8278 0.8276
0.8200 0.8197 0.8193
0.8172 0.8167 0.8162
0.8184 0.8179 0.8173
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Table IV: Slotted Plane Transmission Coefficient, TéN), Uj°f7); E-Po}arization,
Angle of Incidence,@e = 90° and 0.5 &£ £ 6.0

9 Nm 45 - N= 47 N = 49 % N = 45 N = 47 HN= 49

0.5 0.0535 0.0534 0.0533 2.9 0.9958 0,9954 0.9950

0.6 0.1006 0.1003 0.1001 3.0 0.9808 0.9803 0.9799

0.7 0.1729 0.1725 0.1721 3. 0.9674 0.9669 0.9665

0.8 0.2763 0.2756 0.2750 3. 0.9559 0.9554 0.9550
o9 0.4122 0.4113 0.4100 3. 0.9465 0.9460 0.9455
.0 0.5747 0.5735 0.5723 3. 0.9394 0.9388 0.9383 Z
. 0.7485 0.7470 0.7457 3. 0.9350 0.9344 0.9338 £
. 0.9127 0.9112 0.9098 3. 0.9337 0.9330 0.9324 a
. 1.0489 1.0474 1.0461 3. 0.9358 0.9350 0.9343
. 1.1473 1.1460 1.1448 3. 0.9415 0.9407 0.9399 N
. 1.2079 1.2069 1.2059 . 0.9510 0.9501 0.9493 i
. 1.2373 1.2364 1.2356 . 0.9640 0.9630 0.9621 o

1.2438 1.2431 1l.2424
1.2352 1.2346 1.2341
1,2175 1.2170 1.2164
1,1947 1.1942 1.1938
1.1697 1.1692 1.1688
1.1441 1.1436 1.1432
1.1189 1.1185 1.1181
1,0947 1.0943 1.0940
1.0719 1.0715 1.0712
1.,0506 1.0502 1.0498
1.0308 1.0304 1.0300
1.0125 1.0121 1.0117

0.9969 0.9957 0.9947
1.0304 1.0293 1.0283
1.0548 1.0538 1.,0529
1,0661 1.0652 1.0644
1.0659 1.0651 1.0644
1.0582 1.0575 1.,0569
1,0466 1.0459 1.0453
1.0333 1,0327 1.,0321
1.0200 1.0194 1.0188
1.0076 1,0069 1.0063
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