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ABSTRACT

(Distribution Limitation Statement No. 2)

The problem geometry is an infinite conducting cylinder stationed in free space.
The cylinder has a slit or aperture of width 2a. An electromagnetic pulse
(polarized with the electric field parallel to the axis of the cylinder) is
normally incident upon the cylinder. The pulse can be expressed as a spectrum
of plane waves. Formulas for the field interior to the cylinder are computed
for a single frequency incident plane wave. These formulas are dependent upon
the value of the electric field in the aperture. The electric field in the
aperture is found to be approximately defined by a single constant V. The
interior field of the cylinder, in response to a pulse, is then an integral
over the frequency spectrum and V becomes a function of frequency, V (w).
Graphs of V (w) are given for apertures of 10 and 60 degrees and frequenciles
from 1 to 500 MHz. For certain frequencies the cylinder will be resonant. At
these frequencies the formulas for the iInterior fields are greatly simplified;

furthermore, these formulas are independent of the aperture opening.
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P SECTION I

INTRODUCTION

The problem is to compute the electromagnetic fields interior to a slotted
cylinder when an electromagnetic pulse is normally incident upon the slot.
This is shown in Figure 1. The infinite cylinder is of radius R and perfectly
conducting. The aperture is open for - a < ¢ < a. The electromagnetic pulse is

traveling from x = + ® to x = - « with the E field parallel to the z-axis.

The pulse as a function of time will have a Fourler transform:

©

1 1wt
Ez(—f,t) o EOG,w) et 4y (1)

-0

8

Eo('r’,w) = Ez('{,t) e tot 4o (2)

where it is assumed that the transform of the incoming pulse can be expressed
- as

inc

> >

E (r,w) =E (w) E, (r,w) (3)
In other words the electromagnetic pulse can be considered to be made up of a
continuous spectrum of plane waves, each wave having a frequency w and an

amplitude Eo(w).

Each of these component plane waves when intercepting the cylinder will
have some of the energy reflected or scattered away from the cylinder and some
" of the energy transmitted through the aperture. Let Ezint (?,w) be the trans-
form field interior to the cylinder in response to Ezinc (t,w), a plane wave
of frequency w and unit amplitude. Then the field interior to the slotted
cylinder will be a summation of the fields of different frequencies, each

. frequency having an amplitude of E_(w) Ezint (f,w) or

e

E (F,t) = %; f E_(w) Ezi“t (%,0) Xt ay (4) |
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The strength and shape of the incident field in the time domain will determine

Eo(m) and for the purposes of this report will be assumed to be known. The

- problem then reduces to determining the function Ezint (?,w).
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SECTION II .
CALCULATION OF Ezi“t (%,w)
Ezinc (;,w) is the Fourier transform of the field interior to- a slotted
cylinder when a plane wave of frequency w and unit amplitude is incident upon
the cylinder. As such, both the interior and exterior fields are a boundary

value problem solution to Maxwell's equations. Because of the ext (iwt)

appearing in the Fourier transform and utilizing the constitutive equations for

free space, Maxwell's equations reduce to

vV x E = —imuo ﬁ Vv x ﬁ = imeo E (5

In this case the incident plane wave traveling to the -x direction can be

expressed as

ikx _ 1 1ikx
Ez—e Hy—ne (6) N
S
where k is the wave number and equal to w/c (c being the speed of light in the
medium) and n the intrinsic impedance of the medium (/u/e .
Since for this problem there are no variations with respect to z, and since
the incident magnetic field has no z-component, all of the fields of this problem
will be of the transverse magnetic to z type. The fields will then be derivable
from a scalar potential ¢ according to (Ref. 1, p. 518):
, 1 S8y '
E =1 H = =— 7
2 = MY P p 8¢ ™
H=_.§_l£ H =E =E, =0
b §p z P ¢
where the cylindrical coordinate system is used (p,¢,z) and the wave function
¢y satisfies the Helmholtz equation; in this case the wave functions will have
the form
p = Zn(kp) cos né (8) ')_

where Zn denotes any Bessel function.
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Using the wave transformation

eikx - Z snin Jn(kp) cos ng 9

n=o

(where € is Neumann's number and is equal to 1 for n = Q0 and equal to 2 for all

other n), the incident field wave function will be

lp:tnc - -1

(-]
, n
Tong Z eni Jn(kp) cos ng (10)

Since the wave functions must have the form of equation (8) the wave function

describing the total interior fields will be chosen as

int _ -1
imUo

¥ 3 A J_(kp) cos no (11)

n=o

where An are unknown constants and the Bessel functions of the first kind are
chosen because they are the only ones which are finite at p = 0. In the same

manner the wave functions describing the scattered external fields will be

¢SCt - T:;— }: B Hiz)(kp) cos n¢ (12)

@Ho n=o

where the Bn are unknown constants and the Hankel functions of the second kind
are chosen to represent an outgoing wave because of the exp ({iwt). The total
exterior fields will be described by the sum of the external wave functions:

ext inc sct

poXt = yInC 4y (13)

The E field must be zero at the conducting surface and continuous in the
aperture. Because of equation (7) this means that the external and internal
wave functions are equal at p = R. This relation and the orthogonality of the

cosine functions can be used to express the unknown constants Bn in terms of Ah:

B = (Ah -ed (14)

n) Jn (kR)
(2)
Hn (kR)
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The remaining boundary condition to find the An's is that the magnetic field

be continuous in the aperture: - o < ¢ < a. Since this is not a complete coor-
dinate surface, the orthogonality of the cosine functions cannot be used. Instead- .

the following method will be used to find the An's. At p = R the E field will be
(from equations (7) and (11)) _

int s
E, " (p=R,¢) = nzsjo A J_(KR) cos no (15)

This series can be recognized as a Fourier cosine series in ¢. It will be remem-
bered that an even function of period 27 may be expanded in a Fourier cosine

series as (Ref. 2, p. 411)

f(¢) = }: a  cos ne (16)
n=o
€ T
n
a =— ff(¢) cos n¢ dé (17)
(o]
Comparing equations (16) and (15), and since Ez 1s zero except in the aperture: -}-
€ a int -
A= m"Jn(kR) [ E, (p=R,¢) cos n¢ d¢ (18)

The solution to the problem is therefore known when the value of the electric
field is known in the aperture. One method of approximating a solution is to
assume some series of functions for the value of Ez in the aperture; at the same
time a set of unknown constants is used to adjust the amplitude of these func-

tions. For example, assume

m
E_(p=R,¢) = 2:,“1 Vg £, —a<¢<a
(19)

=0 elsewhere

where the Vq are unknown. Using equation (19) in (18) will yield for A.n Jn(kR)

functions of the form:

\\".‘/

M
A J (kR) = qg- vq Fq(n,a) (20)

6
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The values of the Vq's can then be found by matching the H¢ field in the slot

at m different points.

Specifically, the value of H¢ is found from equatioms (7), (10), (11), (12),
and (13). Then the function ERROR is defined as

ERROR = (H int -H ext
¢ ¢ p=R

2 = n cos n¢
= A - 1) —F7T
TRup nz=:o ( n oo ) Ht(lz) (KR)

(21)

The function ERROR should be zero for those values of ¢ in the aperture since
the magnetic field is continuous there. 1In particular, we designate ¢m as some
m different values of ¢ in the aperture, and using equation (20) for A,n in (21)
will result in

©« I V. F (n,q) ® enin
9 %2) cos ¢m = B) cos n¢m (22)
n=o0 Jn(kR)Hn (kR) n=o0 Hn (kR)
Equation (22) can be rewritten as
m
vV C = S (23)
o1 a ™ m
where
© Fq(n,u)
c_ = cos né (24)
mq = (2)
n=o Jn(kR)Hn (kR)
o enin
S = 2: ———— cos n¢ (25)

o a=o Héz)(kR)

Equation (23) for m different values of ¢ will yield m equations for the m
different values of Vq'

At this point one may begin to consider the functions fq (¢) which are used
in equation (13) to produce Fq(n,a). If these functions exactly produce Ez in
the aperture, the problem will be exactly solved. On the other hand the differ-

ence between these functions and Ez in the aperture will produce an error in the

7
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solutions. A measure of this error can be made by calculating the function

J

ERROR (given in equation (21)) for the values of ¢ different from ¢m. It should
be noted that theoretically an exact solution could be found by letting m approach
infinity and having the set of functions be a complete set over the aperture; in

this case all boundary conditions of the problem would be satisfied.

Morse and Feshbach have examined the problem in this manner (Ref. 3, p. 1387).
In their work they assumed that the value of Ez in the aperture would be the
same (except for a multiplying constant) as for a plane wave incident upon a plane
covering the y-z axis with a narrow slit of width 2a. The problem of a plane wave
incident upon a conducting plane with a slit has been solved exactly when there
are no reflections from the x < 0 area (Ref. 4, p. 895). For a slit narrow with

respect to the wavelength, the value of Ez in the slit is approximately
2
E_~ VVL(Q) (26)
z o

where V is the magnitude of the field in the center of the slit.

Morse and Feshbach-used equation (26) for (19) which then resulted for

o

equation (20):

A F(n) @2n

=V
n Jn(kR)

F(n) = % (28)

F(n) = %-Jl(na) n>o (29)

Using these expressions the resulting magnetic field was matched at ¢m =0 to

produce a single equation for V (where q is now equal to 1):

SO
V= T (30)
(o]
c, = > D (n) F(n) +1 ). Dy(n) F(n) (31) _
n=o =0
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m n © ntl
Re(S°)= Eé% (-D2 e D (n) + 2 Egi (-1) 2 D, (n) (32)
n=even n=odd
- n =  nHl
Im(S°)= ng -1DZ e D (@) -2 El (-1) 2 D, (n) (33)
n=even n=odd

where Dl(n), Dz(n), Da(n),_and D#(n) are representations for the real and imagi-
nary Bessel function combinations, i.e.:

D,(n) = {J 2(kR) + Y 2(kR) -1 34
(o n ) n (34)
Jn3(kR) 1
Dz(n) = Y—n—(—k—R—)- + Jn(kR) Yn(kR) (35)
. D3(n) = Jn(kR) Dl(n) (36)
{
) an(kR) -1
Dq(n) = ?;_(1_(_16_ + Yn(kR) (37)

Morse and Feshbach did not produce either numerical results or graphs of

their work. This results in two unanswered questions:

(1) What is the effect of the reflections of the wave from the
interior of the cylinder; i.e., is the shape of the aperture
distribution still given by equation (26)?

(2) Does the aperture distribution change when the opening of
the aperture, a, is large as compared with the radius of
the cylinder R?

To answer these questions the author of this report considered a series of
functions with a series of unknown constants for the aperture distribution given
in equation (19). 1In this case with several points across the aperture being

¢ matched, the selection of the functions fq(¢) are somewhat arbitrary with the

exception of three considerations. One of the considerations is the following:
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the constants Cmq and Sm are infinite series as given in equations (24) and (25).

For computational purposes we wish these series to converge as fast as possible,

But the denominator of the series for Cmq contains the terms Jn(kR) Hn(kR). -
Using the asumptotic forms for these Bessel functions where n >> kR, we have
(Ref. 5, p. 365) .
3 (kR) — —=L= [SER) (38)
n Y21n 2n

(2)
B "7 (kR) — -1 Yn(kR)

(39)
(-1
e id= (ekR)
™™ \ 2n
The denominator term of this series then approaches for large n
(2) i
Jn(kR) H (kR)——-»-Tm (40)
This means that for the series to converge, the transform of fq(¢), or Fq(n,a), :)‘

must approach zero faster than 1/n for large n. In particular, it would be

desirable to have the transforms Fq(n,a) approach zero at least as fast as 1/n3. -

To aid in the selection of fq(¢), one of the basic principles of Fourier
series can be used; that is, if a function and its various derivatives all
satisfy the Dirichlet conditions, and if the k-th derivative is the first which
is not everywhere continuous, then the Fourler coefficients of the function
approach zero as n to the minus (k + 1) power for sufficiently large n (Ref. 6,
© p. 407).

Finally there are two other considerations when chosing the functions fq(¢)
to represent Ez in the slot. These are that from the physical consideration of
the problem the functions fq(¢) should be symmetrical about ¢ equal to zero and
should be zero at ¢ equal to t a. The series of functions corresponding to

equation (19) used in this report was then
m 2
= = i - - ——-TT
E,(p=R, ) q§=l: vq((a 1) cos (2q 1) o= (41)

10
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It can be seen that the above set of functions is symmetrical about ¢ equal to

zero, and both equation (41) and its first derivative are zero at ¢ equal to

t a. Using equation (41) in (18) will produce

€
Fq(n,a) = (—1)Q'1(;E) (wl(n) sin n, - Wz(n) cos nu) (42)
W (n) =42 (43)
Q%
34+6tn2 ' .
W (n) = ltﬁ_ (44)
a
L
t = (Zq—l) 28 (45)
Q = t2 - n? (46)
and when t is equal to n, the equation (42) reduces to
2a 2
F ’ E e —— o m—e———e
q(n C!.) 3T "3(29_1)2 (47)

The unknown Vq's were then determined by use of equation (23) where the ¢m were

equally distributed across the aperture, i.e.,
o
o, = (»-1) = l<pzm (48)

The distribution of the electric field was then found for various aperture open-

ings and frequencies.

The results of this investigation were that the distribution used by Morse
and Feshbach is approximately correct for wide aperture openings and high
frequencies. For example, the Vq's shown in Table I are for a frequency of
500 MHz, an aperture opening of 60 degrees, a cylinder radius of 1 meter, and
for m equal to 10. A comparison of the Morse and Feshbach distribution and the
distribution of equation (41), for the Vq's in Table I, is shown in Figure 2.

In this case the Vq's listed in the table were normalized to 1 and the unknown

11
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Table 1

VALUES OF Vq (500 MHz, 60°, m = 10)

Q Re (V) Im (V)
1 0.461446 2.529478
2 ~1.226267 ~0.880974
3 0.693587 0.549577
3 ~0.491884 ~0.374646 ))
5 0.360717 0.268753 ‘
6 ~0.263716 ~0.193839
7 0.186795 0.136116
8 ~0.123022 ~0.-89152
9 0.068577 0.049536
10 ~0.021123 ~0.015235

12
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V of equation (19) was set to 1. It can be seen that the shape of the aperture
distribution is approximately the same. Therefore, a good approximation to the
aperture field distribution is the Morse and Feshbach approximation (equation

(26)) where only one unknown need be solved for (i.e., equation (30)).

One small difficulty in using the Morse and Feshbach approximation might be
mentioned. This is the summing of the series for the imaginary part of Co' As

shown above (equation (40)) Dz(n) for large n approaches minus nn. For large n

the Bessel function Ji(na) has an asymptotic form (Ref. 5, p. 364):

Jl(na)—-> {-W_i—:cos (na - %l) (49)

Therefore, for large n, the imaginary part of C0 approaches

Im(Co) — -Jg—"_éx /3;' cos (na - %) (50)

where K is some number such that the approximation in equation (40) is valid.

This is a slowly converging series.

14
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SECTION II1I

COMPUTATIONS AND ACCURACY

All computations used in this report were made by the Burrough's B-5500
digital computer. This computer has a Bessel function call-up as described by
the Burrough's Mathematical Report Series MRS-139 (1 June 64). This call-up
uses either the defining series or a polynominal approximation to compute Jo(z),
Jl(x), Yo(z), and Yl(z). Then the following recurrence formula is used to com-

pute all other orders:

(%E) 2 (2) = 2__ (2) + 2. (2) (51)
The accuracy of zero and first order computations is better than 4 x 10 ©.
Since for n larger than z the Yn(z) function is a numerically increasing func-
tion, the rounding errors when using equation (51) are not large and the order
of accuracy 1is the same as for the first and second orders. On the other hand
the Jn(z) function is a numerically decreasing function for n larger than z,
and the round-off error in using (51) is severe. Experience has shown that for
z smaller than n, 20 iterations of equation (51) will produce values of Jn(z),

whose values are always smaller than or equal to 1, of the order of 1000.

For this problem the following procedure was used. The Yo(z) and Yl(z)
functions were called up from the Bessel call-up. Then the value of Yn(z) was
computed by equation (51) until the value of Yn(z) exceeded 10 to the power plus
35; let the value of n for this value of Yn(z) be N. Then initial values of
Jn(z) were computed for orders N and N-1 by using the asymptotic values given
in equation (26). The recurrence formula (51) was then used to compute the
values of Jn(z) from N down to zero, where now Jn(z) is a numerically increasing
function. All values of Jn(z) were then normalized by the formula (Ref. 5,

p. 361)

1=J (x) +2 (Jz(z) +3,(2) + I .(2) + ---) (52)

15
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Experience has shown that from N-5 to zero orders the Jn(z) functions are
accurate to at least the sixth significant figure. At the N-5 order, the values .)
of Yn(z) are larger than 10 to the plus 30 power and the values of the Jn(z) .
function are smaller than 10 to the minus 25 power. From the N-5 orders down to
the zero order these computed values of Jn(z) and Yn(z) are used in computing
Dl(n), Dz(n), Ds(n), and Du(n). For those orders above N-5, the values of

these D-functions (with the exception of D2(n)) are all smaller than 10 to the

minus 30 power and these functions are then set to zero.

For the values of D,(n) where n is larger than N-5 the Debye asymptotic

formulas were used (Ref. 5, p. 366). These formulas were then reduced to

nm n

. - 2\-1/2
3 (2) ¥_(2) = —1(1 —(i)) (53)

For n larger than N-5 the worst error in using this formula was found to be in

the fifth significant figure.

The largest value of N used in the different calculations was for N equal

to 59 when the frequency was 500 MHz and R was equal to 1. .

In the results presented in this report all the infinite sums were carried
out to 1000 terms, or until the terms were smaller than 10 to the minus 30 power, .
with the exception of the imaginary part of Co' This sum was computed to 1000
terms using the approximations given in equation (53) and also using Hankel's

asymptotic expansion for Jl(na) for na larger than 5. (Ref. 5, p. 364)

J,(na) =JT\'12‘1_A (P(na) cos x - Q(na) sin x) (54)
P(na) = 1 + —22 ___(15)(21)(45) (55)

128(na)2  (24) (64) (64) (na)*™

-3 ___(5)(21) 56
Qma) = o5 = 148) (64) (na)? (56)
X = na - %1 (57) ]

16



AFSWC-TR-69-9

This approximation is correct to the fifth significant place. From 1,000 to

1,000,000 terms the factor Dz(n) was approximated by -nm and the sum S' was
» formed:

- T n=1,000,000 1
s' = -‘}a— 12500 /= (P(na) cos x - Q(na) sin x) (58)
n=1,

so that the imaginary part of Co 1s equal to

n=1,000
mfc \ = D F(n) + S' (59)
m( o) Ngo ,(@) F(n

17
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SECTION 1V -

RESULTS

A Burroughs B-5500 computer was used to calculate the values of V from
equations (30) through (33). For these calculations the cylinder radius was
scaled to a value of 1 meter and frequencies from 1 MHz to 500 MHz were computed.
These results are presented in Figures 3 and 4 for aperture values of 10 and 60

degrees. For other cylinder radii these results will be valid by scaling the

frequency according to

wR = ¢ (60)

With reference to equation (4), for any given single frequency and a unit

incident field the interior electric field will be

int ¥ Jn(kp) ~
E,7 (0,8) =V X F(n) gy cos nd (61) ¥
n=o n

where F(n) is given by equations (28) and (29). For a spectrum of frequencies,
V becomes a continuous function of w given in Figures 3 and 4. The electric

field interior to the cylinder as a function of time will then be

int > 1 > ~ Jn(kp) iwt
Ez (r,t) = 5 nz F(n) cos n¢ f Eo(w) V(w) J—n(TR)- e dw (62)
=0 )

One fact should be noted about equations (61) and (62) and the graphs of
V(w). From the graphs of V(w) it can be seen that V(w) is zero at certain
frequencies. At these frequencies the functions Dz(n), glven in equation (35),
are infinite. (This 1s the only one of the four D functions which are infinite.)
The reason that Dz(n) is infinite 1s that Jn(kR) is an oscillatory function for

kR > n. For these particular frequencies the values of Ah and V can be rewritten

from equations (27) and (30) as follows. Designating _)

18
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Jn(kR) = Jp =0 (63)

for those values of kR and n = p for which the Bessel function is zero, C0

becomes from equation (31)

S S 16

T —

o T T P Y. a® (64)
P P
so that V from equation (30) becomes

Y (kR)

= - P __ | «
v JP 1 So F(p) (0] (65)

The A.n in equation (30) is then zero for all n except for n = p, in which case
A =-18 Y (kR : 66
. o Y, (eR) (66)

For these particular frequencies where resonances occur, the interior electric

and magnetic fields will be

int

E 0,9) = Eo(wp) AP Jp(kp) cos né (67)
int °
= - 6
H¢ k Eo(mp) Ap Jp(kp) cos né (68)
int _p 6
Hp : Eo(wp) Ap Jp(kp) sin n¢ (69)

where wp and p are the frequencies and orders of the Bessel functions for
which

W
JP(EE R) =0 (70)

It will be noted that at these resonant frequencies the field strength 1s

independent of the size of the aperture opening.

21
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Tables II and III record the following information:

(1) frequency for which Jp is zero for R =1, fp, /
(2) the order of Jp, P> |
(3) the argument of Jp for Jp equal to zero, wp/c, .
(4) the absolute value of'So for fp,
(5) the value of Yp(mp/c),
(6) the absolute value of AP’ and
(7) the phase of Ap'

N
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£C

Frequency
(MHz)

fp

114,743
182.824
245.038
263.382
304.419
334.738
362.066
401.616
412.899

418.518

Order

Table II

CALCULATIONS FOR Ap

Argument
wp/c
2,40483
3.83171
5.13562
5.52009
6.38016
7.01559
7.58834
8.41724
8.65373

8.77148

|'s

ol

7.

12,

16

17

20

22

24

26

27.

27.

9891

3839

.4238

.6180

.2935

.2730

.0589

.6460

3845

7523

(0-450 MHz)

0.

0.

0

-0.

Yp(bp/c)

50992

41252

.36495

33894

.33453
.30236
.31262
.27869
.27101

.29571

|Ap

4.0738
5.1086
5.9938
5.9714
6.7888
6.7345
7.5212
7.4261
7.4214

8.2068

(p:gse)

(Degree)

38.27
122.97
-160.87
41.48
- 88,66
128.10
- 18.82
-150.99
42,64

49.42

A”

6—69-41L-DMSIV



%¢

Frequency
(Miz)

b

465.732

474.086

485.411

527.936

528.969

554.423

562.615

Order

Table III

CALCULATIONS FOR Ap (450-565 MHz)

Argument
mp/c

9.76102

9.93611
10.1735
11.0647
11.0864
11.6198

11.7915

|56

30.8447

31.3922

32.1344

34.9224

34.9902

36.6598

37.1972

N’

Yp(mp/c)

-0.

26149

.28209

.25060

.24813

.27076

.23570

.23225

| Ap |
8.06566
8.8554
8.0529
8.6654
9.4738
8.6408

8.6392

(pﬁgse)
(Degree)

- 73.58
- 63.50
130.16
1.44
2.68

-146.64

43.23

6=69-d1-OMSJIV



AFSWC-TR-69-9

g REFERENCES

. 1. Harrington, R. F.; Time~Harmonic Electromagnetic Fields, McGraw-Hill, New
York, 1961.

2. Selby, S. M.; C. R. C. Standard Mathematical Tables, l4th Edition, The
Chemical Rubber Co., Cleveland, Ohio, 1965.

3. Morse, P. M. and Feshbach, H.; Methods of Theoretical Physics, McGraw-Hill,
New York, 1953.

4. Morse, P. M. and Rubenstein; "The Diffraction of Waves by Ribbons and by
Slits," Phys. Rev., Vol. 54, No. 11, pp. 895-898, December 1938,

5. Abramowitz, M. and Stegun, A., Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, National Bureau of Standards
Applied Mathematics Series 55, U.S. Government Printing Office, Washington,
D.C., 1965.

6. Sokolnikoff, I. S., Advanced Calculus, McGraw-Hill, New York, 1939.

25



